File size: 149,565 Bytes
04b64a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "source": [],
      "outputs": [],
      "metadata": {
        "id": "eACAbEZnCeV3"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Hallucination des LLMs:\n",
        "Bienvenue dans ce Travaux Pratiques (TP) où nous allons explorer le phénomène intrigant des hallucinations des LLMs. Les hallucinations, généralement associées à des conditions neurologiques ou psychiatriques, sont des perceptions qui n'ont pas de base dans la réalité. Cependant, dans le contexte des LLMs, ces perceptions prennent une toute nouvelle dimension.\n",
        "\n",
        "Les LLMs sont des modèles d'apprentissage automatique qui sont entraînés sur d'énormes quantités de texte. Ils apprennent à prédire le texte suivant sur la base du texte précédent, ce qui leur permet de générer des phrases et des paragraphes qui semblent logiques et cohérents. Cependant, comme tout modèle d'apprentissage automatique, les LLMs peuvent parfois faire des erreurs, ou \"halluciner\", en générant du texte qui n'a pas de sens, qui est complètement déconnecté du contexte donné ou qui n'est pas factuel.\n",
        "\n",
        "Dans ce TP, nous allons plonger dans le monde fascinant des LLMs et de leurs hallucinations. Nous allons explorer comment ces modèles fonctionnent, pourquoi ils hallucinent, et comment nous pouvons détecter.\n",
        "\n",
        "Avant de nous plonger dans l'univers fascinant des LLMs, il y a quelques préparations à faire. Pour assurer le bon déroulement de ce TP, vous devrez d'abord télécharger:"
      ],
      "metadata": {
        "id": "YoJL60i929Li"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "source": [
        "!pip install langchain\n",
        "!pip install langchain_community\n",
        "!pip install nltk\n",
        "!pip install llama-cpp-python\n",
        "#!CMAKE_ARGS=\"-DLLAMA_CUBLAS=on\" FORCE_CMAKE=1 pip install llama-cpp-python --no-cache-dir"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting langchain\n",
            "  Downloading langchain-0.2.2-py3-none-any.whl (973 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m973.6/973.6 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: PyYAML>=5.3 in /usr/local/lib/python3.10/dist-packages (from langchain) (6.0.1)\n",
            "Requirement already satisfied: SQLAlchemy<3,>=1.4 in /usr/local/lib/python3.10/dist-packages (from langchain) (2.0.30)\n",
            "Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in /usr/local/lib/python3.10/dist-packages (from langchain) (3.9.5)\n",
            "Requirement already satisfied: async-timeout<5.0.0,>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from langchain) (4.0.3)\n",
            "Collecting langchain-core<0.3.0,>=0.2.0 (from langchain)\n",
            "  Downloading langchain_core-0.2.4-py3-none-any.whl (310 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m310.4/310.4 kB\u001b[0m \u001b[31m26.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting langchain-text-splitters<0.3.0,>=0.2.0 (from langchain)\n",
            "  Downloading langchain_text_splitters-0.2.1-py3-none-any.whl (23 kB)\n",
            "Collecting langsmith<0.2.0,>=0.1.17 (from langchain)\n",
            "  Downloading langsmith-0.1.71-py3-none-any.whl (124 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.6/124.6 kB\u001b[0m \u001b[31m10.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: numpy<2,>=1 in /usr/local/lib/python3.10/dist-packages (from langchain) (1.25.2)\n",
            "Requirement already satisfied: pydantic<3,>=1 in /usr/local/lib/python3.10/dist-packages (from langchain) (2.7.2)\n",
            "Requirement already satisfied: requests<3,>=2 in /usr/local/lib/python3.10/dist-packages (from langchain) (2.31.0)\n",
            "Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /usr/local/lib/python3.10/dist-packages (from langchain) (8.3.0)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.3.1)\n",
            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (23.2.0)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.4.1)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (6.0.5)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.9.4)\n",
            "Collecting jsonpatch<2.0,>=1.33 (from langchain-core<0.3.0,>=0.2.0->langchain)\n",
            "  Downloading jsonpatch-1.33-py2.py3-none-any.whl (12 kB)\n",
            "Collecting packaging<24.0,>=23.2 (from langchain-core<0.3.0,>=0.2.0->langchain)\n",
            "  Downloading packaging-23.2-py3-none-any.whl (53 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.0/53.0 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting orjson<4.0.0,>=3.9.14 (from langsmith<0.2.0,>=0.1.17->langchain)\n",
            "  Downloading orjson-3.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (142 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m142.5/142.5 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1->langchain) (0.7.0)\n",
            "Requirement already satisfied: pydantic-core==2.18.3 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1->langchain) (2.18.3)\n",
            "Requirement already satisfied: typing-extensions>=4.6.1 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1->langchain) (4.12.0)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain) (3.7)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain) (2024.2.2)\n",
            "Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.10/dist-packages (from SQLAlchemy<3,>=1.4->langchain) (3.0.3)\n",
            "Collecting jsonpointer>=1.9 (from jsonpatch<2.0,>=1.33->langchain-core<0.3.0,>=0.2.0->langchain)\n",
            "  Downloading jsonpointer-2.4-py2.py3-none-any.whl (7.8 kB)\n",
            "Installing collected packages: packaging, orjson, jsonpointer, jsonpatch, langsmith, langchain-core, langchain-text-splitters, langchain\n",
            "  Attempting uninstall: packaging\n",
            "    Found existing installation: packaging 24.0\n",
            "    Uninstalling packaging-24.0:\n",
            "      Successfully uninstalled packaging-24.0\n",
            "Successfully installed jsonpatch-1.33 jsonpointer-2.4 langchain-0.2.2 langchain-core-0.2.4 langchain-text-splitters-0.2.1 langsmith-0.1.71 orjson-3.10.3 packaging-23.2\n",
            "Collecting langchain_community\n",
            "  Downloading langchain_community-0.2.2-py3-none-any.whl (2.2 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: PyYAML>=5.3 in /usr/local/lib/python3.10/dist-packages (from langchain_community) (6.0.1)\n",
            "Requirement already satisfied: SQLAlchemy<3,>=1.4 in /usr/local/lib/python3.10/dist-packages (from langchain_community) (2.0.30)\n",
            "Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in /usr/local/lib/python3.10/dist-packages (from langchain_community) (3.9.5)\n",
            "Collecting dataclasses-json<0.7,>=0.5.7 (from langchain_community)\n",
            "  Downloading dataclasses_json-0.6.6-py3-none-any.whl (28 kB)\n",
            "Requirement already satisfied: langchain<0.3.0,>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from langchain_community) (0.2.2)\n",
            "Requirement already satisfied: langchain-core<0.3.0,>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from langchain_community) (0.2.4)\n",
            "Requirement already satisfied: langsmith<0.2.0,>=0.1.0 in /usr/local/lib/python3.10/dist-packages (from langchain_community) (0.1.71)\n",
            "Requirement already satisfied: numpy<2,>=1 in /usr/local/lib/python3.10/dist-packages (from langchain_community) (1.25.2)\n",
            "Requirement already satisfied: requests<3,>=2 in /usr/local/lib/python3.10/dist-packages (from langchain_community) (2.31.0)\n",
            "Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /usr/local/lib/python3.10/dist-packages (from langchain_community) (8.3.0)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain_community) (1.3.1)\n",
            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain_community) (23.2.0)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain_community) (1.4.1)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain_community) (6.0.5)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain_community) (1.9.4)\n",
            "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain_community) (4.0.3)\n",
            "Collecting marshmallow<4.0.0,>=3.18.0 (from dataclasses-json<0.7,>=0.5.7->langchain_community)\n",
            "  Downloading marshmallow-3.21.2-py3-none-any.whl (49 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.3/49.3 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting typing-inspect<1,>=0.4.0 (from dataclasses-json<0.7,>=0.5.7->langchain_community)\n",
            "  Downloading typing_inspect-0.9.0-py3-none-any.whl (8.8 kB)\n",
            "Requirement already satisfied: langchain-text-splitters<0.3.0,>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from langchain<0.3.0,>=0.2.0->langchain_community) (0.2.1)\n",
            "Requirement already satisfied: pydantic<3,>=1 in /usr/local/lib/python3.10/dist-packages (from langchain<0.3.0,>=0.2.0->langchain_community) (2.7.2)\n",
            "Requirement already satisfied: jsonpatch<2.0,>=1.33 in /usr/local/lib/python3.10/dist-packages (from langchain-core<0.3.0,>=0.2.0->langchain_community) (1.33)\n",
            "Requirement already satisfied: packaging<24.0,>=23.2 in /usr/local/lib/python3.10/dist-packages (from langchain-core<0.3.0,>=0.2.0->langchain_community) (23.2)\n",
            "Requirement already satisfied: orjson<4.0.0,>=3.9.14 in /usr/local/lib/python3.10/dist-packages (from langsmith<0.2.0,>=0.1.0->langchain_community) (3.10.3)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain_community) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain_community) (3.7)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain_community) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain_community) (2024.2.2)\n",
            "Requirement already satisfied: typing-extensions>=4.6.0 in /usr/local/lib/python3.10/dist-packages (from SQLAlchemy<3,>=1.4->langchain_community) (4.12.0)\n",
            "Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.10/dist-packages (from SQLAlchemy<3,>=1.4->langchain_community) (3.0.3)\n",
            "Requirement already satisfied: jsonpointer>=1.9 in /usr/local/lib/python3.10/dist-packages (from jsonpatch<2.0,>=1.33->langchain-core<0.3.0,>=0.2.0->langchain_community) (2.4)\n",
            "Requirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1->langchain<0.3.0,>=0.2.0->langchain_community) (0.7.0)\n",
            "Requirement already satisfied: pydantic-core==2.18.3 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1->langchain<0.3.0,>=0.2.0->langchain_community) (2.18.3)\n",
            "Collecting mypy-extensions>=0.3.0 (from typing-inspect<1,>=0.4.0->dataclasses-json<0.7,>=0.5.7->langchain_community)\n",
            "  Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)\n",
            "Installing collected packages: mypy-extensions, marshmallow, typing-inspect, dataclasses-json, langchain_community\n",
            "Successfully installed dataclasses-json-0.6.6 langchain_community-0.2.2 marshmallow-3.21.2 mypy-extensions-1.0.0 typing-inspect-0.9.0\n",
            "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (3.8.1)\n",
            "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk) (8.1.7)\n",
            "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk) (1.4.2)\n",
            "Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.10/dist-packages (from nltk) (2024.5.15)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from nltk) (4.66.4)\n",
            "Collecting llama-cpp-python\n",
            "  Downloading llama_cpp_python-0.2.77.tar.gz (50.2 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.2/50.2 MB\u001b[0m \u001b[31m12.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Installing backend dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "Requirement already satisfied: typing-extensions>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python) (4.12.0)\n",
            "Requirement already satisfied: numpy>=1.20.0 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python) (1.25.2)\n",
            "Collecting diskcache>=5.6.1 (from llama-cpp-python)\n",
            "  Downloading diskcache-5.6.3-py3-none-any.whl (45 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.5/45.5 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: jinja2>=2.11.3 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python) (3.1.4)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2>=2.11.3->llama-cpp-python) (2.1.5)\n",
            "Building wheels for collected packages: llama-cpp-python\n",
            "  Building wheel for llama-cpp-python (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for llama-cpp-python: filename=llama_cpp_python-0.2.77-cp310-cp310-linux_x86_64.whl size=3695651 sha256=2f9ad16bd71a8167f411871b512035d8ebb40f229341194c0c967faaf18a0287\n",
            "  Stored in directory: /root/.cache/pip/wheels/ed/55/a1/6d6c2ef6fed3ef054b4170d8bcd05a09e6dc971db7fad955ff\n",
            "Successfully built llama-cpp-python\n",
            "Installing collected packages: diskcache, llama-cpp-python\n",
            "Successfully installed diskcache-5.6.3 llama-cpp-python-0.2.77\n"
          ]
        }
      ],
      "metadata": {
        "id": "fWIY5wkg-7qH",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "6611598f-753f-4662-a5e7-4570e0e6a95d"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "Une fois que vous avez téléchargé les dépendances, vous pouvez ensuite les importer dans votre notebook:"
      ],
      "metadata": {
        "id": "UsA_d8iF_MQz"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "source": [
        "from langchain.llms import LlamaCpp\n",
        "from langchain.chains import LLMChain\n",
        "from langchain.prompts import PromptTemplate\n",
        "from llama_cpp import Llama\n",
        "from math import *\n",
        "import numpy as np"
      ],
      "outputs": [],
      "metadata": {
        "id": "lFMBol-J-5RE"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "Enfin, pour étudier les hallucinations, nous utiliserons le modèle mistral-7B quantizé, que vous pouvez téléchargé avec la cellule ci-dessous:"
      ],
      "metadata": {
        "id": "EgEyVKDF_wFG"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "source": [
