File size: 132,043 Bytes
2c94ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "9Q7bfiWrCOlC"
      },
      "source": [
        "# Information Retrieval 1/2"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "NyHQumN3x1vz"
      },
      "source": [
        "Dans cette session, nous allons explorer plusieurs méthodes d'Information Retrieval (IR). L'objectif est de comprendre les intérêts et limites de différentes méthodes.\n",
        "\n",
        "Ces méthodes permettent de sélectionner les passages de texte les plus pertinents à envoyer au modèle génératif. C'est donc une étape essentielle du développement d'un système de RAG, pour permettre de générer une réponse appropriée.\n",
        "\n",
        "Il faudra ensuite séléctionner les meilleures méthodes à intégrer à l'outil de RAG."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "eOd7SyyEk_d3"
      },
      "source": [
        "## Load text chunks"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "wTrsRT9kLYaq"
      },
      "outputs": [],
      "source": [
        "# Passages textuels test\n",
        "\n",
        "text_chunks = [\"\"\"New York is known to be the largest Italian-American population in North America and third largest Italian population outside of Italy, according to the 2000 census. See also Italians in New York City for more info.\"\"\",\n",
        "                \"\"\"Graziano is perhaps the best place in NYC to eat quality fresh pasta, or enjoy a Neapolitan-style pizza.\"\"\",\n",
        "                \"\"\"The Italian wolf is the national animal of Italy,[159] while the national tree is the strawberry tree.[160] The reasons for this are that the Italian wolf, which inhabits the Apennine Mountains and the Western Alps, features prominently in Latin and Italian cultures, such as the legend of the founding of Rome,[161] while the green leaves, white flowers and red berries of the strawberry tree, native to the Mediterranean, recall the colours of the flag.[160]\"\"\",\n",
        "                \"\"\"Italian cuisine has a great variety of different ingredients which are commonly used, ranging from fruits and vegetables to grains to cheeses, meats, and fish. In northern Italy, fish (such as cod, or baccalà), potatoes, rice, corn (maize), sausages, pork, and different types of cheese are the most common ingredients.\"\"\",\n",
        "                \"\"\"A strange italian restaurant. After a long day at work in his New York City office, he wanted to enjoy delicious italian food at the newly opened La Casa di Pasta. But it was actually a nursery, specializing in Italian-themed plants and decorations, with no food in sight. No italian food today, left feeling hungry and deceived, wishing the beautiful garden center had actually been the restaurant of his dreams.\"\"\",\n",
        "               \"\"\"New York City : A brand new italian restaurant, Italian #1, just opened in little Italy.\"\"\"\n",
        "                ]\n",
        "\n",
        "query = \"Do you know any italian restaurant in New York?\""
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Ml-4V_W7zsY3"
      },
      "source": [
        "## Utilisation d'embeddings\n",
        "\n",
        "Une méthode d'IR classique consiste à calculer une représentation vectorielle (embedding) de chaque passage et de la question requête.\n",
        "\n",
        "Les passages sont donc classés en fonction d'un score de similarité entre leur représentation et celle de la requête."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "KAzLiQzf3Jf6",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "c29a1a2c-cebf-4f33-d973-54fa97ad511f"
      },
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "[{'text': 'New York is known to be the largest Italian-American population in North America and third largest Italian population outside of Italy, according to the 2000 census. See also Italians in New York City for more info.'},\n",
              " {'text': 'Graziano is perhaps the best place in NYC to eat quality fresh pasta, or enjoy a Neapolitan-style pizza.'},\n",
              " {'text': 'The Italian wolf is the national animal of Italy,[159] while the national tree is the strawberry tree.[160] The reasons for this are that the Italian wolf, which inhabits the Apennine Mountains and the Western Alps, features prominently in Latin and Italian cultures, such as the legend of the founding of Rome,[161] while the green leaves, white flowers and red berries of the strawberry tree, native to the Mediterranean, recall the colours of the flag.[160]'},\n",
              " {'text': 'Italian cuisine has a great variety of different ingredients which are commonly used, ranging from fruits and vegetables to grains to cheeses, meats, and fish. In northern Italy, fish (such as cod, or baccalà), potatoes, rice, corn (maize), sausages, pork, and different types of cheese are the most common ingredients.'},\n",
              " {'text': 'A strange italian restaurant. After a long day at work in his New York City office, he wanted to enjoy delicious italian food at the newly opened La Casa di Pasta. But it was actually a nursery, specializing in Italian-themed plants and decorations, with no food in sight. No italian food today, left feeling hungry and deceived, wishing the beautiful garden center had actually been the restaurant of his dreams.'},\n",
              " {'text': 'New York City : A brand new italian restaurant, Italian #1, just opened in little Italy.'}]"
            ]
          },
          "metadata": {},
          "execution_count": 2
        }
      ],
      "source": [
        "# Liste des passages\n",
        "\n",
        "res_scores = [{'text':text_chunks[i]} for i in range(len(text_chunks))]\n",
        "\n",
        "res_scores"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_NvHyMeCEAvw"
      },
      "source": [
        "## Bag Of Words embeddings"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "CJXWrUFGkd-Q"
      },
      "source": [
        "### Questions\n",
        "\n",
        "\n",
        "\n",
        "\n",
        "*   Quel est le principe d'un modèle Bag Of Words (BOW)?"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "L-rvL4671Jrg"
      },
      "source": [
        "Réponse :étapes: Tokenisation : La première étape consiste à découper le texte en unités discrètes appelées \"tokens\", généralement des mots. Pendant cette étape, on retire souvent les symboles de ponctuation tels que les virgules, les points, etc.\n",
        "\n",
        "Liste de stop words : On crée une liste de mots courants, souvent appelés \"stop words\" ou mots vides (comme \"le\", \"la\", \"de\", \"à\", \"un\", \"une\", etc.), qui sont peu informatifs et n'apportent pas de valeur à la représentation du texte. Ces mots sont ensuite retirés des tokens.\n",
        "\n",
        "Lemmatisation : Cette étape consiste à ramener chaque mot à sa forme canonique ou de base, en tenant compte de sa morphologie. Par exemple, \"restaurants\" et \"restaurant\" deviendraient tous deux \"restaurant\". Cela permet de réduire la diversité des tokens et de mieux représenter le sens du texte.\n",
        "\n",
        "Modèle Bag of Words (BoW) : Une fois que le texte a été tokenisé, nettoyé des mots vides et lemmatisé, on peut représenter chaque document sous la forme d'un vecteur où chaque dimension correspond à un mot unique du vocabulaire et la valeur de chaque dimension représente la fréquence du mot dans le document. Ce modèle BoW permet de représenter le texte de manière quantitative, mais sans tenir compte de l'ordre des mots."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "YoMRrJ-RJrFJ"
      },
      "source": [
        "### Text preprocessing"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 27,
      "metadata": {
        "id": "Y72RLjxfJs6F"
      },
      "outputs": [],
      "source": [
        "# Fonction pour appliquer un traitement sur le texte\n",
        "# Facultatif\n",
        "stop_list = [\n",
        "    \"a\", \"about\", \"above\", \"after\", \"again\", \"against\", \"all\", \"am\", \"an\", \"and\", \"any\", \"are\", \"aren't\", \"as\", \"at\",\n",
        "    \"be\", \"because\", \"been\", \"before\", \"being\", \"below\", \"between\", \"both\", \"but\", \"by\", \"can't\", \"cannot\", \"could\",\n",
        "    \"couldn't\", \"did\", \"didn't\", \"do\", \"does\", \"doesn't\", \"doing\", \"don't\", \"down\", \"during\", \"each\", \"few\", \"for\",\n",
        "    \"from\", \"further\", \"had\", \"hadn't\", \"has\", \"hasn't\", \"have\", \"haven't\", \"having\", \"he\", \"he'd\", \"he'll\", \"he's\",\n",
        "    \"her\", \"here\", \"here's\", \"hers\", \"herself\", \"him\", \"himself\", \"his\", \"how\", \"how's\", \"i\", \"i'd\", \"i'll\", \"i'm\",\n",
        "    \"i've\", \"if\", \"in\", \"into\", \"is\", \"isn't\", \"it\", \"it's\", \"its\", \"itself\", \"let's\", \"me\", \"more\", \"most\",\n",
        "    \"mustn't\", \"my\", \"myself\", \"no\", \"nor\", \"not\", \"of\", \"off\", \"on\", \"once\", \"only\", \"or\", \"other\", \"ought\", \"our\",\n",
        "    \"ours\", \"ourselves\", \"out\", \"over\", \"own\", \"same\", \"shan't\", \"she\", \"she'd\", \"she'll\", \"she's\", \"should\",\n",
        "    \"shouldn't\", \"so\", \"some\", \"such\", \"than\", \"that\", \"that's\", \"the\", \"their\", \"theirs\", \"them\", \"themselves\",\n",
