Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
-
# import pytesseract
|
| 4 |
import numpy as np
|
| 5 |
import datetime
|
| 6 |
import random
|
| 7 |
from fpdf import FPDF
|
| 8 |
-
import os
|
| 9 |
-
import threading
|
| 10 |
import time
|
| 11 |
|
| 12 |
# Quantum Simulation Logic
|
|
@@ -21,19 +18,15 @@ class QuantumSim:
|
|
| 21 |
def evaluate_transaction(self):
|
| 22 |
return random.choice(list(self.states.items()))
|
| 23 |
|
| 24 |
-
# Computer Vision &
|
| 25 |
class CVProcessor:
|
| 26 |
def extract_vehicle_number(self, image_np):
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
gray = cv2.cvtColor(image_np, cv2.COLOR_BGR2GRAY)
|
| 30 |
-
text = pytesseract.image_to_string(gray)
|
| 31 |
-
return text.strip() or "Not detected"
|
| 32 |
|
| 33 |
def detect_damage_severity(self, image_np):
|
| 34 |
if image_np is None:
|
| 35 |
return "No image provided"
|
| 36 |
-
# Simulate damage level detection
|
| 37 |
damage_score = np.random.randint(1, 10)
|
| 38 |
if damage_score > 7:
|
| 39 |
return "Severe"
|
|
@@ -42,11 +35,6 @@ class CVProcessor:
|
|
| 42 |
else:
|
| 43 |
return "Minor"
|
| 44 |
|
| 45 |
-
class CVProcessor:
|
| 46 |
-
def extract_vehicle_number(self, image):
|
| 47 |
-
# Bypass OCR for now
|
| 48 |
-
return "DL3CAB1234" # Dummy number
|
| 49 |
-
|
| 50 |
def detect_person_injury(self, image_np):
|
| 51 |
if image_np is None:
|
| 52 |
return "No image provided"
|
|
@@ -62,11 +50,11 @@ class InsuranceAgent:
|
|
| 62 |
|
| 63 |
def simulate_live_camera_feed(self):
|
| 64 |
print("[Agent] Watching live feed... analyzing frame by frame.")
|
| 65 |
-
for i in range(3): # Simulate 3 frames
|
| 66 |
dummy_frame = np.ones((480, 640, 3), dtype=np.uint8) * np.random.randint(0, 255)
|
| 67 |
report = self.process_frame(dummy_frame)
|
| 68 |
self.reports.append(report)
|
| 69 |
-
time.sleep(2)
|
| 70 |
|
| 71 |
def process_frame(self, frame):
|
| 72 |
vehicle_number = self.cv.extract_vehicle_number(frame)
|
|
@@ -89,6 +77,7 @@ class InsuranceAgent:
|
|
| 89 |
|
| 90 |
self.generate_pdf_report(response)
|
| 91 |
self.notify_services(response)
|
|
|
|
| 92 |
return response
|
| 93 |
|
| 94 |
def generate_pdf_report(self, data):
|
|
@@ -108,27 +97,27 @@ class InsuranceAgent:
|
|
| 108 |
if data["IRDA Notified"] == "Yes":
|
| 109 |
print("[IRDA] Fraud suspected. Penalty log initiated.")
|
| 110 |
|
| 111 |
-
# Gradio UI
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import datetime
|
| 5 |
import random
|
| 6 |
from fpdf import FPDF
|
|
|
|
|
|
|
| 7 |
import time
|
| 8 |
|
| 9 |
# Quantum Simulation Logic
|
|
|
|
| 18 |
def evaluate_transaction(self):
|
| 19 |
return random.choice(list(self.states.items()))
|
| 20 |
|
| 21 |
+
# Computer Vision & Damage/Injury Detection
|
| 22 |
class CVProcessor:
|
| 23 |
def extract_vehicle_number(self, image_np):
|
| 24 |
+
# Bypass OCR
|
| 25 |
+
return "DL3CAB1234" # Dummy number
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
def detect_damage_severity(self, image_np):
|
| 28 |
if image_np is None:
|
| 29 |
return "No image provided"
|
|
|
|
| 30 |
damage_score = np.random.randint(1, 10)
|
| 31 |
if damage_score > 7:
|
| 32 |
return "Severe"
|
|
|
|
| 35 |
else:
|
| 36 |
return "Minor"
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def detect_person_injury(self, image_np):
|
| 39 |
if image_np is None:
|
| 40 |
return "No image provided"
|
|
|
|
| 50 |
|
| 51 |
def simulate_live_camera_feed(self):
|
| 52 |
print("[Agent] Watching live feed... analyzing frame by frame.")
|
| 53 |
+
for i in range(3): # Simulate 3 frames
|
| 54 |
dummy_frame = np.ones((480, 640, 3), dtype=np.uint8) * np.random.randint(0, 255)
|
| 55 |
report = self.process_frame(dummy_frame)
|
| 56 |
self.reports.append(report)
|
| 57 |
+
time.sleep(2)
|
| 58 |
|
| 59 |
def process_frame(self, frame):
|
| 60 |
vehicle_number = self.cv.extract_vehicle_number(frame)
|
|
|
|
| 77 |
|
| 78 |
self.generate_pdf_report(response)
|
| 79 |
self.notify_services(response)
|
| 80 |
+
print("[Debug] Frame Processed:", response)
|
| 81 |
return response
|
| 82 |
|
| 83 |
def generate_pdf_report(self, data):
|
|
|
|
| 97 |
if data["IRDA Notified"] == "Yes":
|
| 98 |
print("[IRDA] Fraud suspected. Penalty log initiated.")
|
| 99 |
|
| 100 |
+
# Gradio UI
|
| 101 |
+
agent = InsuranceAgent()
|
| 102 |
+
|
| 103 |
+
def start_agent_simulation():
|
| 104 |
+
print("[Debug] Starting simulation...")
|
| 105 |
+
agent.reports = []
|
| 106 |
+
agent.simulate_live_camera_feed()
|
| 107 |
+
all_reports_text = ""
|
| 108 |
+
for i, report in enumerate(agent.reports):
|
| 109 |
+
all_reports_text += f"--- Report {i+1} ---\n"
|
| 110 |
+
for key, value in report.items():
|
| 111 |
+
all_reports_text += f"{key}: {value}\n"
|
| 112 |
+
all_reports_text += "\n"
|
| 113 |
+
return all_reports_text
|
| 114 |
+
|
| 115 |
+
with gr.Blocks() as iface:
|
| 116 |
+
gr.Markdown("# No-Ops AI Agent for Road Accident Management")
|
| 117 |
+
with gr.Column():
|
| 118 |
+
start_button = gr.Button("Start Agent Simulation")
|
| 119 |
+
report_output = gr.Textbox(label="Agent Activity and Reports", lines=20)
|
| 120 |
+
|
| 121 |
+
start_button.click(start_agent_simulation, outputs=report_output)
|
| 122 |
+
|
| 123 |
+
iface.launch()
|