        "!huggingface-cli download TheBloke/Mistral-7B-Instruct-v0.2-GGUF mistral-7b-instruct-v0.2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "/usr/local/lib/python3.10/dist-packages/huggingface_hub/commands/download.py:132: FutureWarning: Ignoring --local-dir-use-symlinks. Downloading to a local directory does not use symlinks anymore.\n",
            "  warnings.warn(\n",
            "Downloading 'mistral-7b-instruct-v0.2.Q4_K_M.gguf' to '.huggingface/download/mistral-7b-instruct-v0.2.Q4_K_M.gguf.3e0039fd0273fcbebb49228943b17831aadd55cbcbf56f0af00499be2040ccf9.incomplete'\n",
            "mistral-7b-instruct-v0.2.Q4_K_M.gguf: 100% 4.37G/4.37G [00:28<00:00, 152MB/s]\n",
            "Download complete. Moving file to mistral-7b-instruct-v0.2.Q4_K_M.gguf\n",
            "mistral-7b-instruct-v0.2.Q4_K_M.gguf\n"
          ]
        }
      ],
      "metadata": {
        "id": "A8lwhaDf_n3n",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "312e58cc-a916-4d2c-8431-57c7011360dc"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "Nous pouvons donc commencer !!\n",
        "\n",
        "#I. Detection d'hallucination:\n",
        "\n",
        "Maintenant que nous avons nos dépendances en place, il est temps de nous plonger dans le cœur du sujet : les hallucinations des LLMs. Mais qu'est-ce qu'une hallucination dans ce contexte ?\n",
        "\n",
        "Une hallucination, dans le domaine des LLMs, se produit lorsque le modèle génère du texte qui n'a pas de sens ou qui est complètement déconnecté du contexte donné. C'est comme si le modèle \"voyait\" ou \"imaginait\" des choses qui ne sont pas réellement présentes dans les données.\n",
        "\n",
        "Plusieurs facteurs peuvent contribuer à ces hallucinations :\n",
        "\n",
        "\n",
        "1.   Biais du dataset : Si le jeu de données d'entraînement est biaisé d'une\n",
        "certaine manière, le modèle apprendra ces biais et les reproduira dans ses prédictions. Par exemple, si le jeu de données contient principalement des exemples positifs, le modèle peut \"halluciner\" des résultats positifs même dans des situations où ils ne sont pas appropriés.\n",
        "\n",
        "2.   Overfitting : Cela se produit lorsque le modèle est trop complexe par rapport à la quantité et à la variété des données d'entraînement disponibles. Dans ce cas, le modèle peut \"apprendre par cœur\" les données d'entraînement et avoir du mal à généraliser à de nouvelles situations, ce qui peut conduire à des hallucinations.\n",
        "\n",
        "3. Non accès à l'information : Les LLMs ne disposent pas d'un accès direct à l'information du monde réel. Ils ne peuvent générer du texte qu'en se basant sur ce qu'ils ont appris lors de leur entraînement. Par conséquent, ils peuvent halluciner des informations qu'ils n'ont pas ou mal interpréter les informations qu'ils ont..\n",
        "\n",
        "Pour notre étude, nous allons nous concentrer sur le dernier point : le manque d'accès à l'information par les LLMs. Dans la pratique, cela signifie que lorsque le modèle n'a pas accès à une information spécifique, il ne peut pas être sûr de ses prédictions.\n",
        "\n",
        "Lorsqu'un LLM n'est pas sûr de la prédiction qu'il doit faire, la distribution de probabilité des prochains tokens qu'il prédit sera plus \"plate\".\n",
        "\n",
        "Cela peut sembler un peu abstrait, mais ne vous inquiétez pas, tout deviendra clair lorsque nous commencerons à travailler avec les données. En étudiant les logprobs - les logarithmes des probabilités - des tokens générés par le modèle, nous pouvons mesurer la certitude du modèle. Plus la distribution de probabilité est \"plate\", moins le modèle est sûr de lui. Mettons en évidence cela:"
      ],
      "metadata": {
        "id": "wcps2JLDAZCz"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "source": [
        "def load_llm(model_path):\n",
        "\n",
        "\t\t# On charge le LLM sous format quantisé. Cf la descriptions des paramètres ci-dessous.\n",
        "    llm = Llama(\n",
        "        model_path=model_path, stop=[\"Question\"], max_tokens=200, temperature=0.2,\n",
        "\t\t\t\tn_ctx=8000, n_batch=1024, n_gpu_layers=-1, logits_all=True\n",
        "    )\n",
        "\n",
        "    return llm\n",
        "\n",
        "llm = load_llm(\"mistral-7b-instruct-v0.2.Q4_K_M.gguf\")\n",
        "\n",
        "def gen(prompt):\n",
        "    output = llm.create_completion(prompt,\n",
        "                max_tokens = 5,\n",
        "                echo = False,\n",
        "                temperature = 0,\n",
        "                logprobs =100,\n",
        "                )      # to return top 5 tokens\n",
        "\n",
        "    return output\n",
        "\n",
        "results1 = gen(\"Lionel Messi is a \")\n",
        "print(results1)"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "llama_model_loader: loaded meta data with 24 key-value pairs and 291 tensors from mistral-7b-instruct-v0.2.Q4_K_M.gguf (version GGUF V3 (latest))\n",
            "llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n",
            "llama_model_loader: - kv   0:                       general.architecture str              = llama\n",
            "llama_model_loader: - kv   1:                               general.name str              = mistralai_mistral-7b-instruct-v0.2\n",
            "llama_model_loader: - kv   2:                       llama.context_length u32              = 32768\n",
            "llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096\n",
            "llama_model_loader: - kv   4:                          llama.block_count u32              = 32\n",
            "llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 14336\n",
            "llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128\n",
            "llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32\n",
            "llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 8\n",
            "llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010\n",
            "llama_model_loader: - kv  10:                       llama.rope.freq_base f32              = 1000000.000000\n",
            "llama_model_loader: - kv  11:                          general.file_type u32              = 15\n",
            "llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = llama\n",
            "llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,32000]   = [\"<unk>\", \"<s>\", \"</s>\", \"<0x00>\", \"<...\n",
            "llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...\n",
            "llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n",
            "llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32              = 1\n",
            "llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32              = 2\n",
            "llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32              = 0\n",
            "llama_model_loader: - kv  19:            tokenizer.ggml.padding_token_id u32              = 0\n",
            "llama_model_loader: - kv  20:               tokenizer.ggml.add_bos_token bool             = true\n",
            "llama_model_loader: - kv  21:               tokenizer.ggml.add_eos_token bool             = false\n",
            "llama_model_loader: - kv  22:                    tokenizer.chat_template str              = {{ bos_token }}{% for message in mess...\n",
            "llama_model_loader: - kv  23:               general.quantization_version u32              = 2\n",
            "llama_model_loader: - type  f32:   65 tensors\n",
            "llama_model_loader: - type q4_K:  193 tensors\n",
            "llama_model_loader: - type q6_K:   33 tensors\n",
            "llm_load_vocab: special tokens cache size = 259\n",
            "llm_load_vocab: token to piece cache size = 0.1637 MB\n",
            "llm_load_print_meta: format           = GGUF V3 (latest)\n",
            "llm_load_print_meta: arch             = llama\n",
            "llm_load_print_meta: vocab type       = SPM\n",
            "llm_load_print_meta: n_vocab          = 32000\n",
            "llm_load_print_meta: n_merges         = 0\n",
            "llm_load_print_meta: n_ctx_train      = 32768\n",
            "llm_load_print_meta: n_embd           = 4096\n",
            "llm_load_print_meta: n_head           = 32\n",
            "llm_load_print_meta: n_head_kv        = 8\n",
            "llm_load_print_meta: n_layer          = 32\n",
            "llm_load_print_meta: n_rot            = 128\n",
            "llm_load_print_meta: n_embd_head_k    = 128\n",
            "llm_load_print_meta: n_embd_head_v    = 128\n",
            "llm_load_print_meta: n_gqa            = 4\n",
            "llm_load_print_meta: n_embd_k_gqa     = 1024\n",
            "llm_load_print_meta: n_embd_v_gqa     = 1024\n",
            "llm_load_print_meta: f_norm_eps       = 0.0e+00\n",
            "llm_load_print_meta: f_norm_rms_eps   = 1.0e-05\n",
            "llm_load_print_meta: f_clamp_kqv      = 0.0e+00\n",
            "llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n",
            "llm_load_print_meta: f_logit_scale    = 0.0e+00\n",
            "llm_load_print_meta: n_ff             = 14336\n",
            "llm_load_print_meta: n_expert         = 0\n",
            "llm_load_print_meta: n_expert_used    = 0\n",
            "llm_load_print_meta: causal attn      = 1\n",
            "llm_load_print_meta: pooling type     = 0\n",
            "llm_load_print_meta: rope type        = 0\n",
            "llm_load_print_meta: rope scaling     = linear\n",
            "llm_load_print_meta: freq_base_train  = 1000000.0\n",
            "llm_load_print_meta: freq_scale_train = 1\n",
            "llm_load_print_meta: n_yarn_orig_ctx  = 32768\n",
            "llm_load_print_meta: rope_finetuned   = unknown\n",
            "llm_load_print_meta: ssm_d_conv       = 0\n",
            "llm_load_print_meta: ssm_d_inner      = 0\n",
            "llm_load_print_meta: ssm_d_state      = 0\n",
            "llm_load_print_meta: ssm_dt_rank      = 0\n",
            "llm_load_print_meta: model type       = 7B\n",
            "llm_load_print_meta: model ftype      = Q4_K - Medium\n",
            "llm_load_print_meta: model params     = 7.24 B\n",
            "llm_load_print_meta: model size       = 4.07 GiB (4.83 BPW) \n",
            "llm_load_print_meta: general.name     = mistralai_mistral-7b-instruct-v0.2\n",
            "llm_load_print_meta: BOS token        = 1 '<s>'\n",
            "llm_load_print_meta: EOS token        = 2 '</s>'\n",
            "llm_load_print_meta: UNK token        = 0 '<unk>'\n",
            "llm_load_print_meta: PAD token        = 0 '<unk>'\n",
            "llm_load_print_meta: LF token         = 13 '<0x0A>'\n",
            "llm_load_tensors: ggml ctx size =    0.15 MiB\n",
            "llm_load_tensors:        CPU buffer size =  4165.37 MiB\n",
            ".................................................................................................\n",
            "llama_new_context_with_model: n_ctx      = 8000\n",
            "llama_new_context_with_model: n_batch    = 1024\n",
            "llama_new_context_with_model: n_ubatch   = 512\n",
            "llama_new_context_with_model: flash_attn = 0\n",
            "llama_new_context_with_model: freq_base  = 1000000.0\n",
            "llama_new_context_with_model: freq_scale = 1\n",
            "llama_kv_cache_init:        CPU KV buffer size =  1000.00 MiB\n",
            "llama_new_context_with_model: KV self size  = 1000.00 MiB, K (f16):  500.00 MiB, V (f16):  500.00 MiB\n",
            "llama_new_context_with_model:        CPU  output buffer size =     0.12 MiB\n",
            "llama_new_context_with_model:        CPU compute buffer size =   547.63 MiB\n",
            "llama_new_context_with_model: graph nodes  = 1030\n",
            "llama_new_context_with_model: graph splits = 1\n",
            "AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | \n",
            "Model metadata: {'tokenizer.chat_template': \"{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}\", 'tokenizer.ggml.add_eos_token': 'false', 'tokenizer.ggml.padding_token_id': '0', 'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.eos_token_id': '2', 'general.architecture': 'llama', 'llama.rope.freq_base': '1000000.000000', 'llama.context_length': '32768', 'general.name': 'mistralai_mistral-7b-instruct-v0.2', 'tokenizer.ggml.add_bos_token': 'true', 'llama.embedding_length': '4096', 'llama.feed_forward_length': '14336', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'llama.rope.dimension_count': '128', 'tokenizer.ggml.bos_token_id': '1', 'llama.attention.head_count': '32', 'llama.block_count': '32', 'llama.attention.head_count_kv': '8', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'llama', 'general.file_type': '15'}\n",
            "Available chat formats from metadata: chat_template.default\n",
            "Guessed chat format: mistral-instruct\n",
            "\n",
            "llama_print_timings:        load time =    2950.22 ms\n",
            "llama_print_timings:      sample time =       2.95 ms /     5 runs   (    0.59 ms per token,  1692.62 tokens per second)\n",
            "llama_print_timings: prompt eval time =    2950.12 ms /     8 tokens (  368.76 ms per token,     2.71 tokens per second)\n",
            "llama_print_timings:        eval time =    2722.33 ms /     4 runs   (  680.58 ms per token,     1.47 tokens per second)\n",