        "    \"then\", \"there\", \"there's\", \"these\", \"they\", \"they'd\", \"they'll\", \"they're\", \"they've\", \"this\", \"those\", \"through\",\n",
        "    \"to\", \"too\", \"under\", \"until\", \"up\", \"very\", \"was\", \"wasn't\", \"we\", \"we'd\", \"we'll\", \"we're\", \"we've\", \"were\",\n",
        "    \"weren't\", \"what\", \"what's\", \"when\", \"when's\", \"where\", \"where's\", \"which\", \"while\", \"who\", \"who's\", \"whom\", \"why\",\n",
        "    \"why's\", \"with\", \"won't\", \"would\", \"wouldn't\", \"you\", \"you'd\", \"you'll\", \"you're\", \"you've\", \"your\", \"yours\",\n",
        "    \"yourself\", \"yourselves\"\n",
        "]\n",
        "\n",
        "def preprocess_text(input_text):\n",
        "  output_text = input_text.lower()\n",
        "  output_text_mots_non_vides = [x for x in output_text if x not in stop_list]\n",
        "  return output_text"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4MgSuMu7d8Eh"
      },
      "source": [
        "### TF\n",
        "\n",
        "Une première méthode consiste à calculer la fréquence de chaque mot dans les passages. On s'appuie aussi sur un vocabulaire, qui peut classiquement être composé de tous les mots des passages.\n",
        "\n",
        "Un passage est alors représenté par un vecteur de la taille du vocabulaire, où la ième valeur compte le nombre d'occurence du ième mot du vocabulaire dans le passage."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2rg3HbNd4YRu"
      },
      "source": [
        "On peut par exemple utiliser l'objet CountVectorizer de la bibliothèque scikit-learn: https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html\n",
        "\n",
        "Cet objet peut déjà inclure un certain nombre de prétraitements, examinez la documentation pour déterminer l'utilisation optimale."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 28,
      "metadata": {
        "id": "LMWsX-sMeAn1"
      },
      "outputs": [],
      "source": [
        "from sklearn.feature_extraction.text import CountVectorizer\n",
        "\n",
        "# Charge un modèle de TF\n",
        "counter = CountVectorizer()\n",
        "\n",
        "# Fit le modèle et calcule les embeddings des passages\n",
        "text_embeddings = counter.fit_transform(text_chunks)\n",
        "\n",
        "# Calcule l'embedding de la query avec le même modèle\n",
        "query_embedding = counter.transform([query])"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 29,
      "metadata": {
        "id": "9eErTkAwkI10"
      },
      "outputs": [],
      "source": [
        "# Calcul des scores\n",
        "\n",
        "tf_scores = text_embeddings.dot(query_embedding.toarray().flatten())\n",
        "for i in range(len(tf_scores)):\n",
        "  res_scores[i]['tf_score'] = tf_scores[i]"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 30,
      "metadata": {
        "id": "DIHvk_SD5EPX",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "1bfa52fd-d901-41b9-df1c-bfc3bfd218cd"
      },
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "[{'text': 'A strange italian restaurant. After a long day at work in his New York City office, he wanted to enjoy delicious italian food at the newly opened La Casa di Pasta. But it was actually a nursery, specializing in Italian-themed plants and decorations, with no food in sight. No italian food today, left feeling hungry and deceived, wishing the beautiful garden center had actually been the restaurant of his dreams.',\n",
              "  'tf_score': 11},\n",
              " {'text': 'New York is known to be the largest Italian-American population in North America and third largest Italian population outside of Italy, according to the 2000 census. See also Italians in New York City for more info.',\n",
              "  'tf_score': 8},\n",
              " {'text': 'New York City : A brand new italian restaurant, Italian #1, just opened in little Italy.',\n",
              "  'tf_score': 7},\n",
              " {'text': 'The Italian wolf is the national animal of Italy,[159] while the national tree is the strawberry tree.[160] The reasons for this are that the Italian wolf, which inhabits the Apennine Mountains and the Western Alps, features prominently in Latin and Italian cultures, such as the legend of the founding of Rome,[161] while the green leaves, white flowers and red berries of the strawberry tree, native to the Mediterranean, recall the colours of the flag.[160]',\n",
              "  'tf_score': 4},\n",
              " {'text': 'Italian cuisine has a great variety of different ingredients which are commonly used, ranging from fruits and vegetables to grains to cheeses, meats, and fish. In northern Italy, fish (such as cod, or baccalà), potatoes, rice, corn (maize), sausages, pork, and different types of cheese are the most common ingredients.',\n",
              "  'tf_score': 2},\n",
              " {'text': 'Graziano is perhaps the best place in NYC to eat quality fresh pasta, or enjoy a Neapolitan-style pizza.',\n",
              "  'tf_score': 1}]"
            ]
          },
          "metadata": {},
          "execution_count": 30
        }
      ],
      "source": [
        "# Classe les passages selon le score TF\n",
        "\n",
        "sorted(res_scores,key=lambda x: x['tf_score'],reverse=True)[:10]"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "yeg3h4y4C9fh"
      },
      "source": [
        "### TFIDF"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 31,
      "metadata": {
        "id": "Jj3L897FDfPX",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "0f2eb8c5-6d34-432d-c9c3-b3b0ccdba46d"
      },
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "[{'text': 'New York City : A brand new italian restaurant, Italian #1, just opened in little Italy.',\n",
              "  'tf_score': 7,\n",
              "  'tfidf_score': 0.6596132444296052},\n",
              " {'text': 'New York is known to be the largest Italian-American population in North America and third largest Italian population outside of Italy, according to the 2000 census. See also Italians in New York City for more info.',\n",
              "  'tf_score': 8,\n",
              "  'tfidf_score': 0.3391215040769731},\n",
              " {'text': 'A strange italian restaurant. After a long day at work in his New York City office, he wanted to enjoy delicious italian food at the newly opened La Casa di Pasta. But it was actually a nursery, specializing in Italian-themed plants and decorations, with no food in sight. No italian food today, left feeling hungry and deceived, wishing the beautiful garden center had actually been the restaurant of his dreams.',\n",
              "  'tf_score': 11,\n",
              "  'tfidf_score': 0.31190627679577376},\n",
              " {'text': 'The Italian wolf is the national animal of Italy,[159] while the national tree is the strawberry tree.[160] The reasons for this are that the Italian wolf, which inhabits the Apennine Mountains and the Western Alps, features prominently in Latin and Italian cultures, such as the legend of the founding of Rome,[161] while the green leaves, white flowers and red berries of the strawberry tree, native to the Mediterranean, recall the colours of the flag.[160]',\n",
              "  'tf_score': 4,\n",
              "  'tfidf_score': 0.05807151127872147},\n",
              " {'text': 'Italian cuisine has a great variety of different ingredients which are commonly used, ranging from fruits and vegetables to grains to cheeses, meats, and fish. In northern Italy, fish (such as cod, or baccalà), potatoes, rice, corn (maize), sausages, pork, and different types of cheese are the most common ingredients.',\n",
              "  'tf_score': 2,\n",
              "  'tfidf_score': 0.044911080167450754},\n",
              " {'text': 'Graziano is perhaps the best place in NYC to eat quality fresh pasta, or enjoy a Neapolitan-style pizza.',\n",
              "  'tf_score': 1,\n",
              "  'tfidf_score': 0.03614195226331344}]"
            ]
          },
          "metadata": {},
          "execution_count": 31
        }
      ],
      "source": [
        "# TODO : Calculer les embeddings avec la méthode TF-IDF*\n",
        "from sklearn.feature_extraction.text import TfidfVectorizer\n",
        "\n",
        "\n",
        "\n",
        "# Initialisation du TfidfVectorizer\n",
        "tfidf_vectorizer = TfidfVectorizer()\n",
        "\n",
        "# Fit le modèle et calcule les embeddings TF-IDF des passages\n",
        "text_tfidf = tfidf_vectorizer.fit_transform(text_chunks)\n",
        "\n",
        "# Calcule l'embedding TF-IDF de la requête avec le même modèle\n",
        "query_tfidf = tfidf_vectorizer.transform([query])\n",
        "\n",
        "# Calcul des scores TF-IDF\n",
        "tfidf_scores = text_tfidf.dot(query_tfidf.T).toarray().flatten()\n",
        "\n",
        "# Affichage des résultats\n",
        "\n",
        "for i in range(len(tfidf_scores)):\n",
        "  res_scores[i]['tfidf_score'] = tfidf_scores[i]\n",
        "sorted(res_scores,key=lambda x: x['tfidf_score'],reverse=True)[:10]"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 32,
      "metadata": {
        "id": "IC1ADhFWSnlq"