            "llama_print_timings:       total time =    5679.56 ms /    12 tokens\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "{'id': 'cmpl-120c3593-d3e4-4a00-a3a9-453f52e5785b', 'object': 'text_completion', 'created': 1717573922, 'model': 'mistral-7b-instruct-v0.2.Q4_K_M.gguf', 'choices': [{'text': '34-year-', 'index': 0, 'logprobs': {'tokens': ['3', '4', '-', 'year', '-'], 'text_offset': [18, 19, 20, 21, 25], 'token_logprobs': [-0.20545948, -1.107614, -0.052979767, -0.0028441001, -0.054006934], 'top_logprobs': [{'3': -0.20545948, '4': -2.1435585, '2': -3.5652924, '5': -4.2781734, '7': -4.3838224, '6': -4.6436043, '1': -6.6456566, ' professional': -7.306258, ' Argent': -7.489622, '9': -8.28385, ' world': -9.092647, ' football': -9.308567, ' Argentina': -9.438109, 'Arg': -10.499325, ' World': -10.538977, '8': -10.543113, ' small': -10.548636, ' soccer': -10.601004, ' legendary': -10.619824, ' Spanish': -10.658553, ' famous': -10.917005, '': -12.820364, ' master': -10.925327, ' Professional': -11.223865, ' man': -11.266705, ' genius': -11.367016, ' Barcelona': -11.409745, ' legend': -11.411743, ' player': -11.449299, ' talented': -11.468328, ' goal': -11.4988575, ' brilliant': -11.575077, ' super': -11.629269, ' pro': -11.6492815, ' arg': -11.654221, ' renown': -11.695216, '\\xad': -11.7483425, ' thirty': -11.748673, ' Lion': -11.750276, ' global': -11.759962, ' three': -11.805651, ' rare': -11.810522, ' fascinating': -11.897268, ' name': -11.925197, ' dimin': -11.941944, ' forward': -11.949226, ' great': -11.962085, ' four': -12.055848, ' sport': -12.072181, ' living': -12.117165, ' unique': -12.138574, ' former': -12.180676, ' skill': -12.205435, '¡': -12.215115, ' fantastic': -12.265219, '0': -12.275389, ' record': -12.281684, 'Â': -12.343824, ' remarkable': -12.352375, ' talent': -12.404874, ' champion': -12.417784, 'icons': -12.425971, ' skilled': -12.428926, ' beautiful': -12.469669, ' marvel': -12.480689, ' profession': -12.568488, ' popular': -12.59681, ' free': -12.711369, ' FC': -12.73684, ' South': -12.749465, ' controversial': -12.767931, '´': -12.826366, ' seven': -12.850617, ' Buenos': -12.866381, ' Portuguese': -12.878069, ' wonderful': -12.881597, ' stunning': -12.882851, ' Brazil': -12.886369, ' FIFA': -12.900502, '\\t': -12.906259, ' tal': -12.913297, '****': -12.915571, ' w': -12.926603, ' multiple': -12.979265, ' ball': -12.994544, ' multi': -13.005355, ' serial': -13.010857, ' well': -13.016083, ' lion': -13.021542, 'foot': -13.038147, '\\n': -13.040363, ' Football': -13.047092, ' Colomb': -13.047795, ' title': -13.119963, ' special': -13.122649, ' Mexican': -13.123005, ' one': -13.126303, ' star': -13.136442, ' icon': -13.148792}, {'3': -0.7740722, '4': -1.107614, '5': -2.4196734, '2': -2.7761455, '1': -3.2566314, '0': -4.2183986, '6': -5.925056, '7': -7.3071036, '-': -8.378277, '8': -8.788752, '9': -9.471441, 'x': -10.569136, ' ': -10.829836, ' time': -11.631176, 'rd': -12.015116, ',': -12.0500145, '.': -12.101238, 'd': -12.276276, ' times': -12.511545, ' minute': -12.5547085, ' year': -12.624176, '^{': -12.636124, 'o': -12.85927, ' years': -12.890188, ' player': -12.99296, ' x': -13.236799, ' day': -13.247471, ' four': -13.434187, ' man': -13.560621, ' point': -13.596941, 'D': -13.597387, 'X': -13.630152, '/': -13.696587, 'th': -13.726816, ' hour': -13.744234, ' three': -13.744671, 'am': -13.878843, ' am': -13.935585, ' star': -13.940418, ' world': -14.0288925, ' and': -14.059893, ' goal': -14.063385, ' or': -14.063934, ' month': -14.102985, 'm': -14.142563, ' minutes': -14.153543, ' million': -14.162775, '½': -14.198248, ' game': -14.212118, ' players': -14.249332, ' week': -14.267284, ':': -14.304628, ' person': -14.321573, ' to': -14.351246, ' part': -14.446932, ' a': -14.506767, ' five': -14.510199, ' title': -14.51297, '+': -14.521982, ' men': -14.547382, 'l': -14.593508, '–': -14.603006, ' days': -14.6069565, ' little': -14.623108, ' inch': -14.657888, ' for': -14.671772, ' un': -14.715454, ' p': -14.731464, ' months': -14.750736, ' small': -14.751469, ' decades': -14.759792, ' major': -14.762089, '%': -14.82943, '*': -14.837145, 'day': -14.840147, ' in': -14.85001, ' -': -14.855179, ' points': -14.888969, ' brand': -14.899094, ' things': -14.9643955, 'n': -14.9865055, '×': -15.002834, ' main': -15.024183, ' regular': -15.065329, ' other': -15.0923195, ' season': -15.109554, ' billion': -15.16877, ' games': -15.180555, ' bar': -15.180769, ' percent': -15.207226, ' football': -15.211985, ' n': -15.225082, ' free': -15.22748, 'a': -15.23868, ' fourth': -15.250381, ' decade': -15.253393, ' problem': -15.254272, ' weeks': -15.2568, ' team': -15.261814, ' professional': -15.283422}, {'-': -0.052979767, ' years': -3.5220482, ' year': -3.8975575, ' y': -7.2837157, 'year': -8.141099, 'yr': -9.091583, '–': -9.313199, ' –': -9.498307, ' -': -9.549998, ' old': -9.667054, 'th': -10.043299, ' ': -10.287183, ' Year': -10.752263, ' Years': -11.094586, ' times': -11.698546, ' yo': -11.914629, ',': -11.937143, 'yo': -11.982909, '1': -12.042577, ' age': -12.13615, ' Y': -12.154326, ' (': -12.194545, ' aged': -12.238811, '.': -12.338311, 'y': -12.492793, ' ye': -12.6209545, ' calendar': -12.654857, 'Y': -12.7050295, ' going': -12.719419, '‐': -12.735768, ' seasons': -12.744592, '/': -12.794581, ' a': -12.93677, ' decades': -13.023388, ' and': -13.247163, ' days': -13.263495, ' million': -13.28862, ' months': -13.328168, ' ya': -13.412471, '0': -13.429824, '—': -13.490582, '\\n': -13.525991, ' football': -13.527474, ' season': -13.61142, '%': -13.656871, ' YO': -13.665309, ' yoga': -13.697781, ' time': -13.723807, ' previous': -13.733487, ' —': -13.752107, ' soccer': -13.854083, ' twelve': -13.87535, ' occasions': -13.91764, '2': -13.921242, '^{': -13.955996, ' long': -13.961316, ' ages': -13.972095, ' tear': -13.995327, ' period': -14.012902, '3': -14.015452, ' the': -14.021763, '+': -14.056771, '\\xad': -14.070235, ' World': -14.117801, ' professional': -14.144063, '*': -14.151433, '5': -14.192229, ' Old': -14.213217, ' yards': -14.2230425, ' Premier': -14.281071, ' five': -14.303484, ' hours': -14.3133545, ' años': -14.32301, ' young': -14.328988, '‑': -14.3399515, 'Year': -14.354592, ' former': -14.359244, '?': -14.373114, ' ears': -14.384479, ' or': -14.409839, ' sports': -14.418399, ' full': -14.433747, ' win': -14.435662, ' g': -14.461423, ' three': -14.481163, '4': -14.490222, ' out': -14.499543, 'x': -14.517509, '(': -14.525857, ' one': -14.533568, ' games': -14.55494, '\\u200b': -14.560639, '年': -14.572909, ' percent': -14.6162405, '½': -14.686484, '--': -14.714621, 's': -14.720506, ' man': -14.747184, ':': -14.756872, ' года': -14.757728}, {'year': -0.0028441001, 'yr': -6.2283397, ' year': -8.54008, '1': -9.114122, 'time': -9.177704, 'calendar': -9.261251, 'Year': -9.337235, 'ye': -9.466379, 'yer': -10.541389, 'Y': -10.674784, 'y': -10.916727, 'times': -11.017799, 'old': -11.624427, '3': -11.644538, 'yar': -11.709864, 'go': -11.711184, 'season': -11.971191, ' years': -12.018198, 'ya': -12.705509, 'yo': -12.926395, 'game': -13.134107, ' y': -13.168827, '2': -13.296423, 'yard': -13.344909, 'going': -13.350721, 'Calendar': -13.4255905, 'cal': -13.431061, 'month': -13.517313, 'ear': -13.612555, 'man': -13.616268, 'cap': -13.668911, 'century': -13.801897, 'turn': -13.886807, 'yes': -13.976709, '4': -14.334553, 'and': -14.383279, ' Year': -14.400368, 'g': -14.412491, 'age': -14.428315, 'team': -14.447079, 'star': -14.588182, 'period': -14.611442, 'three': -14.701909, ' calendar': -14.704944, 'dec': -14.743776, 'olds': -14.798067, 'the': -14.80869, 'h': -14.900959, 'hour': -14.905382, 'f': -14.97335, '0': -14.992659, 'week': -15.007251, 'b': -15.04422, 'th': -15.100026, 'a': -15.110194, 're': -15.111668, '年': -15.1122, 'minute': -15.12392, 'plus': -15.154594, 'tw': -15.186091, 'day': -15.187168, 'term': -15.198858, '\\u200b': -15.208694, '5': -15.24647, 'era': -15.268949, 'Old': -15.287833, 'c': -15.369243, 'aged': -15.370778, ' ye': -15.432555, 'strong': -15.4554825, 'm': -15.480366, 'part': -15.529852, 'fe': -15.532503, 'te': -15.546603, 'appe': -15.560996, 'your': -15.573841, 'qu': -15.574954, 'inch': -15.58771, 'Go': -15.602558, ' ': -15.606989, 'Cal': -15.621984, 'history': -15.623268, 've': -15.665485, 'you': -15.728701, 'match': -15.736256, 't': -15.741678, 'once': -15.778581, 'care': -15.795404, '\\n': -15.812792, 'al': -15.81736, 'now': -15.826263, 'something': -15.829033, ' old': -15.83362, 'win': -15.844475, 'player': -15.84967, 'acre': -15.898961, 'member': -15.901911, 'long': -15.907476, 'l': -15.939043, 'Time': -15.950464}, {'-': -0.054006934, ' old': -3.1460452, 's': -4.82984, ' previous': -7.787686, ' Argent': -8.31937, ' out': -8.851206, 'old': -9.154482, ' aged': -10.040085, ' professional': -10.254663, ' football': -10.400185, ' former': -10.52415, ' French': -10.735434, ' veteran': -10.8444, ' Spanish': -10.892874, '–': -10.9891205, ' soccer': -11.011959, ' older': -11.094965, ' young': -11.112896, ' Portuguese': -11.313584, ' age': -11.596225, ' Colomb': -11.783202, ' prior': -11.841444, ' Argentina': -11.866143, ' vintage': -11.892473, ' Italian': -12.032242, ' strong': -12.1594, ' -': -12.217634, ' –': -12.264488, ' Brazil': -12.328277, ' Old': -12.378108, ' Japanese': -12.420855, ' recent': -12.448566, ' ancient': -12.5238285, ' year': -12.527073, ' retired': -12.644048, ' Mexican': -12.6461525, ' ago': -12.777977, ',': -12.808055, ' forward': -12.94911, 'ed': -12.978281, ' Belg': -13.051889, ' Greek': -13.096466, ' English': -13.09778, ' earlier': -13.243981, ' Dutch': -13.320233, ' youth': -13.355387, ' season': -13.368041, ' German': -13.380432, ' Israeli': -13.397163, ' player': -13.407857, ' sports': -13.429129, 'l': -13.442307, ' long': -13.448725, ' star': -13.460321, ' man': -13.463014, ' history': -13.504829, ' joint': -13.552669, ' younger': -13.553476, ' Barcelona': -13.566792, ' Turkish': -13.619279, 'out': -13.6211605, ' senior': -13.65163, ' ': -13.667659, ' tennis': -13.679157, '_': -13.684869, ' from': -13.718853, ' mature': -13.725409, ' international': -13.726304, ' Olympic': -13.72963, ' Egyptian': -13.7435875, ' talented': -13.758666, ' left': -13.777254, ' career': -13.783289, ' foot': -13.79114, ' Arab': -13.806294, ' ant': -13.808294, ' skilled': -13.845338, ' kid': -13.858771, ' st': -13.9003105, ' and': -13.911721, ' Swedish': -13.919119, ' experienced': -13.953583, 'Arg': -13.967226, '.': -14.024931, ' famous': -14.058221, ' past': -14.064378, ' light': -14.0681095, ' aging': -14.071379, ' European': -14.073079, ' British': -14.079566, ' arch': -14.08638, ' advanced': -14.0940895, ' Australian': -14.099106, ' elderly': -14.101902, ' attack': -14.113265, ' on': -14.116108, '‐': -14.146595, ' re': -14.147701, '\\xad': -14.15329, ' World': -14.1616535}]}, 'finish_reason': 'length'}], 'usage': {'prompt_tokens': 8, 'completion_tokens': 5, 'total_tokens': 13}}\n"
          ]
        }
      ],
      "metadata": {
        "id": "EdBZZYNfZopI",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "3fdf4a7b-ae5a-4089-8452-6a150cb1d8f3"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "En utilisant, le resultat ci-dessus, implémenter une fonction permettant de calculer la probabilité moyenne d'une génération. Avec la fonction déterminer la probabilité moyenne de la génération issu de :\n",
        "\"Lionel messi is a\", \"Jean Dagobert is a \"\n",
        "Que constatez-vous ?"
      ],
      "metadata": {
        "id": "HlJThpNlca8Z"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 14,
      "source": [
        "import math\n",
        "def probabilite_moyenne_phrase(llm_output):\n",
        "    \"\"\"\n",
        "    Calculate the average probability of a generation.\n",
        "    \"\"\"\n",
        "    # Extraire les log-probabilités des tokens générés\n",
        "    log_probs = llm_output['choices'][0]['logprobs']['token_logprobs']\n",
        "\n",
        "    # Convertir les log-probabilités en probabilités\n",
        "    probs = [math.exp(log_prob) for log_prob in log_probs]\n",
        "\n",
        "    # Calculer la probabilité moyenne\n",
        "    avg_prob = sum(probs) / len(probs)\n",
        "    return avg_prob\n",
        "# Simuler les sorties de génération pour les deux phrases\n",
        "llm_output1 =  gen(\"Lionel Messi is a \")\n",
        "\n",
        "\n",
        "\n",
        "llm_output2 =gen(\"Jean Dagobert is a\")\n",
        "\n",
        "# Calculer les probabilités moyennes pour les deux phrases\n",
        "avg_prob1 = probabilite_moyenne_phrase(llm_output1)\n",
        "avg_prob2 = probabilite_moyenne_phrase(llm_output2)\n",
        "\n",
        "avg_prob1, avg_prob2"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "Llama.generate: prefix-match hit\n",
            "\n",
            "llama_print_timings:        load time =    2950.22 ms\n",
            "llama_print_timings:      sample time =      11.51 ms /    20 runs   (    0.58 ms per token,  1737.77 tokens per second)\n",
            "llama_print_timings: prompt eval time =    4779.36 ms /    13 tokens (  367.64 ms per token,     2.72 tokens per second)\n",
            "llama_print_timings:        eval time =   12123.36 ms /    19 runs   (  638.07 ms per token,     1.57 tokens per second)\n",
            "llama_print_timings:       total time =   16929.54 ms /    32 tokens\n",
            "Llama.generate: prefix-match hit\n",
            "\n",
            "llama_print_timings:        load time =    2950.22 ms\n",
            "llama_print_timings:      sample time =      20.86 ms /    20 runs   (    1.04 ms per token,   958.86 tokens per second)\n",
            "llama_print_timings: prompt eval time =    6121.47 ms /    13 tokens (  470.88 ms per token,     2.12 tokens per second)\n",
            "llama_print_timings:        eval time =   14926.61 ms /    19 runs   (  785.61 ms per token,     1.27 tokens per second)\n",
            "llama_print_timings:       total time =   21093.27 ms /    32 tokens\n"
          ]
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "(0.9129406913119438, 0.7053066764283165)"
            ]
          },
          "metadata": {},
          "execution_count": 14
        }
      ],
      "metadata": {
        "id": "JlWQxJeucaNy",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "f870c0f6-b531-461f-c96a-83236fbd54b4"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "L'entropie est un concept fondamental en théorie de l'information qui mesure l'incertitude ou le désordre dans un ensemble de données. En d'autres termes, elle donne une indication de la quantité d'information qui est manquante avant de pouvoir faire une prédiction précise.\n",
        "\n",
        "Dans le contexte des LLMs, l'entropie peut nous aider à comprendre à quel point le modèle est incertain de ses prédictions. Une entropie élevée signifie que le modèle est très incertain, tandis qu'une entropie faible signifie que le modèle est plus sûr de lui.\n",
        "\n",
        "L'entropie est particulièrement utile dans notre étude des hallucinations des LLMs. En calculant l'entropie des prédictions du modèle, nous pouvons quantifier l'incertitude du modèle et donc sa tendance à \"halluciner\". Plus l'entropie est élevée, plus le modèle est susceptible de faire des prédictions erronées ou déconnectées du contexte.\n",
        "\n",
        "Ainsi, en vous aidant de cette formule de l'entropie:\n",
        "\n",
        "![image.png]()\n",
        "\n",
        "Ecrivez une fonction permettant de calculer la moyenne d'entropie d'une génération sur la base des top logprobs. Puis avec cette fonction, déterminez l'entropie des génération issu de: \"Lionel messi is a\", \"Jean Dagobert is a \" Que constatez vous? Essayez avec la phrase \"Rihanna is a\" que constatez vous ? Concluez sur les limites de cette méthode."
      ],
      "metadata": {
        "id": "fwnzIbrwdwc7"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 15,
      "source": [
        "import numpy as np\n",
        "\n",
        "def entropy(logprobs):\n",
        "    \"\"\"\n",
        "    Calcule l'entropie d'une liste de log-probabilités.\n",
        "\n",
        "    :param logprobs: Liste des log-probabilités pour un token.\n",
        "    :return: Entropie du token.\n",
        "    \"\"\"\n",
        "    # Convertir les log-probabilités en probabilités\n",
        "    probs = np.exp(logprobs)\n",
        "    # Normaliser les probabilités pour s'assurer qu'elles forment une distribution valide\n",
        "    probs /= np.sum(probs)\n",
        "    # Calculer l'entropie\n",
        "    entropy = -np.sum(probs * np.log(probs))\n",
        "    return entropy\n",
        "\n",
        "def moyenne_entropie(llm_output):\n",
        "    \"\"\"\n",
        "    Calcule l'entropie moyenne pour une génération de LLM basée sur les top logprobs.\n",
        "\n",
        "    :param llm_output: Sortie du modèle de langage contenant les log-probabilités des tokens.\n",
        "    :return: Entropie moyenne pour la génération.\n",
        "    \"\"\"\n",
        "    total_entropy = 0\n",
        "    num_tokens = len(llm_output['choices'][0]['logprobs']['top_logprobs'])\n",
        "\n",
        "    for token_logprobs in llm_output['choices'][0]['logprobs']['top_logprobs']:\n",
        "        total_entropy += entropy(list(token_logprobs.values()))\n",
        "\n",
        "    return total_entropy / num_tokens\n",
        "print(moyenne_entropie(results1))"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "0.5081072527915239\n"
          ]
        }
      ],
      "metadata": {
        "id": "ZpdlNmqiZzm3",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "500d5f1e-5645-4e2c-f66f-8177265f0b51"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "Bien que l'entropie soit un outil utile pour mesurer l'incertitude des LLMs, elle n'est pas sans limitations. En particulier, l'une de ses faiblesses majeures est qu'elle ne prend pas en compte la sémantique des mots. Cela peut conduire à des résultats trompeurs lors de l'évaluation de la certitude du modèle.\n",
        "\n",
        "Par exemple, prenons les phrases \"Paris est la capitale de la France\" et \"La capitale de la France est Paris\". Ces deux phrases expriment la même information et sont toutes deux correctes d'un point de vue sémantique. Cependant, en raison de la façon dont l'entropie est calculée, elles peuvent avoir des valeurs d'entropie très différentes.\n",
        "\n",
        "Cela se produit parce que l'entropie mesure l'incertitude du modèle en se basant uniquement sur la distribution de probabilité des tokens prédits, sans prendre en compte la signification de ces tokens. Ainsi, même si les deux phrases sont sémantiquement équivalentes, le modèle peut être plus sûr de lui lorsqu'il prédit l'une que l'autre, conduisant à des valeurs d'entropie différentes.\n",
        "\n",
        "C'est pourquoi nous allons utiliser une méthode appelée SelfcheckGPT.\n",
        "\n"
      ],
      "metadata": {
        "id": "XnyVXlSnid7w"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "https://arxiv.org/abs/2303.08896\n",
        "\n",
        "SelfCheckGPT est une méthode développée pour aider à identifier et réduire les hallucinations dans les réponses générées par les modèles de langage comme GPT. Les hallucinations se produisent lorsque le modèle génère des informations incorrectes ou non fondées, ce qui peut poser des problèmes dans des contextes où la précision est essentielle, tels que la recherche scientifique, les diagnostics médicaux, ou les décisions juridiques.\n",
        "Principe de SelfCheckGPT\n",
        "L'idée centrale de SelfCheckGPT est d'utiliser le modèle GPT lui-même pour vérifier ses propres réponses. Cette méthode repose sur plusieurs étapes clés :\n",
        "1.\tGénération Initiale :\n",
        "Le modèle GPT génère une première réponse à une question ou un prompt donné.\n",
        "2.\tRépétition et Diversité :\n",
        "Pour évaluer la fiabilité de cette réponse, le modèle génère plusieurs versions de la réponse à partir du même prompt. Cela est fait en utilisant des techniques de rééchantillonnage, telles que l'utilisation de différentes graines aléatoires ou de légères variations dans les prompts.\n",
        "3.\tAnalyse de Consistance :\n",
        "Les réponses multiples générées sont ensuite comparées entre elles. Si les réponses sont similaires ou cohérentes entre elles, cela augmente la confiance en la validité de l'information. Si les réponses varient considérablement, cela peut indiquer une possible hallucination. Notamment, dans ce tp nous utiliserons un modèle NLI pour mesurer cette cohérence.\n",
        "\n",
        "Ici le modèle NLI permet de classes les paires (réponse, affirmation de référence) en trois catégories : Entailment (impliqué), Neutral (neutre), ou Contradiction (contradiction). Une probabilité est donnée pour appartenir à la dite catégorie.\n",
        "\n",
        "Ainsi, dans la suite de notre travaille, nous allons réimplémenter la méthode et étudier ces performances."
      ],
      "metadata": {
        "id": "tqxTwp8_7Ejy"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "source": [
        "from transformers import DebertaV2ForSequenceClassification, DebertaV2Tokenizer\n",
        "import torch\n",
        "import nltk\n",
        "\n",
        "nli_model = \"potsawee/deberta-v3-large-mnli\"\n",
        "tokenizer = DebertaV2Tokenizer.from_pretrained(nli_model)\n",
        "model = DebertaV2ForSequenceClassification.from_pretrained(nli_model)\n",
        "\n",
        "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
        "model.to(device)\n",
        "\n",
        "nltk.download('punkt')\n",
        "\n",
        "def gen(query):\n",
        "    prompt = f\"\"\"\n",
        "      You are an AI assistant. Given a question about it, create a short answer. If you don't know the answer, honestly say so.\n",
        "      Question: {query}\n",
        "      Answer:\n",
        "    \"\"\"\n",
        "    output = llm.create_completion(prompt,\n",
        "                max_tokens = 20,\n",
        "                echo = False,\n",
        "                temperature = 1,\n",
        "                logprobs =100,\n",
        "                )      # to return top 5 tokens\n",
        "\n",
        "    return output\n",
        "\n",
        "print(gen(\"Whos is Messi ?\"))\n"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "[nltk_data] Downloading package punkt to /root/nltk_data...\n",
            "[nltk_data]   Package punkt is already up-to-date!\n",
            "Llama.generate: prefix-match hit\n",
            "\n",
            "llama_print_timings:        load time =    2950.22 ms\n",
            "llama_print_timings:      sample time =      11.05 ms /    20 runs   (    0.55 ms per token,  1810.61 tokens per second)\n",
            "llama_print_timings: prompt eval time =       0.00 ms /     0 tokens (    -nan ms per token,     -nan tokens per second)\n",
            "llama_print_timings:        eval time =   19063.09 ms /    20 runs   (  953.15 ms per token,     1.05 tokens per second)\n",
            "llama_print_timings:       total time =   19090.84 ms /    20 tokens\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "{'id': 'cmpl-1dccd53c-e85d-44a2-9834-c0b8d06fa0f2', 'object': 'text_completion', 'created': 1717575914, 'model': 'mistral-7b-instruct-v0.2.Q4_K_M.gguf', 'choices': [{'text': ' Lionel Messi is an Argentine professional soccer player who currently plays as a forward for Paris Saint', 'index': 0, 'logprobs': {'tokens': [' Lion', 'el', ' Mess', 'i', ' is', ' an', ' Argent', 'ine', ' professional', ' soccer', ' player', ' who', ' currently', ' plays', ' as', ' a', ' forward', ' for', ' Paris', ' Saint'], 'text_offset': [179, 184, 186, 191, 192, 195, 198, 205, 208, 221, 228, 235, 239, 249, 255, 258, 260, 268, 272, 278], 'token_logprobs': [-0.4169057, -1.19209275e-07, -0.0024738677, -4.7683704e-07, -7.867782e-06, -0.84684646, -0.00045730147, -0.0104964115, -0.00049864734, -2.8808954, -0.0090957815, -0.4837565, -0.09042948, -4.8755406e-05, -0.16231762, -2.8610189e-06, -0.00061576476, -0.0015592334, -0.056626014, -0.0002311201], 'top_logprobs': [{' Lion': -0.4169057, ' I': -1.1377861, ' Leo': -5.0521827, ' It': -5.523128, ' lion': -6.365499, ' That': -6.5637107, ' The': -6.914335, ' Mess': -6.9752307, ' Unfortunately': -7.3981786, 'I': -7.7050242, ' Lar': -7.805304, ' Sorry': -8.013324, ' \"': -8.060237, ' There': -8.071133, ' Luis': -8.141668, ' You': -8.24693, ' Le': -8.64321, 'L': -8.873028, ' Larry': -9.338284, ' This': -9.34004, 'Sorry': -9.442203, ' Liga': -9.524789, ' L': -9.577162, ' Ap': -9.81628, ' Leon': -9.913119, ' sorry': -10.291911, ' Sad': -10.293263, ' Lag': -10.305075, ' Leb': -10.334279, ' My': -10.347125, ' Although': -10.502601, ' Ludwig': -10.569314, ' Your': -10.657312, ' While': -10.700457, ' Lee': -10.926439, ' Jorge': -10.939368, ' Lily': -10.95375, ' In': -11.004247, ' Lam': -11.102857, ' Its': -11.180238, ' Despite': -11.2688875, ' If': -11.2879925, ' Latin': -11.315402, ' Lawrence': -11.386546, '\\t': -11.442706, ' Lewis': -11.450325, ' Sor': -11.518464, 'Le': -11.519059, 'That': -11.658095, ' Lemma': -11.660903, 'LM': -11.677005, '\\n': -11.68498, 'It': -11.718175, ' Carlos': -11.72704, ' Lars': -11.744475, ' Let': -11.770156, ' Lew': -11.793929, '\"': -11.890266, ' Lad': -11.891176, \" '\": -11.985602, ' According': -12.019115, ' Lie': -12.034099, ' Sir': -12.062839, ' Lil': -12.087346, ' Lor': -12.141446, 'sor': -12.164132, ' Jon': -12.178144, ' A': -12.198925, ' League': -12.201467, ' Unlike': -12.20502, ' that': -12.2086, ' However': -12.2352705, ' Jonathan': -12.24981, ' lemon': -12.372668, ' Based': -12.415782, ' unfortunately': -12.470145, ' To': -12.491509, ' Though': -12.502353, ' Lieutenant': -12.529107, ' Actually': -12.550166, ' Lac': -12.5523, ' l': -12.562456, ' Sure': -12.56313, ' Lamb': -12.60091, ' Ser': -12.6648, ' Antonio': -12.682169, ' le': -12.701306, ' LE': -12.707778, ' Francisco': -12.708587, ' Lis': -12.783514, ' **': -12.798579, ' Perhaps': -12.8262205, ' Lé': -12.859203, ' mess': -12.872161, ' Here': -12.9026165, ' Lisa': -12.910498, 'The': -12.918046, 'lon': -12.92126, ' lig': -12.937846, ' Mist': -12.938876}, {'el': -1.19209275e-07, 'els': -15.711103, 'elm': -17.186104, 'EL': -17.213352, 'ell': -17.330284, 'nel': -17.495312, 'él': -18.334877, 'ël': -18.488062, 'elt': -18.901976, 'eling': -19.065712, 'cel': -19.076706, 'elf': -19.13324, ' eligible': -19.232538, 'eld': -19.489016, ' Mess': -19.864513, 'eled': -19.979534, 'eln': -20.377583, 'elo': -20.489904, 'al': -20.946514, 'ele': -20.953756, ' el': -21.007626, 'il': -21.264702, 'ol': -21.511364, 'eland': -21.675568, 'et': -21.782614, 'ello': -22.123077, 'ess': -22.381243, 'El': -22.481104, ' elite': -22.549671, 'l': -22.651121, 'uel': -22.722876, 'cl': -22.738407, 'le': -22.77833, 'elte': -22.966133, 'ul': -23.006805, 'ael': -23.089718, 'sel': -23.144123, 'elem': -23.20456, 'iel': -23.228992, 'ela': -23.303988, 'hel': -23.341068, 'elly': -23.39413, 'elin': -23.46202, ' elbow': -23.47241, ' El': -23.660416, 'vel': -23.764647, 'ed': -23.832748, 'elde': -24.125738, 'en': -24.148293, 'eler': -24.17409, ' mess': -24.191578, 'elen': -24.2412, 'em': -24.396053, 'elif': -24.459414, 'elled': -24.579708, ' EL': -24.60891, 'elle': -24.622486, 'elta': -24.63763, ' él': -24.646141, 'elson': -24.649586, 'bel': -24.673222, 'kel': -24.718565, 'all': -24.743301, 'lo': -24.77123, 'eli': -24.788216, 'id': -24.812155, 'elve': -24.824894, 'else': -24.922197, 'eth': -25.024967, 'rel': -25.037632, 'fel': -25.190283, ' elf': -25.221737, 'eles': -25.253323, 'est': -25.387112, 'elia': -25.430204, 'ely': -25.44453, 'er': -25.454548, 'ne': -25.461956, 'ail': -25.48601, 'n': -25.506435, 'ellow': -25.532406, 'us': -25.575531, 'let': -25.578144, 'om': -25.586725, 'cil': -25.726103, 'nal': -25.802189, 'yl': -25.828896, 