      },
      "outputs": [],
      "source": [
        "# TODO : Calcule les scores TF-IDF"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 33,
      "metadata": {
        "id": "JCwxNmWydT14"
      },
      "outputs": [],
      "source": [
        "# TODO : Trier les phrases selon les scores TF-IDF et les afficher"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "mrd3c73eK8Bd"
      },
      "source": [
        "## Questions\n",
        "\n",
        "\n",
        "\n",
        "*   Quel est l'intérêt du modèle TF-IDF par rapport au calcul TF?\n",
        "*   Quelles sont les limites fondamentales d'un modèle BOW\n",
        "*   (Facultatif) Qu'est ce que la méthode BM25 et quel ajout propose-t-elle par rapport à une TF-IDF?\n",
        "\n",
        "\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "dzcFQZRQLhQQ"
      },
      "source": [
        "Réponses : TODO"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7ae7tfkhDv3L"
      },
      "source": [
        "## Dense Embedding"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "DnoHjzG96dRy"
      },
      "source": [
        "Des modèles plus complexes permettent de créer des embeddings plus efficaces. Beaucoup de modèles existent, et différents leaderboards permettent de les comparer. Par exemple, le leaderboard MTEB de HuggingFace liste de nombreux modèles (https://huggingface.co/spaces/mteb/leaderboard).\n",
        "L'utilisation est ensuite similaire aux modèles BOW étudiés dans la partie précédente."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "vFVYpCDZEh_l"
      },
      "source": [
        "### Embedding from HuggingFace"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "dIS40gsd1-D3"
      },
      "source": [
        "## Questions\n",
        "\n",
        "*   En observant le leaderboard d'huggingface pour les modèles d'embedding (https://huggingface.co/spaces/mteb/leaderboard), quelles sont les modèles qui semblent les plus pertinents?\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "N1z_Y3K_3gWW"
      },
      "source": [
        "*   Nous proposons par exemple d'utiliser le modèle *mxbai-embed-large-v1*. Quels sont les avantages de ce modèle?"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7eqOkw33-k2q"
      },
      "source": [
        "Réponses : TODO"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "SyBpgmJIZlAk",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "419c7a08-40a7-4e54-d72d-0fe6b488f02c"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting sentence-transformers\n",
            "  Downloading sentence_transformers-3.0.0-py3-none-any.whl (224 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m224.7/224.7 kB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: transformers<5.0.0,>=4.34.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (4.41.1)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (4.66.4)\n",
            "Requirement already satisfied: torch>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (2.3.0+cu121)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.25.2)\n",
            "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.2.2)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.11.4)\n",
            "Requirement already satisfied: huggingface-hub>=0.15.1 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.23.1)\n",
            "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (9.4.0)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.15.1->sentence-transformers) (3.14.0)\n",
            "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.15.1->sentence-transformers) (2023.6.0)\n",
            "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.15.1->sentence-transformers) (24.0)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.15.1->sentence-transformers) (6.0.1)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.15.1->sentence-transformers) (2.31.0)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.15.1->sentence-transformers) (4.11.0)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (1.12)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (3.3)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (3.1.4)\n",
            "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch>=1.11.0->sentence-transformers)\n",
            "  Using cached nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n",
            "Collecting nvidia-cuda-runtime-cu12==12.1.105 (from torch>=1.11.0->sentence-transformers)\n",
            "  Using cached nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n",
            "Collecting nvidia-cuda-cupti-cu12==12.1.105 (from torch>=1.11.0->sentence-transformers)\n",
            "  Using cached nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n",
            "Collecting nvidia-cudnn-cu12==8.9.2.26 (from torch>=1.11.0->sentence-transformers)\n",
            "  Using cached nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n",
            "Collecting nvidia-cublas-cu12==12.1.3.1 (from torch>=1.11.0->sentence-transformers)\n",
            "  Using cached nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n",
            "Collecting nvidia-cufft-cu12==11.0.2.54 (from torch>=1.11.0->sentence-transformers)\n",
            "  Using cached nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n",
            "Collecting nvidia-curand-cu12==10.3.2.106 (from torch>=1.11.0->sentence-transformers)\n",
            "  Using cached nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n",
            "Collecting nvidia-cusolver-cu12==11.4.5.107 (from torch>=1.11.0->sentence-transformers)\n",
            "  Using cached nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n",
            "Collecting nvidia-cusparse-cu12==12.1.0.106 (from torch>=1.11.0->sentence-transformers)\n",
            "  Using cached nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n",
            "Collecting nvidia-nccl-cu12==2.20.5 (from torch>=1.11.0->sentence-transformers)\n",
            "  Using cached nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl (176.2 MB)\n",
            "Collecting nvidia-nvtx-cu12==12.1.105 (from torch>=1.11.0->sentence-transformers)\n",
            "  Using cached nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n",
            "Requirement already satisfied: triton==2.3.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (2.3.0)\n",
            "Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.11.0->sentence-transformers)\n",
            "  Downloading nvidia_nvjitlink_cu12-12.5.40-py3-none-manylinux2014_x86_64.whl (21.3 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.3/21.3 MB\u001b[0m \u001b[31m55.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.34.0->sentence-transformers) (2024.5.15)\n",
            "Requirement already satisfied: tokenizers<0.20,>=0.19 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.34.0->sentence-transformers) (0.19.1)\n",
            "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.34.0->sentence-transformers) (0.4.3)\n",
            "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence-transformers) (1.4.2)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence-transformers) (3.5.0)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.11.0->sentence-transformers) (2.1.5)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.15.1->sentence-transformers) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.15.1->sentence-transformers) (3.7)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.15.1->sentence-transformers) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.15.1->sentence-transformers) (2024.2.2)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.11.0->sentence-transformers) (1.3.0)\n",
            "Installing collected packages: nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, sentence-transformers\n",
            "Successfully installed nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.20.5 nvidia-nvjitlink-cu12-12.5.40 nvidia-nvtx-cu12-12.1.105 sentence-transformers-3.0.0\n"
          ]
        }
      ],
      "source": [
        "!pip install sentence-transformers"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "a1jJVVacEkDJ",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "ecc24f18-35cf-4708-87a3-edf5c80e5ca4"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
            "  warnings.warn(\n",
            "100%|██████████| 6/6 [00:00<00:00, 20.39it/s]"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Embedding pour le passage 1 : tensor([ 7.8554e-02, -9.1845e-02, -2.5044e-02,  3.3898e-03, -6.9699e-02,\n",
            "        -1.1911e-02,  1.2288e-02, -6.2494e-02, -7.4334e-02, -6.3576e-02,\n",
            "         1.5626e-02, -1.9014e-02, -8.5360e-02,  8.1160e-02, -4.9646e-02,\n",
            "         3.3193e-02,  6.7982e-02,  1.5246e-02,  2.6009e-02,  3.6935e-02,\n",
            "         3.5115e-02, -8.4400e-02,  7.6163e-02,  9.8520e-02,  7.1409e-02,\n",
            "         7.1882e-03,  2.4913e-02,  2.7636e-02, -4.4235e-02,  5.5478e-03,\n",
            "        -6.0270e-02,  6.4816e-02,  7.6343e-02, -1.6064e-03,  3.3594e-02,\n",
            "        -1.9167e-02, -5.6869e-03,  1.6428e-02,  1.1081e-01,  3.0927e-02,\n",
            "        -1.0832e-02,  5.5393e-02,  7.4170e-02,  4.7307e-02,  5.2135e-02,\n",