'ic': -25.894505, ' elabor': -25.911615, 'elij': -25.946302, 'cle': -25.961948, 'elling': -25.988768, 'ella': -26.025911, 'as': -26.09714, 'nels': -26.11714, 'ord': -26.127596, 'ěl': -26.200115, 'it': -26.232336, 'or': -26.287733, 'ad': -26.30545}, {' Mess': -0.0024738677, ' And': -6.4882755, ' Andr': -7.049595, 'And': -10.008812, ' mess': -11.535646, ' Anders': -11.545216, 'MESS': -12.075888, ' Andrew': -13.049125, ' Andre': -13.17198, ' Andrea': -13.721295, ' Anderson': -13.842749, ' Andy': -13.937332, ' Анд': -14.052877, ' Mes': -14.0961895, 'AND': -14.292474, ' André': -14.326244, ' Angel': -15.19828, ' Android': -15.389944, 'andro': -15.582506, ' Mas': -15.969084, ' ': -16.02505, ' AND': -16.135725, 'M': -16.69388, ' \"': -17.042095, 'ander': -17.104382, ' Maur': -17.108595, 'ande': -17.249493, ' Argent': -17.269255, ' Á': -17.345095, ' M': -17.434233, ' A': -17.476263, 'android': -17.484663, 'ands': -17.523056, 'andra': -17.555418, ' Leo': -17.659422, ' Ang': -17.690866, ' Meg': -17.778257, ' Mart': -17.855864, ' (': -17.915543, ' Lion': -17.983145, 'anded': -18.183516, ' Maria': -18.21863, ' Matt': -18.257086, ' Mel': -18.324232, ' ME': -18.339079, ' Mend': -18.447231, ' Leon': -18.5543, ' Marg': -18.602697, 'andon': -18.615364, ' Mos': -18.627558, ' Mass': -18.634178, \" '\": -18.634832, ' Ad': -18.758331, ' Manuel': -18.924782, ' Mol': -18.930761, ' Magn': -18.9383, ' android': -18.944689, ' Aires': -18.957592, ' Mar': -19.001642, ' Miguel': -19.078516, '\\n': -19.111322, ' Mau': -19.148973, ' Mall': -19.15017, ' Mark': -19.157858, ' Mand': -19.217947, 'Android': -19.221529, ' Ant': -19.251684, ' Ah': -19.26845, ' Mario': -19.313852, 'anda': -19.329725, ' Anton': -19.341522, 'andal': -19.344849, ' Moh': -19.383919, ' Marcel': -19.392435, ' Me': -19.437729, ' Crist': -19.51673, ' Antonio': -19.525242, ' Ag': -19.525583, 'andy': -19.541681, ' Ale': -19.571856, ' An': -19.598927, ' Maj': -19.669363, ' Al': -19.709385, ' Mon': -19.729048, 'ess': -19.746271, 'and': -19.779484, ' Mil': -19.783403, ' Mex': -19.791716, ' Mans': -19.800426, ' Ar': -19.847147, ' Arm': -19.850225, ' Marc': -19.858683, ' Mull': -19.944086, ' Mens': -19.961298, ' Mann': -19.966837, ' Men': -19.987526, ' Mad': -20.05828, ' Mal': -20.06443, ' Amb': -20.108595, ' Merc': -20.184502}, {'i': -4.7683704e-07, 'is': -14.572745, 'í': -18.862831, 'ier': -19.53286, 'ie': -19.80582, ' i': -20.03273, 'I': -20.297386, 'si': -20.317663, 'ir': -20.331875, 'iw': -20.4372, 'ih': -20.688017, 'ide': -20.793789, 'rs': -20.898075, 'y': -20.902817, 'id': -20.96754, 'ias': -20.987907, 'ia': -21.22713, 'ii': -21.414892, 'if': -21.446438, 's': -21.518015, 'io': -21.707796, 'ib': -21.798687, 'и': -21.80854, 'li': -21.81379, 'ip': -21.84301, 'ij': -21.863674, 'ri': -21.87922, 'it': -21.958843, 'iest': -22.022491, 'і': -22.09068, 'ian': -22.168283, 'iah': -22.219252, 'ei': -22.308163, 'ist': -22.487778, 'di': -22.51417, 'ì': -22.526134, 'ion': -22.570919, 'a': -22.646864, 'hi': -22.806252, 'ï': -22.887562, 'ies': -22.893642, 'ic': -22.934917, 'u': -22.950676, 'ing': -23.00198, 'ai': -23.015175, 'ı': -23.085941, 'ig': -23.115913, 'ī': -23.116005, 'bi': -23.152119, 'ci': -23.15913, 'iro': -23.264212, 'il': -23.280436, 'ι': -23.296116, 'iz': -23.349752, 'as': -23.39392, 'er': -23.408741, ' is': -23.454506, 'iss': -23.460007, 'iq': -23.479198, 'ि': -23.49566, 'iar': -23.529501, 'in': -23.6583, 'iy': -23.671484, 'r': -23.749819, 'isi': -23.903475, 'iper': -23.974121, 'se': -24.014523, 'Is': -24.030193, 'l': -24.063282, 'iot': -24.08751, 'f': -24.090569, 'ire': -24.093296, 'ior': -24.146677, ' Argent': -24.164291, 'ina': -24.175804, ' Lis': -24.183628, 'iter': -24.19658, 'o': -24.197376, 'ik': -24.219887, 'vi': -24.259176, 'iac': -24.272413, ',': -24.287115, 'ius': -24.29958, 'iat': -24.347961, 'fi': -24.360895, 'ieur': -24.38573, 'iego': -24.427776, 'ix': -24.436985, 'es': -24.445286, 'j': -24.474138, 'or': -24.49858, 'us': -24.541122, 'pi': -24.552176, 'い': -24.564161, 'icon': -24.566792, '-': -24.608952, 'ar': -24.632364, ' ideal': -24.638027, 'ais': -24.639053, 'ied': -24.643148}, {' is': -7.867782e-06, ',': -12.136795, ' (': -14.291889, '\\n': -14.383405, ' isn': -14.971661, ' ': -15.444632, \"'\": -15.915594, ' Is': -16.291647, 'is': -16.350609, ':': -16.354897, ' was': -16.673752, '.': -17.532583, ' has': -17.778227, ' and': -17.814266, ' an': -17.87928, ' a': -17.953827, ' refers': -17.956808, ' ist': -17.979527, ' -': -17.991915, ' are': -18.180582, ' in': -18.185661, ' or': -18.191235, ' \"': -18.20036, '是': -18.459686, ' [': -18.46754, '-': -18.757404, ' it': -18.771898, ' i': -18.943066, ' the': -18.997774, ' stands': -19.004251, ';': -19.154896, ' from': -19.352688, ' belongs': -19.451405, ' being': -19.582695, ' if': -19.638063, ' (\"': -19.684465, \" '\": -19.811028, ' does': -19.853403, '*': -19.870361, '(': -19.942614, ' as': -19.952309, ' of': -20.02603, ' also': -20.036747, ' am': -20.092964, ' I': -20.278969, ' h': -20.383852, '\"': -20.532667, ' (@': -20.556574, ' ()': -20.588802, ' comes': -20.606037, ' M': -20.6072, '[': -20.630447, ' remains': -20.634947, ' =': -20.66114, ' may': -20.740662, ' his': -20.77084, ' A': -20.795189, '/': -20.797447, ' appears': -20.83394, ' plays': -20.849491, ' IS': -20.868702, ' nick': -20.938643, ' can': -20.969025, ' represents': -20.980307, \" ('\": -20.997786, ' S': -21.017159, ' for': -21.101147, ' C': -21.140629, ' L': -21.169195, ' :': -21.217312, ' V': -21.23228, ' ,': -21.241035, '!': -21.257776, ' with': -21.263779, ')': -21.266727, ' alias': -21.281055, '?': -21.285482, '...': -21.30188, ' who': -21.314648, ' should': -21.318394, ' that': -21.411179, ' K': -21.41972, ' F': -21.419855, ' we': -21.48059, ' himself': -21.553865, ' An': -21.58879, ' B': -21.59369, '1': -21.595703, '  ': -21.6203, '--': -21.62122, ' является': -21.638878, ' happens': -21.655212, ' would': -21.679636, 's': -21.685862, ' goes': -21.705002, ' |': -21.707623, ' at': -21.724503, ' doesn': -21.727978, ' –': -21.729086, ' born': -21.731174}, {' a': -0.5618962, ' an': -0.84684646, ' arg': -6.90289, ' Argent': -10.1938715, ' widely': -10.940679, ' considered': -10.980967, 'arg': -11.584171, ' one': -12.068102, ' Argentina': -12.862616, ' not': -13.219137, ' renown': -13.282769, ' the': -13.788501, ' world': -14.001212, 'Arg': -14.103918, ' commonly': -14.1723585, ' argued': -14.380891, ' often': -14.473157, ' recognized': -14.588637, ' regarded': -14.604312, ' fam': -15.024814, 'an': -15.057395, 'a': -15.075504, ' famous': -15.275388, ' internation': -15.509197, ' Arg': -15.541738, ' known': -15.698921, ' An': -15.885308, ' ': -15.973728, ' well': -16.018988, ' popular': -16.156956, ' generally': -16.2374, ' argue': -16.32028, ' univers': -16.348211, ',': -16.439674, ' originally': -16.524826, ' acknowledged': -16.636017, ' legendary': -16.660458, ' celebrated': -16.717724, 'ARG': -16.722696, ' argument': -16.773558, ' both': -16.798777, ' who': -16.864292, ' currently': -17.034315, ' another': -17.046286, ' glob': -17.052906, ' actually': -17.070366, ' profession': -17.145958, ' ac': -17.176367, ' und': -17.253736, ' arguments': -17.321842, ' rever': -17.361376, ' from': -17.398855, ' frequently': -17.457405, ' is': -17.498549, ' highly': -17.499111, ' essentially': -17.49954, ' A': -17.502028, ' believed': -17.516424, 'args': -17.61508, ' also': -17.626347, ' professional': -17.738722, 'arga': -17.776367, ' among': -17.85433, ' reput': -17.863295, '\\n': -17.895756, ' referred': -17.908949, ' а': -17.933825, ' and': -17.959492, ' args': -17.979303, ':': -17.990591, ' Buenos': -18.04479, ' someone': -18.053493, ' truly': -18.06965, ' notably': -18.073786, ' quite': -18.085585, ' typically': -18.085693, ' as': -18.12684, ' of': -18.221605, ' deemed': -18.24505, ' born': -18.326992, ' either': -18.343882, ' World': -18.372622, ' \"': -18.406893, ' indeed': -18.459818, ' arguing': -18.489588, ' extens': -18.530275, ' significantly': -18.549593, ' greatly': -18.617224, ' icon': -18.625463, ' primarily': -18.662733, ' most': -18.667145, ' neither': -18.766232, ' NOT': -18.787235, ' definitely': -18.816109, ' Argument': -18.81917, ' officially': -18.833818, ' worldwide': -18.912935, ' being': -18.961382, ' usually': -18.971313, ' noted': -18.971502}, {' Argent': -0.00045730147, ' Argentina': -8.34413, ' arg': -8.595987, 'Arg': -10.686649, ' Arg': -12.342439, ' argument': -12.8394375, ' world': -13.934908, 'arg': -14.25082, ' renown': -14.599555, ' internation': -14.654215, ' icon': -14.756187, ' international': -14.866758, ' professional': -14.926114, ' ac': -15.565672, ' accomplished': -15.72426, 'ARG': -16.346823, ' legendary': -16.352453, ' influential': -16.379538, ' famous': -16.391941, ' argue': -16.409082, ' elite': -16.582079, ' argued': -16.65092, ' award': -16.828093, ' AR': -16.841915, ' arguing': -16.971588, ' arguments': -17.265766, ' Argument': -17.304932, ' expert': -17.868889, ' este': -17.957283, ' American': -17.972672, 'argument': -18.325773, ' Arthur': -18.550386, 'argin': -18.553186, ' Italian': -18.570768, ' args': -18.667212, ' Arab': -18.67104, ' Buenos': -18.694649, ' fam': -18.701838, ' Australian': -18.730467, ' Armen': -18.800816, ' outstanding': -18.816118, ' experienced': -18.962265, 'Argument': -19.006397, ' English': -19.048397, ' celebrated': -19.261768, ' excellent': -19.28061, ' World': -19.328926, ' Arkansas': -19.371172, 'world': -19.412842, ' Aust': -19.41333, ' established': -19.558441, 'args': -19.732239, ' extraordinary': -19.801344, ' ар': -19.821009, ' incredibly': -19.953655, ' extremely': -20.018879, ' amateur': -20.025253, ' prominent': -20.063751, ' Israeli': -20.064823, ' exceptional': -20.15044, ' Arnold': -20.256325, ' impressive': -20.320663, ' ace': -20.372313, 'arga': -20.392063, ' Ar': -20.448277, ' Args': -20.521564, ' arist': -20.530342, 'Args': -20.665766, ' ill': -20.667976, ' Professional': -20.694004, ' Spanish': -20.71748, ' ongoing': -20.735538, ' imm': -20.864647, ' inf': -20.877522, ' Mexican': -20.91001, ' awarded': -20.936356, ' authentic': -20.941511, ' popular': -20.955591, ' ath': -21.012749, ' Ark': -21.051468, ' Arist': -21.060852, ' athlet': -21.064327, ' Colomb': -21.070633, ' acknowledged': -21.074974, ' worldwide': -21.081202, ' talented': -21.087738, ' argc': -21.089495, 'arguments': -21.137424, ' all': -21.1389, ' worlds': -21.190401, ' avant': -21.202223, ' incredible': -21.247297, ' argv': -21.325157, 'argo': -21.354338, ' upcoming': -21.396927, ' exponent': -21.401646, ' Brazil': -21.445314, 'arge': -21.46341, ' illusion': -21.517454, ' extraord': -21.521362}, {'ine': -0.0104964115, 'inian': -4.5645547, 'ian': -10.636702, 'in': -14.249309, 'INE': -14.349794, 'ive': -14.414494, 'ines': -14.57745, 'bian': -15.987307, 'ined': -16.008972, 'ini': -16.387056, 'rian': -16.47649, 'ino': -17.355604, 'inus': -17.653526, 'inese': -17.807089, 'ide': -17.910189, 'ican': -18.267813, 'en': -18.326717, 'ain': -18.3561, 'arian': -18.51122, 'ivan': -18.755297, 'ene': -18.781832, 'an': -18.81936, 'itan': -18.99232, 'inal': -19.072697, 'inely': -19.11292, 'yan': -19.329294, 'ining': -19.33637, 'ing': -19.457144, 'inen': -19.567894, 'esian': -19.570148, 'lean': -19.666643, 'inc': -19.773, 'ince': -19.81795, 'anean': -19.828533, 'uan': -19.873041, 'isan': -19.879335, 'ic': -19.954302, 'ie': -19.975471, 'inet': -20.021004, 'inary': -20.039658, 'inn': -20.051706, 'iv': -20.123549, 'aine': -20.175901, 'ijn': -20.20609, 'iner': -20.263124, 'ime': -20.307394, 'ician': -20.37556, 'im': -20.419046, 'ist': -20.556238, 'inity': -20.590921, 'iman': -20.59849, 'inent': -20.611507, 'inement': -20.824135, 'tan': -20.840899, 'man': -20.852724, 'n': -20.873753, 'oine': -20.903185, 'b': -20.951931, 'aban': -20.95327, 'd': -20.954287, 'aman': -20.955374, ' inequality': -20.989328, 'v': -21.019169, 'ien': -21.039549, 'ination': -21.097479, 'un': -21.205744, 'if': -21.220816, 'ion': -21.277721, 'itarian': -21.286238, 'iene': -21.299948, 'ib': -21.302755, 'inde': -21.34562, 'panic': -21.345678, 'idan': -21.365206, 'ite': -21.420038, 'i': -21.45014, 'il': -21.453627, 'ink': -21.477053, 'inos': -21.551794, 'igan': -21.592215, 'line': -21.678764, 'inate': -21.679895, 'ins': -21.702127, 'iny': -21.70943, 'mine': -21.719776, 'inated': -21.719954, 'int': -21.765053, 'ese': -21.77205, 'ile': -21.795765, 'inge': -21.808016, 'ed': -21.818834, 'ne': -21.852884, 'ussian': -21.886223, 'ina': -21.902725, 'йн': -21.921696, 'ative': -21.955847, 'avan': -21.987913, 'inth': -22.030642, 'ían': -22.04388, 'on': -22.046274}, {' professional': -0.00049864734, ' football': -7.8651934, ' Professional': -10.188588, 'prof': -10.5988865, ' profession': -10.664239, ' soccer': -11.006524, ' international': -12.403754, ' profes': -12.453889, ' world': -13.666543, ' professionals': -14.600627, ' Football': -14.894679, ' профе': -15.176003, ' prof': -15.434574, ' association': -15.80303, '-': -16.06178, ' former': -16.174788, ' expert': -16.20193, ' profess': -16.38299, ' Prof': -16.390627, ' sports': -16.575521, ' retired': -16.601248, ' World': -16.617378, ' professor': -16.753187, ' global': -16.882343, 'foot': -16.990854, ' legendary': -17.032242, ' skilled': -17.159712, ' basketball': -17.213593, ' famous': -17.424162, ' worldwide': -17.44127, ' renown': -17.459755, ' national': -17.480503, ' foot': -17.642237, ' baseball': -17.929905, ' elite': -17.983295, ' veteran': -17.99891, ' experienced': -18.025347, ' amateur': -18.148718, ' tennis': -18.255274, ',': -18.277739, ' born': -18.338608, ' pro': -18.37255, ' premier': -18.429926, ' rugby': -18.444641, ' футбо': -18.486074, ' and': -18.640015, ' FIFA': -18.676353, ' internation': -18.75051, ' modern': -18.795858, ' prominent': -18.83378, ' sport': -18.865997, ' Association': -18.91745, 'Foot': -19.006922, ' popular': -19.029295, ' talented': -19.054747, ' star': -19.133444, ' player': -19.187021, ' hockey': -19.188606, ' legend': -19.240183, ' specialist': -19.326197, ' Fußball': -19.349861, ' Professor': -19.416504, ' ath': -19.423203, ' Soc': -19.424726, ' top': -19.424955, ' public': -19.488443, ' ': -19.567854, ' who': -19.574675, ' licensed': -19.591232, ' International': -19.594519, ' icon': -19.637215, ' progressive': -19.641317, ' contemporary': -19.667585, ' champion': -19.776094, '\\n': -19.79035, ' provincial': -19.898497, ' American': -19.914251, ' athlet': -20.060038, ' championship': -20.08278, ' forward': -20.107676, ' promising': -20.12895, ' prest': -20.167192, ' certified': -20.173191, ' fam': -20.196049, ' super': -20.197445, ' Olympic': -20.213549, ' PRO': -20.216694, ' prospect': -20.272892, ' fut': -20.338203, ' high': -20.423883, ' specialized': -20.441435, ' cricket': -20.44992, ' (': -20.473843, 'World': -20.482546, 'born': -20.485655, ' registered': -20.515192, ' Portuguese': -20.516886, ' trained': -20.52606, ' male': -20.52617, ' Brazil': -20.535036}, {' football': -0.057771433, ' soccer': -2.8808954, ' Football': -10.499128, ' basketball': -11.430088, ' baseball': -11.739187, ' sports': -13.526432, ' футбо': -14.558059, ' tennis': -15.195248, ' hockey': -15.444496, ' foot': -15.637254, ' rugby': -15.650265, ' Fußball': -15.852043, ' FIFA': -16.050491, ' sport': -16.071428, ' Soc': -16.315096, 'foot': -16.387505, ' cricket': -16.619616, ' fut': -16.992264, ' association': -17.116232, 'soc': -17.587013, ' ath': -17.727322, ' soc': -18.07561, ' wrest': -18.448036, ' player': -18.514608, 'Foot': -18.55656, ' golf': -18.824896, ' gol': -19.123732, 'ft': -19.522917, ' soci': -19.60053, 'footer': -19.604671, ' NFL': -19.605669, ' ': -19.705633, ' stri': -19.742022, ' box': -19.782055, ' World': -19.819963, ' society': -19.82663, ' series': -20.096212, ',': -20.285715, ' swim': -20.303312, ' star': -20.329449, ' goal': -20.34904, ' social': -20.377535, '\\n': -20.386877, ' athletes': -20.44939, ' league': -20.464561, ' athlet': -20.489668, ' footage': -20.51019, ' world': -20.530165, ' senior': -20.542097, ' team': -20.547943, ' fo': -20.562704, ' FC': -20.619633, ' fot': -20.643225, ' free': -20.645765, ' UEFA': -20.647041, ' club': -20.654486, ' championship': -20.699617, ' who': -20.715595, ' super': -20.772493, ' novel': -20.840418, ' fashion': -20.882063, ' men': -20.91402, '': -20.943373, ' vol': -20.947039, ' singer': -20.966227, ' f': -20.973604, ' forward': -21.041662, ' stock': -21.077976, ' solar': -21.126238, ' international': -21.146887, ' squad': -21.21449, ' Association': -21.270193, ' hit': -21.28377, ' stadium': -21.297354, ' and': -21.302, ' Lion': -21.360708, ' ball': -21.382067, ' sensation': -21.423815, ' ft': -21.436724, ' racing': -21.476503, ' squ': -21.479704, ' soldier': -21.492815, ' poker': -21.494247, '-': -21.494884, ' famous': -21.511192, ' sil': -21.537745, ' sc': -21.565538, ' popular': -21.592665, ' male': -21.616367, ' play': -21.653717, ' fighter': -21.664015, ' worldwide': -21.682774, ' skilled': -21.693815, ' talent': -21.744776, ' professional': -21.746248, ' t': -21.764818, ' former': -21.797527, ' playing': -21.798225, ' ski': -21.828735, ' Sports': -21.858295}, {' player': -0.0090957815, ' (': -4.744161, 'player': -8.253489, ' Player': -10.189895, '/': -10.328235, ' players': -11.44065, 'Player': -12.616915, ' or': -12.992254, ',': -13.466972, '(': -13.693067, ' /': -14.050085, ' forward': -14.641734, ' [': -15.217457, ' star': -15.454126, ' football': -15.464518, ' and': -16.145414, ' playing': -16.763168, ' play': -16.831018, ' ath': -17.020132, ' (\"': -17.360624, ' ': -17.389853, ' Players': -17.397362, '[': -17.850824, ' (_': -17.9774, '-': -17.986132, ' played': -18.206528, 'er': -18.219828, ' ()': -18.330027, 'ist': -18.342531, '(': -18.384928, ' (!': -18.432184, 'or': -18.486107, '/(': -18.531908, ' team': -18.534609, ' super': -18.692045, ' genius': -18.699091, '\\n': -18.71182, ' game': -18.744886, ' stri': -18.87854, \" ('\": -18.886824, ' (“': -18.941391, ' phenomenon': -18.986494, ' legend': -19.080553, ' captain': -19.208467, ' fan': -19.238829, 'forward': -19.363358, ' ((': -19.407034, ' manager': -19.422804, ' (\\\\': -19.450205, ' icon': -19.475744, ' artist': -19.491186, ' participant': -19.497849, ' painter': -19.654402, ' (@': -19.773857, ' plays': -19.777796, ' Football': -19.80713, ' champion': -19.853413, ' for': -19.877924, ' father': -19.906122, ' (*': -19.91251, ' driver': -19.950518, '(/': -19.969881, ' -': -19.991331, ' ($': -20.02587, ' actor': -20.081598, ' (+': -20.107481, ' of': -20.108208, '.': -20.112326, ' coach': -20.133026, ' phen': -20.224943, ' –': -20.24748, ' (-': -20.266558, ' agent': -20.36723, ' (&': -20.415861, ' ball': -20.500864, ' that': -20.523268, ' club': -20.567827, ' foot': -20.595364, ' musician': -20.610645, ' figure': -20.655392, ' farmer': -20.665026, 'Forward': -20.699371, \"'\": -20.699621, ' in': -20.744148, ' extraord': -20.76148, ' hero': -20.771196, 'play': -20.801937, ' who': -20.818863, ' journalist': -20.833397, ' goal': -20.85771, ' mid': -20.863785, ' patient': -20.94885, ':': -20.94973, ' M': -20.950092, ' league': -20.95126, ' jug': -20.953861, ' writer': -20.980457, ' talent': -20.986235, ' a': -21.010248, ' person': -21.024086}, {' who': -0.4837565, '.': -1.1057124, ',': -3.2194638, ' currently': -5.4724383, ' widely': -5.6035075, ' known': -6.5761046, ' (': -7.1761384, ' commonly': -7.3440948, ' with': -8.103608, ' renown': -8.274943, ' fam': -8.620232, ' and': -8.640485, ' considered': -8.7852955, 'who': -8.81143, ' often': -8.880502, ' whose': -9.328551, ' whom': -10.284507, ' famous': -10.381125, ' or': -10.694678, ' popular': -10.754622, ' from': -10.949879, ' recognized': -10.965288, ' regarded': -11.028265, ' that': -11.039035, ' frequently': -11.167389, ' best': -11.688989, ' univers': -11.741721, ' current': -11.773745, ';': -11.848483, ' playing': -11.881553, ' well': -11.905121, ' Who': -11.953824, ' primarily': -12.09398, ' named': -12.198634, ' also': -12.295703, ' Currently': -12.322803, ' most': -12.376971, ' in': -12.518397, ' generally': -12.526212, ' noted': -12.68131, ' celebrated': -12.7177, ' formerly': -12.729073, ' -': -12.731421, ' for': -12.751464, ' reput': -12.860171, ' of': -12.8765, 'current': -12.888282, ' typically': -12.893797, ' nick': -12.895154, '-': -12.923946, ' ': -13.028369, 'Current': -13.046221, ' now': -13.097821, ' believed': -13.116054, '(': -13.121538, \"'\": -13.212863, ':': -13.223799, ' born': -13.262668, ' as': -13.271714, '!': -13.27882, 'wid': -13.327657, '/': -13.38369, ' plays': -13.475932, ' fame': -13.487817, ' mostly': -13.534886, ' recently': -13.576275, ' described': -13.579957, ' present': -13.598787, ' affection': -13.60657, ' rated': -13.679238, ' internation': -13.681803, 'Who': -13.687478, 'known': -13.688834, ' wearing': -13.7216, ' associated': -13.730942, ' largely': -13.7368, ' originally': -13.793661, '—': -13.798155, ' inf': -13.837687, ' usually': -13.848516, ' –': -13.959954, ' referred': -13.967032, ' perceived': -13.995194, ' ac': -14.003404, '--': -14.003825, ' to': -14.055882, ' dub': -14.06919, ' mainly': -14.0759325, ' called': -14.120412, ' belonging': -14.120713, '\\n': -14.128454, ' identified': -14.21816, ' where': -14.257281, ' diagnosed': -14.281605, ' w': -14.285844, ' right': -14.31069, '.,': -14.339694, ' notable': -14.3519745, ' legendary': -14.358722, ' highly': -14.366372}, {' currently': -0.09042948, ' plays': -3.2673762, ' has': -3.6744683, ' is': -3.8171198, ' played': -8.668421, ' current': -8.754004, ' Currently': -8.965974, ' primarily': -9.722546, 'current': -10.0577345, ' spent': -10.292217, ' playing': -10.429232, ' now': -10.47694, ' was': -10.509775, ' recently': -10.6918545, \"'\": -10.714475, 'Current': -10.756731, ' previously': -11.309652, ' formerly': -11.451984, ' commonly': -11.570591, ' typically': -11.663758, ' usually': -11.859171, ' often': -11.895504, ' serves': -11.936581, ' play': -12.116957, ' predomin': -12.140737, ' frequently': -12.225731, ' started': -12.363198, ' present': -12.390881, ' performs': -12.401268, ' rose': -12.492285, ' initially': -12.665918, ' runs': -12.718832, ' operates': -12.769817, ' widely': -12.795221, ' mainly': -12.826558, ' holds': -12.902836, ' stands': -12.9512615, ' began': -12.970525, ' ranks': -12.999655, ' works': -13.017561, ' starts': -13.06653, ' had': -13.11166, 'has': -13.168057, ' belongs': -13.186971, ' tops': -13.244169, ' goes': -13.259317, ' Play': -13.266099, 'play': -13.278315, ' notably': -13.302328, ',': -13.319088, ' originally': -13.360912, ' also': -13.362925, ' Current': -13.39032, ' stars': -13.401714, ' regularly': -13.436898, ' generally': -13.443332, ' most': -13.496628, ' already': -13.539802, ' we': -13.601852, ' fam': -13.604322, ' consistently': -13.636301, ' appears': -13.710218, ' many': -13.77623, ' uses': -13.783337, ' made': -13.800046, ' mostly': -13.802338, ' significantly': -13.826044, ' became': -13.844115, ' gained': -13.900773, ' continues': -13.901798, ' grew': -13.9026375, ' star': -13.913145, ' teams': -13.9148, ' renown': -13.956742, ' always': -13.965896, ' used': -13.982316, ' domin': -14.010635, ' capt': -14.034618, ' truly': -14.053309, ' lives': -14.064463, 'CURRENT': -14.071081, ' pl': -14.088125, ' compet': -14.104417, ' normally': -14.110323, ' have': -14.166414, ' comes': -14.187509, ' inf': -14.193431, ' carries': -14.323896, ' in': -14.362313, ' does': -14.39311, ' begins': -14.439307, ' scored': -14.448999, ' h': -14.456707, ' leads': -14.460373, ' can': -14.468296, ' heads': -14.479832, ' shoot': -14.522266, ' overl': -14.53766, ' functions': -14.541252, ' represents': -14.573359}, {' plays': -4.8755406e-05, ' playing': -11.218825, ' played': -11.665014, ' stars': -11.746962, ' play': -11.966521, ' performs': -12.693608, ' serves': -13.844632, ' leads': -13.892591, ' works': -14.085088, 'play': -14.659175, ' Play': -15.15753, ' starts': -15.216023, ' teams': -15.235743, ' capt': -15.270791, ' represents': -15.441829, ' acts': -15.485707, ' pl': -15.489872, ' hosts': -15.678241, ' tops': -15.739517, ' stands': -15.740865, ' pays': -15.772355, '\\n': -15.786052, ' holds': -15.8668165, ' practices': -16.045422, ' belongs': -16.098705, ' operates': -16.106491, ' enjo': -16.17856, ' ': -16.179363, ' compet': -16.200258, ' ranks': -16.234886, ' lives': -16.248154, ' players': -16.24884, ' runs': -16.258774, 