            "         4.7801e-02, -4.3625e-02,  1.1081e-01,  1.4268e-02,  5.4280e-03,\n",
            "        -4.3228e-02,  3.6737e-02,  2.8978e-02,  5.1619e-02,  1.1578e-03,\n",
            "         6.8749e-04,  9.5054e-02, -7.2324e-02, -7.3231e-02,  2.8735e-02,\n",
            "        -2.9615e-02, -1.7821e-02,  4.4981e-02,  3.8142e-02, -3.8848e-02,\n",
            "         6.5745e-02, -7.9356e-02, -2.6437e-02, -1.1584e-01, -5.2655e-02,\n",
            "         4.6417e-02, -8.0736e-03,  7.6144e-04,  3.9354e-02,  4.0309e-02,\n",
            "        -4.6892e-02, -4.3446e-02,  4.9096e-02, -6.2651e-02,  3.9723e-02,\n",
            "         1.1784e-01,  1.4747e-02,  8.0879e-03,  2.7039e-02,  3.0429e-02,\n",
            "         1.1685e-02, -5.6608e-02,  3.0543e-02, -1.3137e-02, -1.4276e-02,\n",
            "        -6.4017e-02,  1.1615e-01, -5.9759e-02, -8.5979e-03,  7.2090e-02,\n",
            "        -5.5263e-02, -1.7394e-02,  3.5712e-02, -7.3354e-02, -4.0635e-03,\n",
            "         5.8306e-02, -3.3711e-02,  5.5231e-02,  4.9521e-02, -4.1509e-02,\n",
            "        -7.3615e-03,  1.4775e-02, -1.1540e-02,  3.2974e-04,  6.5801e-03,\n",
            "         9.9709e-03,  1.9235e-02, -8.6077e-02,  2.1120e-02,  2.7036e-02,\n",
            "        -4.2531e-02,  8.0609e-02,  9.8597e-02,  2.0006e-02, -4.8941e-02,\n",
            "        -4.2934e-03,  4.3861e-02, -6.3613e-02, -3.7932e-02,  4.7352e-03,\n",
            "         7.4292e-02, -4.7167e-02, -5.8934e-34, -4.3131e-02, -2.1313e-02,\n",
            "         1.8716e-02,  4.8793e-02, -1.9859e-02,  5.2577e-02,  3.4625e-02,\n",
            "        -2.8587e-02, -2.8275e-02, -8.4500e-02, -7.0510e-03, -6.2395e-02,\n",
            "         1.3363e-02,  4.8003e-02,  9.5780e-03,  4.1560e-02,  1.2382e-02,\n",
            "         2.5579e-02, -4.7114e-02, -7.0503e-02,  3.5098e-02, -2.5818e-03,\n",
            "         4.1650e-02, -2.0064e-02, -1.3925e-01, -3.3124e-02, -3.0400e-02,\n",
            "        -1.2852e-02, -8.5447e-02, -5.0920e-02, -8.7080e-03,  4.1869e-02,\n",
            "        -7.1471e-04, -8.1709e-03,  3.8968e-02, -1.6979e-02, -1.0335e-02,\n",
            "        -4.9354e-02,  3.5882e-02,  9.5531e-02, -3.3302e-02,  8.5192e-02,\n",
            "        -4.5333e-03, -2.1141e-02,  3.3757e-02, -2.2259e-02, -1.2809e-02,\n",
            "         7.5156e-02,  1.8211e-02, -5.3847e-02,  1.8590e-02, -8.2863e-03,\n",
            "        -4.3103e-02,  1.3173e-02,  5.1734e-02,  6.6492e-02,  4.5306e-02,\n",
            "         6.2919e-02,  3.3391e-02,  3.6391e-04, -9.3146e-02, -1.3954e-02,\n",
            "         1.0783e-01,  1.9197e-02,  1.8054e-02,  5.8335e-02,  4.3915e-03,\n",
            "         4.1694e-02,  2.3647e-02,  9.7181e-02,  7.2213e-02, -5.2216e-02,\n",
            "         3.2730e-02,  1.2010e-01, -5.1648e-02,  1.2201e-02,  5.3056e-03,\n",
            "         1.8508e-02,  5.2824e-02, -8.5243e-02,  2.3786e-02, -1.1825e-02,\n",
            "         5.0052e-02,  4.2352e-02, -1.6363e-03,  5.0947e-02,  5.0896e-02,\n",
            "        -8.5379e-03,  3.4721e-02, -3.7639e-04,  2.3316e-02, -1.0574e-03,\n",
            "        -3.6383e-02, -2.6620e-02,  1.5419e-02, -7.9528e-34,  3.8947e-03,\n",
            "        -2.6875e-02,  9.5074e-03, -1.6140e-01, -1.0799e-01, -1.0211e-01,\n",
            "        -8.1871e-02,  5.7840e-03,  1.0295e-02,  2.8816e-03,  1.4818e-02,\n",
            "        -2.8473e-02,  1.3715e-01,  2.4884e-02, -2.3222e-02,  1.5152e-02,\n",
            "         3.5490e-02, -9.0616e-03,  6.7842e-03, -4.3473e-02,  2.5384e-02,\n",
            "        -9.7933e-02, -4.5108e-02, -2.8451e-02, -7.9317e-02, -5.7016e-02,\n",
            "        -7.5363e-02,  3.6555e-02, -1.7650e-02, -7.4338e-02, -1.7407e-02,\n",
            "        -8.3120e-03, -3.0959e-02, -6.2792e-02,  2.2883e-02,  7.7831e-02,\n",
            "        -2.4749e-02,  8.8809e-03,  6.2977e-02,  4.0460e-02, -9.4867e-02,\n",
            "        -2.8699e-02,  2.7790e-02, -8.0160e-04,  5.2376e-02, -5.4123e-03,\n",
            "        -1.8159e-02,  3.3137e-02, -1.0613e-01,  3.2852e-02, -2.2634e-02,\n",
            "        -3.2863e-02, -2.1742e-02,  2.4698e-02, -5.6776e-05, -1.8491e-02,\n",
            "        -2.7184e-02, -1.6062e-02, -7.2123e-02, -8.9065e-02,  1.0551e-02,\n",
            "         2.0090e-02, -2.8760e-02,  5.5162e-02, -5.0691e-02, -6.3571e-02,\n",
            "        -9.4241e-02,  1.2380e-02,  4.2903e-02,  2.9617e-02, -1.3864e-02,\n",
            "         3.6274e-02, -1.1993e-01,  1.3412e-02, -1.0081e-01,  2.2893e-02,\n",
            "        -3.4742e-02,  4.1536e-02,  8.2539e-02,  1.7838e-02,  8.8810e-02,\n",
            "        -1.5297e-02, -1.9158e-02,  8.1226e-02, -1.7575e-02,  2.0577e-04,\n",
            "         5.3961e-02, -1.5892e-02,  1.5849e-02, -1.9807e-03,  1.2915e-02,\n",
            "         3.8455e-02, -8.7086e-02, -1.0015e-01, -2.4882e-03, -2.7254e-08,\n",
            "         1.8646e-03, -1.4442e-02,  1.1144e-02,  3.0435e-02, -3.3512e-03,\n",
            "        -8.3747e-03, -2.8647e-02,  6.7560e-02,  6.4727e-02, -7.1143e-03,\n",
            "        -7.1862e-02, -2.6938e-02,  9.3917e-02, -6.4357e-02, -5.3881e-02,\n",
            "         4.7215e-04,  2.3268e-02, -5.7263e-02,  3.4182e-02, -3.4114e-02,\n",
            "         1.0276e-02,  2.7597e-02, -2.9871e-03, -4.3600e-03, -8.1333e-03,\n",
            "        -2.0103e-02,  3.0900e-02, -2.7181e-02, -9.6889e-02,  2.4322e-02,\n",
            "        -1.2611e-02, -1.0006e-01,  4.6142e-02, -6.3498e-02,  5.0805e-02,\n",
            "         5.1625e-02, -9.4049e-02, -6.2117e-02,  1.6990e-02, -1.6546e-01,\n",
            "        -1.1664e-02, -2.7736e-02,  2.3331e-02,  2.4659e-02,  6.7996e-03,\n",
            "        -9.6668e-02, -1.0363e-02, -6.6791e-02,  1.1872e-02,  3.9039e-02,\n",
            "        -2.9792e-02, -6.4788e-02,  7.2771e-02,  2.6675e-02,  4.2303e-02,\n",
            "         5.3866e-02, -3.0635e-02,  1.1547e-01,  5.8419e-02,  5.2742e-02,\n",
            "        -5.7565e-02,  3.8140e-03,  2.5691e-02,  1.4058e-02])\n",
            "Embedding pour le passage 2 : tensor([ 3.9906e-02, -4.7916e-02,  1.1023e-02,  6.3134e-02, -8.8344e-02,\n",
            "        -5.6383e-02, -9.6715e-03, -1.1994e-02, -7.9647e-03, -1.5178e-01,\n",
            "         5.0362e-02, -4.9747e-02, -9.3040e-02,  4.0558e-02,  3.2080e-02,\n",
            "        -2.4865e-02,  1.9640e-01,  2.5806e-02,  7.2223e-02,  1.9515e-02,\n",
            "        -7.4692e-02, -5.5682e-02, -5.1694e-03, -2.8067e-02,  1.0007e-02,\n",
            "         1.4241e-02,  4.0164e-02, -3.8262e-03, -3.3707e-02, -1.6905e-02,\n",
            "        -9.1134e-03, -1.5941e-02,  4.9743e-02, -4.3335e-02,  6.3689e-02,\n",
            "         9.0734e-02, -2.3026e-02, -1.2779e-02,  5.4575e-02,  4.1862e-02,\n",
            "        -3.8744e-03,  3.3259e-02,  6.6703e-02, -3.1181e-03,  2.9104e-02,\n",
            "        -1.0539e-02, -6.2355e-02,  5.7866e-02,  8.5876e-02,  5.6901e-03,\n",
            "        -1.1875e-01, -3.6988e-02,  3.5376e-02, -1.3121e-02,  8.8979e-05,\n",
            "        -1.7669e-03,  3.2344e-02, -1.8206e-02, -2.3826e-02,  1.3161e-02,\n",
            "         3.4815e-03, -6.6391e-02, -4.8905e-02, -5.4812e-03,  2.1855e-02,\n",
            "        -1.6498e-03, -5.1969e-02,  4.0388e-02, -4.0793e-02,  1.7369e-02,\n",
            "         2.6591e-02,  3.0572e-02,  4.6590e-02, -1.0195e-02, -5.6497e-02,\n",
            "         7.0512e-03,  3.9535e-03, -3.9227e-02, -4.6461e-02,  1.9073e-02,\n",
            "         2.9759e-02,  3.0088e-02, -4.7391e-02, -4.7160e-05,  4.9997e-02,\n",
            "         5.9071e-02, -4.6136e-02,  4.5699e-03,  4.4072e-02,  2.8651e-02,\n",
            "         2.6873e-02,  6.9251e-02, -6.4519e-02, -8.3361e-02, -6.6518e-02,\n",
            "         2.3878e-03,  2.5571e-03, -5.7731e-03, -5.1287e-02,  3.3258e-02,\n",
            "        -3.2203e-02, -1.7750e-02, -1.7643e-02, -2.2390e-03, -4.4169e-02,\n",
            "         1.4489e-02,  4.0841e-02,  5.7619e-03, -6.5257e-02,  7.9174e-02,\n",
            "        -2.5134e-02,  2.0165e-02, -4.4937e-02, -3.5790e-02, -3.4188e-02,\n",
            "         1.3834e-03,  6.1272e-02,  7.1118e-03, -9.5556e-03, -4.4077e-02,\n",
            "        -2.4960e-02,  4.5815e-02, -5.1142e-02, -3.4566e-02, -2.8508e-02,\n",
            "        -9.6858e-03, -1.4274e-02, -2.3908e-33, -1.6217e-02,  8.7264e-03,\n",
            "        -4.0313e-03,  3.6958e-02,  5.4023e-02,  1.0152e-02, -1.2379e-02,\n",
            "        -3.9649e-03, -2.4590e-02, -6.6281e-02,  2.1470e-02, -1.3355e-01,\n",
            "         1.3733e-02,  3.1031e-02,  3.3157e-03,  1.4677e-02,  6.5809e-02,\n",
            "        -2.0107e-02,  2.4503e-02,  3.3365e-03,  6.2639e-03, -2.6118e-02,\n",
            "         3.4319e-02, -8.8869e-03, -6.6729e-02, -1.0020e-02, -3.1439e-02,\n",
            "         1.5928e-02, -1.1749e-01, -4.6423e-03, -4.8815e-02,  3.0775e-02,\n",
            "        -6.3143e-02,  1.7304e-02,  8.1741e-02,  4.0655e-02, -5.5252e-02,\n",
            "         2.1432e-02, -3.8037e-02,  2.6136e-02, -6.7207e-02,  9.1060e-02,\n",
            "        -3.4430e-02, -3.4112e-02, -1.2244e-02,  6.5027e-03,  6.6816e-02,\n",
            "         8.9067e-02,  8.4314e-02, -8.0897e-02,  7.3830e-02,  5.0553e-03,\n",