'Play': -16.446884, ' appears': -16.519894, ' takes': -16.53061, ' goes': -16.708273, ' owns': -16.71103, ' heads': -16.760098, ' is': -16.86196, ' (': -16.863142, ' plans': -16.882437, ' particip': -16.962082, ' displays': -16.980917, ' makes': -17.043667, ' trains': -17.119793, ' domin': -17.212025, ' comes': -17.461561, ' champions': -17.510763, ' begins': -17.517866, ' enters': -17.553272, ' plants': -17.601017, ' presents': -17.604506, ' jo': -17.615173, ' stays': -17.615566, ' pairs': -17.62498, ' streams': -17.64537, ' puts': -17.646055, ' sets': -17.6525, ' passes': -17.685743, ' speaks': -17.69949, ',': -17.706156, ' contracts': -17.744537, ' supports': -17.772816, ' continues': -17.795633, ' head': -17.80433, ' shows': -17.847446, ' suits': -17.862688, ' produces': -17.88874, ' functions': -17.900719, ' faces': -17.918339, ' wages': -17.921047, ' builds': -17.921946, ' shares': -17.934635, ' and': -17.98304, ' follows': -18.010067, 's': -18.015205, ' port': -18.040886, ' clubs': -18.132494, ' scores': -18.163305, ' игра': -18.175636, ' features': -18.211216, ' shoot': -18.21645, ' signs': -18.2469, ' looks': -18.252895, ' cont': -18.281132, ' plates': -18.315836, ' p': -18.3744, ' we': -18.377071, ' races': -18.383389, 'PLAY': -18.451843, ' lif': -18.456673, ' Pl': -18.461872, ' opens': -18.483727, ' the': -18.505054, ' focuses': -18.610748, ' helps': -18.612638, ' jou': -18.623257, ' pre': -18.63338, ' loves': -18.667126}, {' as': -0.16231762, ' for': -1.9002651, ' forward': -9.151884, ',': -9.22447, ' in': -9.641142, ' at': -12.170465, 'for': -12.301222, ' from': -12.465084, ' and': -13.119567, ' stri': -13.224159, 'as': -13.719526, ' on': -13.9545555, ' For': -14.10326, ' to': -14.232805, '\\n': -14.3737335, ' of': -14.389994, ' ': -14.840485, ' (': -14.9617405, '.': -14.9952545, ' left': -15.0236435, ' alongside': -15.141168, ' the': -15.257387, ' under': -15.345989, ' a': -15.400959, 'forward': -15.453292, ' or': -15.617952, ' along': -15.6183405, ' both': -15.648203, ' для': -15.765034, ' with': -15.821011, ' by': -15.904266, ' As': -15.945378, ' FOR': -16.006289, 'Forward': -16.201468, ' against': -16.23517, ' primarily': -16.266348, ' right': -16.30694, '-': -16.363688, ' -': -16.382833, ' als': -16.39416, ' that': -16.43823, ' towards': -16.474998, ' w': -16.541315, ' как': -16.582094, 'For': -16.641748, ' among': -16.657408, ' out': -16.700174, ' during': -16.72346, ' within': -16.798903, '为': -16.853962, ' top': -16.85874, ' attacking': -17.092161, ' für': -17.1199, ' when': -17.163801, ' after': -17.168, ' exclusively': -17.17719, ' is': -17.189676, ' La': -17.220123, ' profession': -17.25186, ' club': -17.33381, 'As': -17.364021, ' toward': -17.435297, '--': -17.453106, '/': -17.45759, ':': -17.484344, 'stri': -17.584526, ' up': -17.587011, ' ahead': -17.591215, ' leading': -17.633684, ' --': -17.749155, ' mainly': -17.78859, ' teams': -17.79767, '—': -17.82243, '為': -17.826893, ' I': -17.83572, ' before': -17.846485, ' this': -17.864101, ' clubs': -17.880259, ' if': -17.908857, ' respectively': -17.920921, ' forth': -17.94369, ' football': -17.97168, ' –': -17.980211, ' through': -17.995583, ' first': -18.009058, ' because': -18.02587, 'in': -18.026022, ' Manchester': -18.04274, \"'\": -18.082184, ' —': -18.097939, ' attack': -18.102896, ' again': -18.12067, ' part': -18.145208, ' off': -18.170338, ' star': -18.181087, ' tops': -18.199205, ' league': -18.222597, ' [': -18.237751, ' upon': -18.264359, ' mostly': -18.281433}, {' a': -2.8610189e-06, ' the': -12.892368, ' an': -15.758994, '\\n': -16.145695, 'a': -16.275213, ' ': -16.479382, ' forward': -16.840038, ' stri': -17.40804, ' both': -17.752136, ' one': -18.016073, ' w': -18.068663, ' part': -19.06969, ' A': -19.310917, ' as': -20.030481, ' their': -20.52003, ' а': -20.659626, 'Forward': -20.670187, ' attacking': -20.717033, ' attack': -21.020914, ' in': -21.151653, ' such': -21.179974, ' For': -21.21644, ',': -21.259846, ' Argent': -21.263403, ' \"': -21.289621, ' The': -21.292759, ' that': -21.580963, ' its': -21.662935, 'forward': -21.856276, ' this': -21.90095, '  ': -22.000402, ' and': -22.04911, ' another': -22.099842, ' captain': -22.127184, 'stri': -22.191614, ' (': -22.243263, ' at': -22.291393, ' well': -22.354609, ' I': -22.35509, ' El': -22.358122, ' either': -22.379673, ' our': -22.427788, ' for': -22.452759, '...': -22.55087, ' Argentina': -22.606874, ' arg': -22.624037, ' no': -22.67655, ' or': -22.762823, \" '\": -22.76814, ' team': -22.772257, ' am': -22.901682, ' what': -22.901785, ' al': -22.939142, '\"': -23.009623, ' your': -23.036928, ' front': -23.07995, ' any': -23.080183, ' to': -23.108091, ' Ros': -23.149961, ' some': -23.157614, ' something': -23.164204, ' it': -23.232008, ':': -23.235756, ' No': -23.265478, ' someone': -23.270536, ' is': -23.278198, ' left': -23.286932, ' La': -23.292732, ' Par': -23.328365, ' Spanish': -23.3365, ' M': -23.357695, ' P': -23.371185, ' his': -23.406588, ' ...': -23.418709, ' Joan': -23.427687, ' we': -23.480791, ' Barcelona': -23.500935, ' senior': -23.516294, ' on': -23.532703, ' s': -23.581026, ' Spain': -23.581396, ' t': -23.584192, ' E': -23.645226, ' quite': -23.661337, ' of': -23.666431, ' Both': -23.674711, ' attacked': -23.679964, ' head': -23.684435, ' Att': -23.70061, 'A': -23.721437, ' W': -23.728468, '.': -23.731634, ' mid': -23.740063, ' Jack': -23.745451, ' New': -23.767931, '-': -23.776161, ' those': -23.779026, ' een': -23.810833, ' more': -23.826756, ' these': -23.861647}, {' forward': -0.00061576476, ' w': -7.679374, 'forward': -9.6202965, ' stri': -10.090702, 'Forward': -10.117655, ' left': -12.861166, ' front': -14.62882, ' right': -15.33688, ' attacking': -15.371847, ' mid': -15.396719, ' For': -15.848337, ' free': -16.165491, ' fork': -16.388693, ' star': -16.449041, ' forth': -16.504961, ' forg': -16.612003, ' progressive': -16.820616, ' attack': -17.109272, ' FOR': -17.227865, ' captain': -17.455145, ' center': -17.478067, ' backward': -17.532986, ' football': -17.64008, 'stri': -17.650925, ' part': -17.916103, ' for': -17.984037, ' senior': -18.016691, ' first': -18.097597, ' former': -18.314909, ' Spanish': -18.325083, ' central': -18.332218, ' fore': -18.364555, ' striking': -18.374025, ' forgotten': -18.422789, ' forget': -18.522238, 'For': -18.61932, ' productive': -18.666332, ' second': -18.765657, ' leading': -18.846563, ' short': -18.954054, ' late': -18.980074, 'FOR': -19.004303, 'ford': -19.02582, ' goal': -19.116991, ' ': -19.15077, ' fre': -19.183828, ' forgive': -19.192762, ' fict': -19.207273, ' Argent': -19.256989, ' stock': -19.285494, ' \"': -19.294287, ' principal': -19.354399, ' field': -19.409344, '\\n': -19.4313, ' centre': -19.44238, ' play': -19.454622, ' team': -19.472143, ' club': -19.483816, ' substitute': -19.517054, ' vers': -19.554258, ' forgot': -19.572172, ' professional': -19.572542, ' stagger': -19.593143, ' primary': -19.601704, ' top': -19.605724, ' creative': -19.62604, ' new': -19.748867, ' forum': -19.74956, ' foot': -19.750677, ' wand': -19.788244, ' vice': -19.88888, ' wing': -19.891596, ',': -19.92357, ' fundamental': -19.941118, ' form': -19.94272, ' backwards': -19.963118, ' future': -20.037155, ' in': -20.056597, ' wide': -20.062876, ' stand': -20.067205, ' phil': -20.07268, ' st': -20.08354, 'left': -20.093878, ' false': -20.109728, ' waved': -20.117651, ' fantasy': -20.203238, ' starting': -20.210497, ' vocal': -20.246008, ' skip': -20.266909, ' functional': -20.27078, ' folk': -20.299873, 'ward': -20.32235, ' out': -20.344711, ' wid': -20.34505, ' a': -20.355444, ' weekly': -20.367386, ' super': -20.37402, ' back': -20.382608, ' running': -20.398046, ' frequent': -20.401821}, {' for': -0.0015592334, ' and': -6.6294317, ' or': -8.609755, ' in': -10.507683, 'for': -11.127688, ' at': -13.244388, ',': -13.319205, ' (': -13.901158, '/': -14.047148, ' w': -14.063869, '-': -14.083773, ' with': -14.683714, ' by': -14.776235, ' as': -14.857888, ' of': -14.892798, ' для': -14.982116, ' to': -15.128164, ' on': -15.128511, ' For': -15.369998, ' ': -15.417268, ' &': -15.475892, '\\n': -15.555674, ' from': -15.585766, ' both': -15.932153, ' towards': -16.06147, ' team': -16.40502, ' the': -16.417707, 'or': -16.450022, 'and': -16.48395, 'For': -16.492289, ' club': -16.571253, ' für': -16.70831, ' along': -17.09096, ' primarily': -17.151115, ' against': -17.230972, ' voor': -17.275774, ' FOR': -17.302687, ' during': -17.308325, 'er': -17.397093, '(': -17.527184, ' within': -17.536398, ' throughout': -17.549875, ' after': -17.726217, ' /': -17.758493, ' teams': -17.788643, 'in': -17.800154, ' star': -17.861183, ' free': -18.000372, ' under': -18.041967, ' mainly': -18.05388, ' [': -18.101957, ' stri': -18.161886, '.': -18.175085, 'forall': -18.189579, ' toward': -18.219503, ' that': -18.26422, ' right': -18.266375, ' New': -18.294464, ' a': -18.30329, ' captain': -18.338846, ' through': -18.387482, 'man': -18.465376, ' respectively': -18.510912, '—': -18.518707, ' -': -18.532536, ' clubs': -18.558079, ' mid': -18.564085, ' Art': -18.574278, ' alongside': -18.598534, ' amid': -18.619406, ' is': -18.628626, ' all': -18.640947, ' until': -18.685217, '_': -18.700071, ' artist': -18.706799, ' fort': -18.740452, ' every': -18.77369, ' but': -18.806473, 'ing': -18.821917, ' position': -18.866318, ' senior': -18.868303, ' when': -18.870409, ' major': -18.88466, ' leading': -18.899305, '--': -18.910069, \"'\": -18.919256, ' squad': -18.928923, ' man': -18.935057, ' player': -18.946611, ' form': -18.95374, 'ed': -18.977882, ' not': -19.003786, ' exclusively': -19.02389, ' dla': -19.046614, ' And': -19.052294, ' Major': -19.053148, ' Club': -19.055468, ' nor': -19.05603, ' för': -19.057076, ' wearing': -19.060846}, {' Paris': -0.056626014, ' the': -3.2265613, ' L': -4.4194045, ' FC': -6.930531, ' French': -6.957626, ' Parad': -7.882582, ' Par': -8.352086, 'Par': -8.6637745, ' both': -9.177451, ' PS': -9.362507, ' F': -9.427253, ' La': -10.246182, ' Barcelona': -10.361265, ' PAR': -10.539731, ' Spanish': -10.555314, 'FC': -10.844618, ' Manchester': -11.271921, ' Argent': -11.466321, ' Italian': -11.613904, ' LA': -11.679838, ' parad': -11.798521, ' Para': -11.814141, ' Saudi': -11.897744, ' France': -12.042913, ' Premier': -12.248271, ' ': -12.451475, ' para': -12.513013, ' paras': -12.597231, ' English': -12.638716, ' Pars': -12.721891, ' paragraph': -12.916301, 'the': -13.041223, ' Argentina': -13.097636, ' Parl': -13.164411, 'PAR': -13.342896, ' Ferr': -13.353175, ' Mexican': -13.361949, 'L': -13.419952, ' an': -13.466538, ' M': -13.554302, ' Atlanta': -13.565688, ' South': -13.56836, ' football': -13.568617, ' la': -13.73903, ' a': -13.768078, ' Serie': -13.844593, ' Pan': -13.891177, '\\n': -13.903245, ' Liga': -13.992048, ' clubs': -14.090483, ' Parse': -14.190793, ' P': -14.211453, 'Parser': -14.242355, ' club': -14.258192, ' professional': -14.267856, ' Spain': -14.317567, 'F': -14.318238, ' Major': -14.351862, ',': -14.356924, ' Parliament': -14.393185, ' Los': -14.400403, ' The': -14.4039345, ' Lion': -14.415779, 'paragraph': -14.416884, ' various': -14.471248, ' Inter': -14.503215, ' and': -14.512346, ' Chile': -14.57261, ' Peru': -14.588896, ' several': -14.595111, ' Fred': -14.601483, ' parish': -14.603291, ' soccer': -14.627115, ' our': -14.6282425, ' teams': -14.659058, ' American': -14.666446, ' FIFA': -14.686265, ' major': -14.689431, ' leading': -14.697568, 'PS': -14.699828, ' its': -14.705061, ' Latin': -14.720634, ' this': -14.728008, ' rival': -14.728202, ' par': -14.744674, ' renown': -14.783084, ' Miami': -14.785859, ' Brazil': -14.801269, ' Football': -14.811038, ' Milan': -14.817174, ' PC': -14.902036, ' UEFA': -14.926756, ' Portuguese': -14.930895, ' Atl': -14.93474, ' Federation': -14.937571, ' Club': -14.944723, ' Santiago': -15.0051775, ' Pere': -15.016163, ' Param': -15.017214, 'Parse': -15.027188}, {' Saint': -0.0002311201, 