            "        -3.9634e-02, -5.8021e-02, -4.2316e-02, -1.8986e-02,  6.4387e-02,\n",
            "         5.4276e-02,  4.9258e-02,  3.3710e-02,  3.7145e-02,  6.1861e-02,\n",
            "         2.6067e-02, -5.6383e-02,  6.3122e-03,  4.8205e-02, -4.2469e-02,\n",
            "        -9.8855e-03,  5.0252e-02,  3.6601e-02,  2.4117e-02,  3.4915e-02,\n",
            "         9.2976e-02,  9.8088e-02, -8.3363e-02,  1.0212e-02, -6.6677e-02,\n",
            "        -4.2772e-02,  1.2486e-01, -2.5266e-02,  7.7377e-02, -1.7368e-02,\n",
            "         5.5675e-02, -5.1694e-03, -8.0762e-03,  4.1689e-02,  3.7724e-02,\n",
            "         1.3538e-02,  3.7469e-03,  1.6311e-02, -7.4080e-03, -5.0679e-02,\n",
            "        -2.8604e-02, -4.0617e-02, -4.8143e-02,  3.5390e-34,  1.8462e-02,\n",
            "        -7.3828e-02, -5.6608e-03, -3.0291e-02, -1.1664e-01,  2.6295e-02,\n",
            "        -1.0625e-01, -3.0130e-02, -1.1419e-02,  2.3084e-02, -1.2365e-02,\n",
            "         3.1371e-02,  1.0969e-01,  9.0812e-03,  2.6307e-04,  1.0103e-01,\n",
            "        -4.3694e-02, -1.5968e-02, -1.5240e-02, -6.3535e-02,  5.3320e-02,\n",
            "         3.3016e-02, -3.6871e-02,  1.6779e-03, -7.5138e-02,  2.3241e-02,\n",
            "        -2.3522e-04,  7.9103e-02, -7.6793e-02,  4.0210e-02, -7.2135e-02,\n",
            "        -3.3262e-02, -2.5743e-02, -6.6880e-02,  8.0911e-02,  1.9160e-01,\n",
            "        -4.2077e-02, -1.4555e-02,  8.2858e-02,  9.3090e-02, -7.3361e-02,\n",
            "        -1.0950e-02,  4.1295e-02,  8.8467e-02,  1.7855e-02, -5.0319e-02,\n",
            "        -5.8890e-02, -6.7139e-03, -5.7689e-02, -3.0563e-02,  3.7434e-02,\n",
            "        -6.0577e-02, -6.8284e-02,  1.9044e-02,  2.8573e-03,  6.6870e-02,\n",
            "        -2.0118e-02,  9.2752e-03, -3.6848e-02, -1.0200e-01, -8.0865e-02,\n",
            "        -2.7959e-04, -6.4344e-02,  9.1008e-02,  2.9221e-02,  6.5025e-02,\n",
            "        -3.1740e-02, -8.4894e-02, -5.6116e-02,  6.1721e-02, -3.9609e-02,\n",
            "         7.7623e-02,  8.3354e-03,  2.9616e-02, -1.2226e-01, -6.2287e-02,\n",
            "         5.4934e-02,  3.2842e-02, -2.2975e-02,  5.0634e-02,  1.6041e-02,\n",
            "        -1.6473e-02, -3.3424e-02,  4.7757e-02,  5.8630e-02, -1.1246e-02,\n",
            "         4.8255e-03, -7.8713e-02, -1.6083e-02,  6.4606e-02,  2.9266e-02,\n",
            "         6.4443e-02, -2.5610e-02, -1.8270e-02,  1.1282e-01, -2.1527e-08,\n",
            "         5.5778e-02, -5.7296e-02, -4.9614e-02,  7.3795e-02, -1.5635e-02,\n",
            "        -9.5138e-02, -9.0609e-02, -9.7875e-02,  4.4117e-02,  6.4074e-02,\n",
            "        -4.6875e-02,  4.7346e-02, -3.3340e-02, -2.9355e-02, -6.9065e-02,\n",
            "         2.7758e-02,  6.8404e-02,  7.7475e-03, -2.1507e-02,  5.0656e-02,\n",
            "         5.5577e-02,  4.1164e-02, -3.4873e-03, -5.6706e-02,  2.1395e-02,\n",
            "        -6.5564e-02,  2.5667e-02,  4.9472e-03,  4.3809e-02, -1.5978e-02,\n",
            "        -2.8918e-03, -2.7393e-02,  5.7840e-02, -8.2452e-02,  4.8776e-02,\n",
            "         1.8757e-02, -5.1592e-02, -6.9306e-02, -1.8886e-02, -4.8290e-02,\n",
            "        -4.5704e-02, -4.0522e-02, -4.1013e-02,  5.3258e-03, -4.6326e-02,\n",
            "         4.1138e-03, -5.4290e-02, -4.7649e-02, -1.5532e-02,  7.5929e-02,\n",
            "        -1.8668e-02, -5.5450e-03,  1.1649e-01,  6.8096e-02,  4.1124e-02,\n",
            "         6.0621e-02, -5.0256e-02,  5.0835e-02, -4.7629e-05,  8.4369e-02,\n",
            "         1.5945e-02,  5.5403e-02,  1.5347e-02, -3.4151e-02])\n",
            "Embedding pour le passage 3 : tensor([-5.7242e-03,  3.6187e-02,  3.2094e-02,  9.7765e-02,  7.6914e-03,\n",
            "         1.4823e-02, -6.7923e-03, -1.5561e-02, -2.5799e-02, -4.1887e-03,\n",
            "         6.7181e-02, -5.9513e-02, -3.2662e-02,  7.5186e-02, -4.1202e-02,\n",
            "         3.6950e-02, -5.1354e-02,  3.8874e-02,  1.6977e-02,  5.2146e-02,\n",
            "         5.6583e-02, -4.6967e-02,  1.6110e-02,  5.4221e-02,  2.1988e-02,\n",
            "        -1.8944e-02, -2.3198e-02,  1.6409e-02,  1.4124e-03, -3.9575e-02,\n",
            "        -4.9450e-03,  6.3140e-02,  6.5092e-02, -3.4381e-03, -1.3599e-02,\n",
            "        -7.0660e-02,  9.7870e-02, -1.2558e-01,  1.2524e-01,  2.4117e-02,\n",
            "        -3.9696e-02,  3.3450e-02,  9.3876e-02,  8.0641e-02, -1.2255e-02,\n",
            "         6.5329e-02, -2.8534e-02,  7.3841e-02, -7.4604e-03,  1.5472e-04,\n",
            "         2.7484e-02, -2.0165e-02,  4.5350e-02, -5.8964e-02, -7.5552e-02,\n",
            "         4.4652e-02,  8.0762e-02, -4.0302e-02,  5.0227e-02,  3.6898e-02,\n",
            "         3.8888e-02,  2.0864e-02,  2.9776e-02,  7.5372e-02, -1.7071e-02,\n",
            "         7.0312e-03, -1.1717e-01, -6.7776e-02, -7.1781e-02, -1.0595e-01,\n",
            "         5.3252e-03, -7.9669e-02,  7.3797e-03, -3.2474e-02, -2.8781e-02,\n",
            "         1.2563e-02,  3.1492e-02,  5.6544e-02, -7.9703e-02,  7.5850e-03,\n",
            "         7.7609e-03,  7.7086e-02, -2.0306e-02,  8.0278e-03,  6.0992e-02,\n",
            "         4.6715e-02, -3.1886e-02,  5.8543e-02, -7.5835e-02,  2.6706e-02,\n",
            "        -1.4667e-02, -1.9558e-02,  8.7206e-04, -6.1717e-04, -4.9069e-03,\n",
            "         8.7150e-03, -4.7680e-03,  6.6340e-02, -2.3398e-02,  4.4314e-03,\n",
            "         2.5695e-02, -3.2804e-02,  4.0719e-02,  3.1751e-03, -3.8762e-02,\n",
            "        -1.2658e-03, -4.2394e-02, -1.1361e-02, -2.9821e-03,  1.5204e-02,\n",
            "        -1.2215e-02, -1.3215e-02, -6.5653e-02,  5.4297e-02, -1.3342e-03,\n",
            "         4.7397e-02,  2.0468e-02, -2.1417e-02,  1.3358e-02,  2.5186e-02,\n",
            "         1.8436e-02,  4.4142e-02, -1.3723e-02, -3.2192e-03,  7.8686e-02,\n",
            "         1.4575e-02, -3.7419e-02, -2.9911e-33, -8.6239e-03,  9.8985e-03,\n",
            "        -5.5670e-02, -9.2061e-02,  5.0765e-02,  4.8159e-02, -1.1563e-02,\n",
            "        -3.4018e-02, -2.3399e-02, -3.3827e-02, -1.1260e-01, -6.7863e-04,\n",
            "         1.3962e-02, -3.7828e-02,  8.1274e-04,  3.2789e-02, -1.7247e-03,\n",
            "        -2.8815e-02,  2.6430e-02, -4.0026e-03,  9.4902e-03,  3.1986e-02,\n",
            "         3.6978e-02, -3.7722e-02, -3.4617e-02,  9.3954e-03,  9.7701e-03,\n",
            "         9.5080e-03, -2.5166e-02, -3.1942e-02,  5.9101e-02, -6.5769e-02,\n",
            "         8.3905e-03,  9.6685e-03,  1.3134e-02, -3.1956e-02, -4.0284e-02,\n",
            "        -9.9268e-02, -2.3020e-02,  9.3808e-02, -2.5328e-03,  1.0054e-01,\n",
            "         5.1929e-03,  5.2853e-02,  4.3329e-02, -3.0635e-03, -5.2061e-02,\n",
            "         7.9646e-03, -2.3668e-02, -9.7950e-02, -4.3063e-02,  4.6139e-02,\n",
            "         7.0348e-02,  3.5321e-02,  2.3822e-02,  2.7299e-02,  1.0014e-01,\n",
            "         5.2935e-02, -7.8262e-02, -5.4413e-03,  1.0435e-01,  3.2950e-02,\n",
            "         6.1024e-02,  1.5876e-03,  5.3966e-02,  1.5065e-01,  1.3333e-02,\n",
            "         5.3097e-02,  3.4772e-02, -2.2018e-02,  4.9201e-02, -2.6983e-02,\n",
            "         3.4051e-02, -1.3974e-02, -5.4186e-02,  7.8385e-03,  3.6472e-02,\n",
            "        -3.9487e-02, -4.6642e-02, -7.0293e-02, -8.0897e-02, -1.1154e-02,\n",
            "        -1.7186e-02,  1.2013e-03,  7.7604e-04,  1.0913e-02, -9.4486e-03,\n",
            "         2.1556e-02,  2.8589e-02, -6.1847e-02, -1.1401e-02, -5.1528e-02,\n",
            "        -6.0756e-02, -9.2009e-02,  4.2556e-02,  3.0759e-33, -1.0008e-02,\n",
            "         1.4412e-02,  1.3870e-01, -4.6941e-02, -6.6099e-02, -3.4180e-02,\n",
            "        -1.1446e-01, -6.9422e-02, -5.4555e-02,  4.8321e-02,  2.4810e-04,\n",
            "         7.4339e-03, -8.4557e-03,  2.5093e-02,  2.7559e-02,  7.9174e-02,\n",
            "         2.8879e-02,  7.7168e-02, -8.3611e-03, -4.1301e-02, -1.0831e-01,\n",
            "         4.4149e-02, -1.2426e-01, -3.3258e-02, -6.7455e-02,  2.0260e-02,\n",
            "        -3.7966e-03, -4.6345e-02,  6.5046e-02, -1.3730e-01, -1.0143e-02,\n",
            "        -2.0239e-02, -5.8854e-03, -1.1281e-01,  1.0846e-01,  6.3185e-02,\n",
            "        -3.7347e-02, -5.2984e-02,  1.0165e-01,  1.0250e-01, -4.4612e-02,\n",
            "        -1.2832e-02, -6.2586e-03,  5.7032e-03,  2.8550e-03, -6.8839e-03,\n",
            "        -1.0509e-01,  2.3397e-02, -7.4870e-02,  8.4985e-02,  1.4733e-02,\n",
            "        -1.1102e-03,  5.0291e-02, -2.7110e-02, -2.6560e-02, -5.6089e-02,\n",
            "         2.7660e-03,  5.8889e-02, -1.2761e-04, -3.4649e-02,  1.7306e-02,\n",
            "        -2.0105e-02, -7.3095e-02,  2.3197e-02, -6.5913e-02, -3.8597e-02,\n",
            "        -1.3362e-01,  6.4730e-02,  1.7471e-03,  7.5503e-03, -2.2273e-02,\n",
            "         1.4732e-02, -8.2307e-02,  5.8097e-02, -2.7688e-02,  6.9333e-02,\n",
            "         2.7373e-02, -1.3810e-02,  6.8958e-02,  3.4370e-03, -6.0377e-02,\n",
            "        -6.3328e-02, -2.8600e-02,  9.7771e-02,  6.7293e-02, -6.7340e-02,\n",
            "        -2.2617e-02,  3.1532e-02,  6.7160e-02,  1.9541e-03,  1.6245e-02,\n",
            "         7.0774e-02,  5.9661e-03, -1.9809e-02,  5.4763e-02, -3.8073e-08,\n",
            "        -1.8340e-02, -3.6144e-02,  1.1910e-02,  7.7473e-02,  4.9589e-02,\n",
            "         5.3685e-03, -2.0329e-02, -4.3216e-02, -3.6728e-02,  5.6759e-02,\n",
            "        -9.0429e-02,  1.0025e-02, -6.4550e-02, -3.7794e-02,  1.6304e-02,\n",
            "         4.5657e-02, -1.1425e-02,  1.4371e-02,  8.0854e-02,  1.8212e-01,\n",
            "         1.1470e-02, -1.5437e-02, -7.1883e-02, -1.3722e-02, -5.7214e-02,\n",
            "        -8.9840e-02,  1.2528e-02,  4.0740e-02, -4.0463e-02,  1.1279e-02,\n",
            "         7.9279e-02,  2.2988e-02,  3.2274e-02, -8.5514e-02, -3.3425e-02,\n",
            "         4.3003e-02, -3.6958e-02, -4.8566e-02, -2.7649e-03, -1.2363e-01,\n",
            "         3.0994e-02, -1.2335e-03, -1.3663e-02,  2.8870e-03, -1.1164e-02,\n",
            "        -3.2181e-02,  1.6691e-02, -7.9972e-03, -6.2549e-03, -1.4890e-02,\n",
            "        -8.7408e-02,  2.2354e-02,  2.3235e-02,  3.1700e-02, -7.3196e-03,\n",
            "        -2.0307e-02,  5.4411e-02,  3.4537e-02,  1.3217e-01,  6.3127e-02,\n",
            "         1.1603e-02, -6.1885e-02,  4.6719e-02, -1.8904e-02])\n",
            "Embedding pour le passage 4 : tensor([-3.5879e-02, -3.3829e-02,  2.4765e-02,  9.6763e-03, -7.5144e-02,\n",
            "         1.3533e-02,  8.3033e-03,  7.4443e-03, -1.3313e-02, -1.1324e-01,\n",
            "         9.4291e-02, -4.5809e-02, -8.2652e-02,  6.8632e-02,  8.4130e-03,\n",
            "        -2.1483e-02,  1.0949e-01,  8.9473e-02,  1.1962e-02,  3.2460e-04,\n",
            "        -1.3921e-02,  4.4950e-03,  9.0593e-03,  4.6680e-02,  4.1424e-02,\n",
            "         2.8041e-02,  4.4573e-02,  4.9325e-02, -4.7836e-02, -1.9998e-02,\n",
            "        -4.5896e-02,  6.6026e-02,  3.8849e-02, -6.0569e-02, -9.0367e-03,\n",
            "         1.3453e-02,  1.2411e-02, -7.7124e-02,  8.6820e-02,  3.5312e-03,\n",
            "         3.0945e-04,  2.8493e-02,  6.8155e-02,  3.3086e-02,  4.7154e-02,\n",
            "         2.1535e-02, -4.1275e-02,  3.6383e-02, -2.1078e-02, -5.0537e-02,\n",
            "        -9.1001e-02,  1.9268e-02, -4.0006e-04,  1.4278e-02, -1.1542e-02,\n",
            "        -1.9685e-02, -3.3529e-03, -2.4507e-02, -2.4856e-02,  3.3906e-02,\n",
            "        -5.3320e-02, -2.2070e-02,  5.5550e-03, -1.1772e-02, -9.0227e-02,\n",
            "         2.5509e-02, -7.7580e-02,  9.1461e-03, -9.6813e-02, -1.2555e-02,\n",
            "        -2.3615e-02, -8.3617e-02,  5.8410e-02,  1.7347e-02, -4.7591e-02,\n",
            "         4.4365e-02,  5.0369e-02, -8.1248e-02,  6.7936e-03, -3.6722e-02,\n",
            "         8.5617e-03,  9.1668e-03, -3.3949e-02,  4.1194e-02,  9.3969e-02,\n",
            "         3.7749e-02, -7.4205e-03,  4.6930e-02, -4.5533e-03,  2.6821e-02,\n",
            "         2.2723e-02,  2.0671e-02, -1.7661e-02, -8.9461e-02,  8.0585e-02,\n",
            "        -4.2872e-02,  2.1956e-03,  3.4510e-03,  1.5068e-02, -2.1985e-02,\n",
            "         2.9400e-02, -1.1477e-01,  7.9168e-02, -1.2135e-02, -2.9930e-02,\n",
            "         3.5990e-02,  9.4293e-02, -3.1142e-02,  3.3579e-02,  3.0365e-02,\n",
            "        -1.0511e-01,  3.4857e-03, -1.1473e-01, -9.4069e-02, -7.0539e-02,\n",
            "        -1.5585e-02,  6.0433e-02, -1.0094e-02, -3.4899e-03,  1.4792e-02,\n",
            "        -5.8953e-02, -1.4552e-02,  5.0070e-02, -1.1174e-02,  1.5303e-02,\n",
            "         3.2216e-02,  9.5560e-03, -3.1598e-33, -3.3455e-02, -7.4390e-03,\n",
            "        -2.3150e-02,  2.0945e-04,  4.0803e-02,  5.1962e-02, -1.8175e-02,\n",
            "        -1.1377e-02,  3.4378e-02, -4.1685e-02, -6.3162e-02,  1.4893e-02,\n",
            "        -6.8388e-02,  7.5499e-02,  3.4767e-02,  4.1859e-02,  5.2930e-02,\n",
            "        -1.0373e-02,  1.6733e-02, -4.7102e-02,  9.6786e-03, -5.1081e-02,\n",
            "         3.2820e-02, -4.4816e-03, -6.7565e-02,  3.9929e-03, -7.7939e-03,\n",
            "        -2.8663e-02, -8.6646e-02, -3.0611e-02,  4.7003e-02,  2.5219e-02,\n",
            "        -3.6493e-02, -4.7198e-02, -2.7880e-02,  6.0897e-02, -7.5158e-02,\n",
            "         1.1209e-02, -1.5767e-02,  8.4397e-02, -4.7949e-03,  1.6268e-02,\n",
            "        -1.8167e-02,  1.1948e-02, -4.1198e-02, -7.7775e-02, -2.1529e-02,\n",
            "         6.9244e-02,  8.3019e-03, -1.0150e-01,  8.1142e-02, -3.2619e-02,\n",
            "         6.6332e-03,  2.4228e-02,  1.4994e-02,  1.1162e-01,  4.8075e-03,\n",
            "         2.4822e-03, -2.4501e-02,  1.9867e-02, -2.5342e-02,  5.7341e-02,\n",
            "         3.7656e-02, -4.0913e-02,  2.8618e-02,  8.2181e-02,  7.7154e-04,\n",
            "         2.2941e-02, -5.6174e-03,  2.6270e-02,  4.2006e-02, -1.0699e-01,\n",
            "         1.0953e-02,  3.6081e-02, -7.9035e-02,  4.2616e-02,  1.9848e-02,\n",
            "        -7.9947e-02,  2.5055e-02, -1.8866e-02,  4.8708e-02, -5.4149e-02,\n",
            "         3.2102e-02,  1.7430e-02, -1.0333e-01,  8.5133e-02,  3.3307e-03,\n",
            "        -5.3463e-02,  9.6817e-02,  3.9326e-03, -2.3126e-02, -6.9756e-02,\n",
            "        -2.8980e-02, -4.4863e-02,  8.6161e-03,  1.6656e-33,  5.3242e-03,\n",
            "         1.5179e-02,  1.2848e-02, -4.5520e-02, -6.0535e-02, -9.6673e-02,\n",
            "        -6.1724e-02, -6.7535e-02,  6.8574e-02,  5.2846e-02,  2.9352e-03,\n",
            "        -6.1020e-02,  5.3604e-02, -1.0565e-01, -4.0168e-02,  1.3786e-01,\n",
            "        -1.3662e-04,  1.0097e-01,  6.6562e-02, -6.5520e-02, -2.0873e-02,\n",
            "        -2.2536e-02,  5.8669e-03, -4.5078e-02, -5.7762e-02,  3.1146e-02,\n",
            "         3.4649e-03,  3.1396e-02,  1.1034e-02, -1.0010e-01, -2.1190e-02,\n",
            "        -8.5250e-02,  8.7853e-02, -9.0088e-02,  4.4973e-02,  3.2278e-02,\n",
            "        -2.3005e-02, -2.9583e-03,  8.8911e-02,  3.5391e-02, -4.7342e-02,\n",
            "         1.0924e-03,  8.3952e-02,  7.4726e-02,  8.2980e-03,  2.2034e-02,\n",
            "         1.4700e-02, -2.8287e-02, -6.8453e-02, -1.3599e-02,  6.8879e-02,\n",
            "        -5.4278e-02, -2.0936e-02, -4.3068e-02,  2.6421e-03,  2.2944e-02,\n",
            "         2.2849e-03,  2.5640e-02, -6.3896e-02, -6.0968e-02,  4.0792e-02,\n",
            "         2.7342e-02,  2.4943e-02,  2.9379e-02,  4.4233e-02, -3.3270e-03,\n",
            "        -6.4949e-02, -1.0231e-01, -7.6502e-03,  8.4658e-02, -1.9605e-02,\n",
            "         2.9011e-02, -1.3373e-02,  6.0433e-02, -7.4058e-02,  3.3161e-02,\n",
            "        -4.4583e-02,  1.5865e-02,  7.3253e-02,  3.3194e-02,  6.9102e-02,\n",
            "        -9.3918e-02, -4.8691e-02,  5.4077e-02, -2.2348e-02,  8.1785e-03,\n",
            "        -7.5690e-03,  1.7849e-02,  6.5464e-02,  4.8372e-02, -2.6669e-02,\n",
            "         4.0565e-02,  4.5639e-02,  4.2990e-02,  4.6979e-02, -3.4298e-08,\n",
            "         1.1439e-01, -6.7657e-02, -2.7020e-02,  9.4992e-02, -3.0524e-02,\n",
            "        -2.9668e-02, -3.6949e-02,  1.2811e-02,  7.6695e-02,  3.8811e-03,\n",
            "        -1.4627e-01,  8.0533e-02, -2.0141e-02, -6.5930e-02, -6.3598e-04,\n",
            "         8.9380e-02,  2.1757e-02, -6.1410e-02,  2.9901e-02,  2.1017e-02,\n",
            "         6.3373e-02,  3.1917e-02,  8.1416e-03, -3.2934e-02, -6.7418e-04,\n",
            "        -7.7710e-02, -4.1843e-03, -3.6208e-03, -7.8673e-04,  5.5960e-02,\n",
            "        -1.0445e-02, -6.4679e-02,  3.6609e-02, -7.6690e-02,  2.7236e-03,\n",
            "         1.0260e-01, -9.1166e-02, -1.3220e-01, -4.0746e-02, -6.3210e-02,\n",
            "         3.8843e-03, -7.3977e-02,  1.4598e-02,  4.7367e-04, -4.5486e-02,\n",
            "        -2.6824e-02, -2.6671e-02,  2.9442e-02, -2.2253e-02,  3.0897e-02,\n",
            "        -7.4519e-02,  2.0270e-02,  3.6879e-02,  2.6993e-03,  3.1929e-02,\n",
            "         9.8775e-02,  1.1595e-01, -3.3072e-03,  1.1780e-01, -1.1341e-02,\n",
            "        -5.4818e-02,  5.9901e-02,  5.3928e-02, -1.1029e-02])\n",
            "Embedding pour le passage 5 : tensor([-2.1538e-02,  1.8649e-02,  3.1720e-03,  5.6257e-02, -4.3932e-02,\n",
            "        -4.5442e-02,  1.8656e-02, -7.3276e-02,  1.4497e-02, -7.7145e-02,\n",
            "         5.2468e-02, -3.0156e-02, -3.1439e-02,  1.2490e-03,  1.1152e-02,\n",
            "        -4.5849e-02,  9.9641e-02,  2.0086e-02,  4.2059e-02,  4.3497e-02,\n",
            "        -2.5261e-02,  1.5904e-02, -2.0716e-02,  2.1531e-02,  3.3178e-02,\n",
            "         1.1361e-01,  2.7718e-02,  3.2982e-02, -2.4291e-02, -4.7013e-02,\n",
            "         3.1401e-03,  9.9839e-02,  3.6221e-02, -3.7543e-02,  7.1999e-02,\n",
            "         3.9556e-02,  5.3189e-02, -1.0391e-01,  8.6553e-02, -4.6436e-02,\n",
            "        -5.9296e-03,  1.1918e-02,  8.3093e-02,  5.5404e-02,  2.6706e-02,\n",
            "         1.4902e-02, -5.7169e-02,  1.7488e-02,  8.4417e-02, -9.8734e-02,\n",
            "        -7.2671e-02, -1.8916e-02,  3.5455e-03, -4.1561e-02, -5.6864e-02,\n",
            "         5.6585e-02,  5.2558e-02,  9.1651e-03,  2.0456e-02,  2.0142e-02,\n",