'Saint': -8.487478, ' St': -11.050081, '-': -11.677761, ' S': -14.733017, ' saint': -16.009516, '\\n': -16.10813, ' ': -17.97645, ' Sant': -18.202913, ' San': -18.212606, ' Santa': -18.242485, ' Sac': -18.457434, ' São': -18.893856, ' Paris': -19.134024, ' ST': -19.231438, ' Gal': -19.334764, ' Stock': -19.438433, ' Sport': -19.681646, ' Stanford': -19.849628, ' Star': -20.084517, '–': -20.196938, ' F': -20.263128, ' SA': -20.304708, ' Seine': -20.383944, ' stain': -20.477884, ' Sta': -20.4835, ' Soci': -20.604101, 'St': -20.640856, 'ian': -20.694288, ' Stockholm': -20.734991, ' Ś': -20.746973, 'G': -20.92346, ' Solar': -20.939222, ' Soc': -20.956846, ',': -20.979986, ' Stat': -21.033756, ' D': -21.079515, ' С': -21.115753, ' SV': -21.13896, ' Studio': -21.198612, 'Static': -21.203672, 'sigma': -21.204077, ' in': -21.301447, ' G': -21.360697, 'Sigma': -21.384993, ' Sa': -21.38824, 'SG': -21.395714, ' FC': -21.491121, ' Sax': -21.53655, ' Gren': -21.564402, ' Street': -21.574598, ' stri': -21.583897, ' Sto': -21.602104, ' Germ': -21.621935, ' Statement': -21.668753, ' Space': -21.672108, ' Som': -21.734968, ' Stars': -21.756718, ' Gr': -21.77209, ' Sat': -21.778294, ' de': -21.81395, ' Stan': -21.819979, ' Storm': -21.827028, ' Singapore': -21.833992, ' R': -21.836636, '圣': -21.855127, ' Student': -21.864496, ' Serie': -21.887062, ' Sav': -21.89945, ' Sim': -21.903173, ' Stuart': -21.917313, ' Stadium': -21.926136, ' Сан': -21.970766, ' -': -21.97521, ' Sau': -21.986202, ' Sev': -21.989214, ' Str': -22.005558, ' Salv': -22.008797, ' Sad': -22.020315, ' stake': -22.027653, ' Summer': -22.030622, ' Mont': -22.034477, ' French': -22.07691, ' Gro': -22.083628, '/': -22.088518, ' Still': -22.093859, ' Spe': -22.103958, ' and': -22.11533, ' W': -22.147028, ' Holy': -22.218939, ' V': -22.2535, ' Ster': -22.262611, ' Station': -22.276094, ' The': -22.293547, ' Gall': -22.299255, ' Stanley': -22.300047, ' stab': -22.302233, ' SM': -22.306995, '.': -22.33403, 'SA': -22.338713}]}, 'finish_reason': 'length'}], 'usage': {'prompt_tokens': 50, 'completion_tokens': 20, 'total_tokens': 70}}\n"
          ]
        }
      ],
      "metadata": {
        "id": "brmZSfN5ic8_",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "67c41774-5daf-4a88-fec1-890ea0213d3a"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "Dans un premier temps, creer un fonction retournant une liste N génération avec le modele mistral avec une temperature de 1. Ces N génération constiturons notre échantillon de base.\n"
      ],
      "metadata": {
        "id": "PqdldZZ6lvdA"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 10,
      "source": [
        "from tqdm import tqdm\n",
        "def sample(query,nb_sample):\n",
        "  prompt = f\"\"\"\n",
        "    You are an AI assistant. Given a question about it, create a short answer. If you don't know the answer, honestly say so.\n",
        "    Question: {query}\n",
        "    Answer:\n",
        "  \"\"\"\n",
        "  liste = []\n",
        "  for _ in tqdm(range(nb_sample)) :\n",
        "    liste.append(gen(query)['choices'][0]['text'])\n",
        "\n",
        "  return liste\n",
        "print(sample(\"Whos is Messi ?\", 3))"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "\r  0%|          | 0/3 [00:00<?, ?it/s]Llama.generate: prefix-match hit\n",
            "\n",
            "llama_print_timings:        load time =    2950.22 ms\n",
            "llama_print_timings:      sample time =      11.51 ms /    20 runs   (    0.58 ms per token,  1738.22 tokens per second)\n",
            "llama_print_timings: prompt eval time =       0.00 ms /     0 tokens (    -nan ms per token,     -nan tokens per second)\n",
            "llama_print_timings:        eval time =   14536.81 ms /    20 runs   (  726.84 ms per token,     1.38 tokens per second)\n",
            "llama_print_timings:       total time =   14569.76 ms /    20 tokens\n",
            " 33%|███▎      | 1/3 [00:15<00:30, 15.20s/it]Llama.generate: prefix-match hit\n",
            "\n",
            "llama_print_timings:        load time =    2950.22 ms\n",
            "llama_print_timings:      sample time =      11.96 ms /    20 runs   (    0.60 ms per token,  1672.80 tokens per second)\n",
            "llama_print_timings: prompt eval time =       0.00 ms /     0 tokens (    -nan ms per token,     -nan tokens per second)\n",
            "llama_print_timings:        eval time =   13554.36 ms /    20 runs   (  677.72 ms per token,     1.48 tokens per second)\n",
            "llama_print_timings:       total time =   13581.48 ms /    20 tokens\n",
            " 67%|██████▋   | 2/3 [00:29<00:14, 14.89s/it]Llama.generate: prefix-match hit\n",
            "\n",
            "llama_print_timings:        load time =    2950.22 ms\n",
            "llama_print_timings:      sample time =      11.12 ms /    20 runs   (    0.56 ms per token,  1797.75 tokens per second)\n",
            "llama_print_timings: prompt eval time =       0.00 ms /     0 tokens (    -nan ms per token,     -nan tokens per second)\n",
            "llama_print_timings:        eval time =   12548.51 ms /    20 runs   (  627.43 ms per token,     1.59 tokens per second)\n",
            "llama_print_timings:       total time =   12573.55 ms /    20 tokens\n",
            "100%|██████████| 3/3 [00:43<00:00, 14.52s/it]"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "[' Lionel Messi is a world-renowned Argentine professional footballer who currently plays as a', \" I'm sorry for any confusion, but the question seems to be incomplete. 'Whos\", ' Lionel Messi is an Argentine professional footballer who currently plays as a forward for Paris Saint']\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "\n"
          ]
        }
      ],
      "metadata": {
        "id": "R2xEgEU3nRio",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "afb13892-b536-463f-f76b-81d298b8276a"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "Implémenter ensuite une fonction qui permet de séparer un string en une liste de phrase. Un conseil utiliser nltk 😉"
      ],
      "metadata": {
        "id": "VUvKegafpU-t"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 12,
      "source": [
        "!pip install nltk\n",
        "\n",
        "# Exemple de string\n",
        "texte = \"Bonjour! Comment ça va? J'espère que vous allez bien. Passez une bonne journée.\"\n",
        "\n",
        "\n",
        "def separate(passage=texte):\n",
        "  import nltk\n",
        "  nltk.download('punkt')\n",
        "\n",
        "  from nltk.tokenize import sent_tokenize\n",
        "\n",
        "\n",
        "  # Tokenisation des phrases\n",
        "  phrases = sent_tokenize(passage)\n",
        "\n",
        "  # Afficher la liste de phrases\n",
        "\n",
        "  return phrases\n",
        "\n",
        "print(separate())"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (3.8.1)\n",
            "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk) (8.1.7)\n",
            "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk) (1.4.2)\n",
            "Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.10/dist-packages (from nltk) (2024.5.15)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from nltk) (4.66.4)\n",
            "['Bonjour!', 'Comment ça va?', \"J'espère que vous allez bien \\n Passez une bonne journée.\"]\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "[nltk_data] Downloading package punkt to /root/nltk_data...\n",
            "[nltk_data]   Package punkt is already up-to-date!\n"
          ]
        }
      ],
      "metadata": {
        "id": "Wa7EgaiqpUPV",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "80160f8d-2530-4889-9c8e-f6da32ad1450"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "Creer un fonction permettant d'implémenter cette formule:\n",
        "\n",
        "![image.png]()\n",
        "\n",
        "où Snli(i) correspond au score moyen de cohérence entre la i-ème phrase de la génération initiale et chaque échantillon. Sn correspond à la n-ème génération de l'échantillon et ri correspond à la i-ème phrase de la génération initiale. Enfin, P(contradict|ri,Sn) corrrespond à la probabilité que la phrase ri contredise la génération Sn. Cette probabilité est donnée par le model de classifications DeBerta importer juste au dessus.\n"
      ],
      "metadata": {
        "id": "IKfxOeTUzWnH"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 13,
      "source": [
        "def compute_score_phrase(sentence, samples):\n",
        "  import numpy as np\n",
        "  L = np.array([])\n",
        "  import torch\n",
        "  from transformers import AutoTokenizer, AutoModelForSequenceClassification\n",
        "  import torch.nn.functional as F\n",
        "\n",
        "  # Charger le modèle et le tokenizer DeBERTa\n",
        "  model_name = \"microsoft/deberta-v3-large\"\n",
        "  tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
        "  model = AutoModelForSequenceClassification.from_pretrained(model_name)\n",
        "\n",
        "  # Fonctions pour calculer la probabilité de contradiction\n",
        "  def get_contradiction_probability(ri, Sn):\n",
        "      inputs = tokenizer(ri, Sn, return_tensors=\"pt\", truncation=True, padding=True)\n",
        "      with torch.no_grad():\n",
        "          outputs = model(**inputs)\n",
        "      logits = outputs.logits\n",
        "      probs = F.softmax(logits, dim=-1)\n",
        "      contradiction_prob = probs[0][2].item()  # La classe \"contradiction\" est souvent la troisième classe (index 2)\n",
        "      return contradiction_prob\n",
        "  for sample in samples:\n",
        "      L.append(get_contradiction_probability(sentence, sample))\n",
        "  scores_per_sentence = np.sum(L)/len(L)\n",
        "  return scores_per_sentence\n",
        "\n"
      ],
      "outputs": [],
      "metadata": {
        "id": "Yh-pbeJppRW9"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "Avec toute les fonctions définies précedemment implémenter une SelcheckNLI qui permet de calculer le score d'hallucination d'une génération. La fonction prendra en argumant la query de l'utilisateur, le passage genrer du llm et le nombre de sample. Tester la méthode avec des questions qui font halluciner le modèle et d'autres qui ne font pas halluciner le modèle. Voici le genre de question qui peuvent faire halluciner un modèle:\n",
        "\n",
        "On choisira un nombre de sample égale à 5.\n",
        "Concluez sur l'efficacité de la méthode SelfCheckNLI pour la détection d'hallucination. Quelles sont les limites de cette méthode ?"
      ],
      "metadata": {
        "id": "iqO2jxOh1gqk"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "source": [
        "def selfchecknli(query,generation,nb_sample):\n",
        "  ###\n",
        "  return###"
      ],
      "outputs": [],
      "metadata": {
        "id": "Ob5OiJHVzwhr"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "Implémenter sur votre RAG une solution se basant sur SelcheckNLI pour pouvoir filtrer les hallucinations. Par exemple, lorsque une réponse à un score supérieur à un certains seuil le LLM devra avertir l'utilisateur qu'il n'est pas certains de sa réponse.\n"
      ],
      "metadata": {
        "id": "0ddIXuMG_JBE"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "#Bonus:\n",
        "\n",
        "\n",
        "1. Réalisez un dataset d'une vingtaine de questions comportant des questions qui font halluciner le LLM mistral et d'autres qui n'en font pas. Le dataset devra être équilibré\n",
        "2. Générez des réponses pour chaque questions avec le LLM Mistral-7B et annotez chaque passage d'un 1 pour une hallucination, d'un 0 pour un passage factuel.\n",
        "3. Pour chaque, passage attribuer un score d'hallucination avec SelfCheckNLI.\n",
        "4. Afficher une matrice de confusion.\n",
        "5. Tracer la courbe AUC PR. Concluez.\n",
        "6. Determiner un seuil optimale pour detecter les hallucination par la méthode de votre choix."
      ],
      "metadata": {
        "id": "16QZjrwv8kGp"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "source": [],
      "outputs": [],
      "metadata": {
        "id": "PPNc794S8jT5"
      }
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "gpuType": "T4",
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}