            "         7.2689e-03, -7.1525e-03,  3.1064e-02,  4.9133e-02,  9.4502e-03,\n",
            "        -3.7192e-02, -9.4560e-02, -3.1604e-02, -4.9593e-02, -7.4333e-02,\n",
            "         5.2317e-02, -3.7185e-02,  1.0415e-01, -2.3765e-02, -2.1479e-03,\n",
            "        -2.7991e-03, -2.5716e-02, -1.0214e-02, -8.2456e-02, -1.5899e-02,\n",
            "         2.9311e-02,  7.3958e-03,  2.7366e-02,  1.0313e-02, -7.4696e-02,\n",
            "         6.6605e-02, -1.3087e-02, -3.4023e-02,  6.2710e-02, -1.3023e-02,\n",
            "         5.9051e-04, -2.1419e-02, -8.4153e-02, -4.0073e-02, -1.7514e-02,\n",
            "        -4.2717e-03, -6.1969e-02, -3.2540e-02, -6.8214e-02,  6.7521e-02,\n",
            "         3.1345e-02,  3.4899e-02,  3.5982e-02,  2.5897e-02,  9.3720e-04,\n",
            "        -1.5214e-02, -1.1461e-02,  4.0603e-02, -4.5446e-02,  9.4629e-03,\n",
            "        -5.9442e-02,  5.0892e-04,  1.4865e-02, -3.8296e-02, -9.4765e-02,\n",
            "        -3.7893e-02,  9.4040e-02, -7.2747e-02,  4.6141e-02, -2.7238e-02,\n",
            "         2.5774e-02,  1.8654e-02, -3.8836e-02,  1.2007e-02, -1.2054e-01,\n",
            "        -1.2704e-02, -8.5652e-03,  2.8706e-33, -3.8471e-02, -7.6706e-02,\n",
            "         8.9892e-02,  4.1006e-03,  1.8561e-01,  2.1243e-02, -4.0486e-02,\n",
            "        -1.7133e-02,  1.9023e-02, -7.4083e-02,  1.5202e-02, -8.4558e-02,\n",
            "        -2.7196e-03, -6.9041e-03,  6.7868e-03,  3.2309e-02, -4.0571e-02,\n",
            "         5.2065e-03,  1.1483e-01, -1.5528e-03,  3.4932e-02,  1.5592e-02,\n",
            "         9.6473e-03,  1.5166e-02, -2.1588e-02,  8.4099e-02, -1.2489e-02,\n",
            "        -5.7922e-03, -4.9132e-02,  3.0873e-03, -2.0725e-02,  2.1658e-02,\n",
            "        -8.5597e-03,  1.8843e-03, -7.6394e-04, -4.8861e-02,  3.1323e-03,\n",
            "        -7.1584e-02, -8.1669e-02,  3.6012e-02, -3.7009e-02,  2.8856e-02,\n",
            "        -6.7509e-03,  2.2597e-02, -3.0754e-02,  3.1199e-02,  4.0904e-02,\n",
            "         6.6772e-02,  3.1842e-02, -1.3555e-02, -4.4028e-03, -2.0555e-02,\n",
            "        -1.9487e-02, -9.2808e-04, -4.8272e-02,  4.5463e-02,  3.2005e-02,\n",
            "         3.5759e-02,  6.5316e-02, -2.9303e-02,  5.2399e-02,  7.1408e-02,\n",
            "        -5.6438e-02, -7.3773e-03, -3.8972e-02,  4.6260e-03, -1.3131e-02,\n",
            "        -1.8509e-02,  7.2680e-02,  3.9133e-02, -1.1088e-02, -1.1077e-01,\n",
            "        -9.9500e-03,  2.4259e-02, -4.4027e-02,  1.9016e-03, -2.7396e-02,\n",
            "        -2.6333e-02, -2.9101e-02, -4.4510e-02,  1.2283e-01, -3.8270e-02,\n",
            "         5.7243e-02,  3.8320e-02, -2.9197e-02,  1.0100e-01, -1.6339e-02,\n",
            "        -4.2609e-02, -4.1775e-02,  8.6558e-02, -5.3880e-02, -2.0925e-02,\n",
            "         5.3752e-02, -2.7951e-02, -5.1873e-02, -3.9678e-33, -2.3153e-02,\n",
            "        -3.8930e-02, -5.2145e-02,  4.5010e-02, -3.1326e-02, -9.1879e-02,\n",
            "        -1.4240e-01, -4.6937e-02,  5.4953e-02,  2.9330e-02, -1.6820e-02,\n",
            "         5.6201e-02,  9.8488e-02, -3.9133e-03, -6.6773e-02,  1.5032e-01,\n",
            "         9.3975e-02, -1.6616e-02, -6.8150e-02,  3.0073e-02,  6.3803e-03,\n",
            "         6.1083e-02, -3.4526e-02, -3.7184e-02, -6.4690e-02,  5.5372e-02,\n",
            "         4.5667e-02,  4.8648e-02, -9.6925e-02, -7.9365e-02, -7.6366e-02,\n",
            "        -4.6947e-02,  2.6237e-02, -3.8885e-03,  3.2848e-02,  7.5706e-02,\n",
            "        -8.7382e-02, -4.9638e-02,  2.8167e-02,  8.7923e-02, -3.4448e-02,\n",
            "        -9.5140e-03, -2.1243e-02,  1.5978e-01,  3.4457e-02, -3.3855e-02,\n",
            "        -5.6888e-02, -4.5094e-02,  5.0959e-04,  1.0320e-02, -8.1128e-03,\n",
            "         1.2503e-02, -4.7585e-02, -1.0716e-02, -2.7989e-02, -2.0523e-02,\n",
            "        -2.4482e-02,  3.9633e-02,  3.2350e-02, -2.2109e-03,  1.8820e-02,\n",
            "         6.1852e-03, -9.3783e-02,  4.1747e-02,  3.9579e-02,  1.8548e-02,\n",
            "        -4.7219e-02, -1.0910e-02, -4.8748e-02,  4.1495e-02,  1.2891e-02,\n",
            "         1.9179e-02, -2.3641e-02,  4.8100e-02, -6.4563e-02,  2.0011e-03,\n",
            "        -6.8279e-03,  2.7555e-02, -3.5432e-03,  1.7851e-02, -1.7370e-02,\n",
            "        -6.2537e-02, -4.1348e-02,  1.3102e-04,  6.5878e-02, -5.9742e-02,\n",
            "        -3.0261e-02, -1.0460e-02, -1.0089e-02,  1.0263e-01,  3.8337e-02,\n",
            "         4.4749e-02,  2.6631e-02,  4.5706e-03,  8.7271e-02, -4.4246e-08,\n",
            "         3.9508e-02, -8.1082e-02, -7.6765e-02,  4.2531e-02,  5.1059e-02,\n",
            "        -1.4671e-01,  1.2717e-02, -5.5427e-02,  3.1301e-02,  4.9927e-02,\n",
            "        -1.0501e-01,  5.5621e-02, -4.4806e-02,  6.2362e-02,  1.6252e-02,\n",
            "         8.6098e-02,  7.3299e-02, -1.7322e-02,  6.5207e-03,  9.0174e-02,\n",
            "         1.3125e-01,  1.4437e-02,  4.6999e-03, -5.7197e-02, -6.9764e-03,\n",
            "        -7.7560e-02, -3.4956e-02, -2.3269e-02,  2.2529e-02,  3.1172e-02,\n",
            "         2.4642e-02, -4.8667e-03, -2.6146e-02, -5.9895e-02, -7.9889e-02,\n",
            "         4.4293e-02, -4.0255e-02, -8.2995e-02, -3.7107e-05, -1.3981e-01,\n",
            "        -4.0377e-02, -1.2854e-02, -1.7609e-02, -1.5848e-02, -6.0375e-02,\n",
            "         4.3699e-02,  3.6742e-02,  8.0265e-03, -1.8667e-03,  4.8654e-02,\n",
            "        -3.5363e-02,  1.1077e-02,  6.5987e-02, -8.1596e-03,  5.4092e-02,\n",
            "        -4.9876e-02,  3.0247e-02,  1.7710e-02,  6.3495e-02,  4.3698e-02,\n",
            "        -5.2632e-02,  7.5077e-02, -1.8689e-02, -5.7995e-02])\n",
            "Embedding pour le passage 6 : tensor([ 3.1486e-02, -2.7413e-02,  1.2386e-02,  5.8790e-02, -8.9103e-02,\n",
            "        -3.8872e-02, -5.3123e-03, -1.5436e-02, -1.4722e-02, -1.0252e-01,\n",
            "         8.4313e-02,  4.4597e-03, -5.1886e-02,  7.1196e-02,  6.4394e-03,\n",
            "        -2.8082e-02,  1.2823e-01, -2.1073e-02,  1.9357e-02, -2.3981e-02,\n",
            "         4.1447e-02, -3.9836e-02, -1.0980e-02,  4.1094e-02,  2.3647e-02,\n",
            "         2.1398e-02, -1.6401e-02,  7.7106e-02, -1.9285e-02, -2.4831e-02,\n",
            "        -2.2078e-02,  7.5679e-02,  6.8007e-02,  9.6467e-03,  6.3665e-02,\n",
            "         3.9395e-02,  9.4011e-02, -3.9356e-02,  1.0001e-01,  1.9599e-02,\n",
            "         3.8357e-02, -4.1479e-02,  3.8171e-02,  4.0879e-02,  4.1230e-02,\n",
            "         1.7990e-02, -4.1615e-02,  6.5899e-02,  2.7137e-02, -1.5056e-02,\n",
            "        -7.1944e-02,  3.0820e-02,  1.8424e-02, -4.7997e-02, -3.3931e-02,\n",
            "         1.5379e-02, -3.4435e-03, -5.3261e-02, -5.4080e-02,  3.0081e-02,\n",
            "         1.2278e-02, -7.9401e-02,  2.1892e-02,  7.7671e-02, -3.8077e-02,\n",
            "         2.9245e-03, -1.1118e-01, -5.8549e-02, -7.3255e-02, -9.5637e-02,\n",
            "         1.6307e-02, -4.5536e-02,  6.7857e-02,  1.6021e-02, -1.7211e-02,\n",
            "        -4.9769e-02, -1.3622e-03,  1.2608e-02, -4.4408e-02,  1.6163e-02,\n",
            "         2.0390e-02, -6.4939e-02, -4.2628e-02,  4.4297e-02, -5.9882e-02,\n",
            "         5.4824e-02, -2.1448e-02,  1.4837e-02,  4.4226e-02, -1.5761e-02,\n",
            "        -1.5327e-02,  1.0024e-01, -7.8367e-02, -5.4221e-02,  3.3657e-02,\n",
            "        -5.4940e-02, -2.5379e-02,  4.6894e-02, -3.3543e-02,  1.9540e-02,\n",
            "        -7.6338e-03,  2.0528e-04,  8.2790e-02,  7.0002e-02,  9.6780e-03,\n",
            "        -3.0609e-02,  8.6134e-02,  1.7568e-02, -2.0949e-02,  1.4638e-02,\n",
            "        -4.3497e-02, -1.5655e-02, -2.0598e-02, -5.8819e-02, -3.1438e-02,\n",
            "        -3.9951e-02,  1.3816e-02,  2.1464e-02,  3.2010e-02, -1.5546e-02,\n",
            "        -6.3831e-03,  3.2686e-03, -3.9709e-02, -5.4793e-02, -1.4857e-01,\n",
            "         3.0214e-02, -2.6007e-02, -2.0051e-33, -2.7868e-02,  8.5992e-03,\n",
            "         2.8929e-02,  2.7082e-02,  5.7425e-02,  5.4962e-03, -7.7121e-03,\n",
            "         8.6193e-03, -5.1419e-02, -2.9565e-02, -3.1828e-03, -7.0375e-02,\n",
            "        -1.9151e-03, -2.5447e-02,  5.8421e-02,  2.9988e-02, -9.1587e-03,\n",
            "        -1.1541e-02,  3.9850e-02, -7.5086e-02, -1.3364e-02,  3.1778e-02,\n",
            "         4.4650e-02, -3.4068e-02, -9.7421e-02,  8.9920e-03, -3.1503e-02,\n",
            "        -2.1684e-03, -7.9543e-02, -2.6815e-02, -1.9839e-02,  2.8208e-02,\n",
            "        -4.1074e-02, -2.1776e-02, -4.7763e-02, -9.6644e-03,  4.5662e-03,\n",
            "        -4.7364e-02,  1.3582e-02,  7.3204e-03, -6.8992e-02,  1.0584e-01,\n",
            "        -2.2245e-02,  1.7467e-02, -1.4895e-02,  4.5965e-02, -5.4326e-02,\n",
            "         6.4749e-02,  6.4644e-02, -2.8842e-02, -1.6413e-02, -4.1507e-03,\n",
            "        -7.7691e-02,  6.8981e-02, -2.3974e-02,  4.8775e-02,  3.0102e-02,\n",
            "        -8.2269e-03,  3.2297e-03, -5.2518e-02,  6.3574e-03,  8.1932e-02,\n",
            "         3.8758e-03, -3.5465e-02,  6.2283e-02,  5.6970e-02,  6.1840e-02,\n",
            "         4.0805e-02,  3.9906e-02,  5.6287e-02,  1.4889e-02, -7.4346e-02,\n",
            "         1.3467e-02,  2.4514e-02,  3.2591e-02,  5.8037e-02, -1.4180e-02,\n",
            "        -3.3138e-02,  3.8384e-02, -3.9827e-02,  7.7348e-02,  2.1142e-02,\n",
            "         6.0286e-02,  7.4617e-02, -3.4289e-02,  8.1168e-02,  2.7116e-02,\n",
            "        -1.7859e-02,  5.1023e-04,  3.7256e-02, -8.5412e-02, -3.4758e-03,\n",
            "        -1.8930e-02,  2.8190e-02,  1.2631e-02,  5.4359e-34, -1.5912e-04,\n",
            "        -4.2622e-02,  3.2653e-03, -2.0639e-02, -1.2961e-01, -5.4047e-02,\n",
            "        -1.4019e-01, -2.4151e-02,  2.6046e-02,  7.8779e-02,  1.2619e-02,\n",
            "         7.5675e-03,  8.7761e-02,  2.1915e-02, -6.9529e-02,  1.4034e-01,\n",
            "         4.9042e-02,  2.0414e-02, -1.4425e-02,  2.6856e-02,  8.8613e-02,\n",
            "         1.5696e-02, -1.1752e-01,  5.7830e-03, -8.6176e-02,  4.1221e-02,\n",
            "         5.2457e-02,  5.2134e-02, -6.9049e-02, -1.2299e-01, -7.2378e-02,\n",
            "        -5.6458e-02,  5.6553e-02, -4.5820e-03,  6.4692e-02,  1.0535e-01,\n",
            "        -3.8415e-02, -9.6327e-02,  8.4485e-02,  3.4967e-02, -2.6897e-02,\n",
            "        -2.6471e-02,  2.9778e-02,  1.1988e-01,  5.8020e-02, -5.2203e-02,\n",
            "        -1.0797e-02, -2.6242e-02, -7.1017e-02, -5.5760e-02, -4.6182e-02,\n",
            "        -1.3282e-02, -8.4357e-02, -3.7919e-02, -1.8277e-02,  1.7651e-02,\n",
            "        -1.3633e-02,  5.0549e-02, -5.1832e-02, -1.0146e-01,  9.1154e-03,\n",
            "         6.2455e-04, -3.8030e-02,  7.9935e-02,  5.2928e-03, -4.6735e-02,\n",
            "        -1.3186e-02, -3.0606e-02, -2.5146e-02,  3.5056e-02, -2.1266e-02,\n",
            "         6.6545e-02, -9.2864e-03,  1.7174e-02, -7.9491e-02,  1.6748e-02,\n",
            "        -7.5737e-03,  3.9697e-03, -1.8090e-02,  7.0573e-02,  4.9242e-02,\n",
            "         1.3766e-04, -9.2122e-02, -1.6470e-03,  7.0834e-02,  9.9148e-03,\n",
            "         8.7001e-02, -1.3097e-02, -7.6136e-03,  1.0690e-01,  6.2697e-03,\n",
            "         1.2935e-01, -3.4150e-02, -6.2222e-02, -4.9584e-02, -2.1568e-08,\n",
            "         5.4670e-02, -6.1167e-02,  3.7434e-03,  9.7946e-02,  1.0629e-02,\n",
            "        -4.6476e-02, -8.4681e-02, -3.7594e-02,  5.0366e-02,  2.7377e-02,\n",
            "        -8.6453e-02,  2.0963e-02, -1.1650e-02,  2.6550e-02, -2.9450e-02,\n",
            "         4.7565e-02,  3.4002e-02, -4.3650e-02,  5.6876e-02,  2.6520e-02,\n",
            "         5.0083e-02,  5.2304e-02,  8.0666e-02, -6.5462e-02, -1.2770e-02,\n",
            "        -9.9914e-02,  1.3345e-03, -1.8204e-02, -2.5984e-02, -1.8032e-02,\n",
            "         5.8896e-02, -1.6896e-02,  3.0553e-02, -2.3161e-02, -2.4701e-02,\n",
            "         7.2993e-02, -8.9582e-02, -2.3612e-02, -1.7120e-02, -1.8178e-01,\n",
            "        -2.7879e-02, -5.6479e-02, -5.9124e-02,  2.3115e-02, -1.4953e-02,\n",
            "         4.3894e-02,  1.1438e-02, -5.0985e-02,  3.2410e-03,  7.3677e-03,\n",
            "        -8.6962e-02, -3.8296e-03,  7.1862e-02, -3.6160e-02,  1.7485e-02,\n",
            "         3.8392e-02,  3.3485e-03,  6.9917e-02,  7.9800e-02,  6.2122e-02,\n",
            "        -5.8633e-03,  3.3694e-02, -3.6569e-02,  1.6929e-02])\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "\n"
          ]
        }
      ],
      "source": [
        "from sentence_transformers import SentenceTransformer\n",
        "from sentence_transformers.util import cos_sim\n",
        "from tqdm import tqdm\n",
        "\n",
        "\n",
        "from sentence_transformers import SentenceTransformer\n",
        "from sentence_transformers.util import cos_sim\n",
        "from tqdm import tqdm\n",
        "\n",
        "# Charger un modèle public de sentence-transformers\n",
        "model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')\n",
        "\n",
        "# Exemple de passages à embedder\n",
        "passages = [\"New York is known to be the largest Italian-American population in North America and third largest Italian population outside of Italy, according to the 2000 census. See also Italians in New York City for more info.\",\n",
        "                \"Graziano is perhaps the best place in NYC to eat quality fresh pasta, or enjoy a Neapolitan-style pizza.\",\n",
        "                \"The Italian wolf is the national animal of Italy,[159] while the national tree is the strawberry tree.[160] The reasons for this are that the Italian wolf, which inhabits the Apennine Mountains and the Western Alps, features prominently in Latin and Italian cultures, such as the legend of the founding of Rome,[161] while the green leaves, white flowers and red berries of the strawberry tree, native to the Mediterranean, recall the colours of the flag.[160]\",\n",
        "                \"Italian cuisine has a great variety of different ingredients which are commonly used, ranging from fruits and vegetables to grains to cheeses, meats, and fish. In northern Italy, fish (such as cod, or baccalà), potatoes, rice, corn (maize), sausages, pork, and different types of cheese are the most common ingredients.\",\n",
        "                \"A strange italian restaurant. After a long day at work in his New York City office, he wanted to enjoy delicious italian food at the newly opened La Casa di Pasta. But it was actually a nursery, specializing in Italian-themed plants and decorations, with no food in sight. No italian food today, left feeling hungry and deceived, wishing the beautiful garden center had actually been the restaurant of his dreams.\",\n",
        "               \"New York City : A brand new italian restaurant, Italian #1, just opened in little Italy.\"\n",
        "                ]\n",
        "\n",
        "# Calculer les embeddings des passages\n",
        "embeddings = [model.encode(passage, convert_to_tensor=True) for passage in tqdm(passages)]\n",
        "\n",
        "# Afficher les embeddings\n",
        "for i, embedding in enumerate(embeddings):\n",
        "    print(f\"Embedding pour le passage {i+1} : {embedding}\")\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "RHNuOUQRda__",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "760fd061-8178-4af7-ded7-56c563e05d1f"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "[tensor([[-0.0481]]), tensor([[0.1029]]), tensor([[0.0831]]), tensor([[-0.0890]]), tensor([[0.2301]]), tensor([[0.1139]])]\n"
          ]
        }
      ],
      "source": [
        "# TODO : Calculer l'embedding de la requête\n",
        "requête = \"beautiful today\"\n",
        "\n",
        "embedding_requete = model.encode(requête, convert_to_tensor = True)\n",
        "\n",
        "# TODO : Calculer les scores\n",
        "\n",
        "similarity = [cos_sim(embedding_requete, embedding) for embedding in embeddings]\n",
        "\n",
        "# TODO : Calculer les scores\n",
        "print(similarity)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "ZgZG9bvdizr7",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "c0430b83-9923-40b5-b7ea-e39f9b8c02df"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "[4, 5, 2, 3, 1, 0]\n"
          ]
        }
      ],
      "source": [
        "# Liste originale\n",
        "my_list = similarity\n",
        "\n",
        "# Trier les indices selon les valeurs dans my_list en ordre décroissant\n",
        "sorted_indices = sorted(range(len(my_list)), key=lambda k: my_list[k], reverse=True)\n",
        "\n",
        "print(sorted_indices)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "t_7efmTOjQgp"
      },
      "source": [
        "## Modèle spécalisé"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "tXH7J6MUJJ35"
      },
      "source": [
        "Au lieu de calculer un score de similarité sur des embeddings, on peut utiliser un modèle qui prend directement en entrée un passage et la requête et qui calcule un score. Il existe en effet des réseaux de neuronnes spécialisés dans cette tâche.\n",
        "\n",
        "Vous pouvez par exemple utiliser le modèle 'BAAI/bge-reranker-large' : https://huggingface.co/BAAI/bge-reranker-large"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "AwJBDTm1jS4G",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "outputId": "591ae661-ed63-48f9-b428-a2784dad2e40"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting FlagEmbedding\n",
            "  Downloading FlagEmbedding-1.2.10.tar.gz (141 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m141.3/141.3 kB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "Requirement already satisfied: torch>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from FlagEmbedding) (2.3.0+cu121)\n",
            "Requirement already satisfied: transformers>=4.33.0 in /usr/local/lib/python3.10/dist-packages (from FlagEmbedding) (4.41.1)\n",
            "Collecting datasets (from FlagEmbedding)\n",
            "  Downloading datasets-2.19.2-py3-none-any.whl (542 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m542.1/542.1 kB\u001b[0m \u001b[31m19.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting accelerate>=0.20.1 (from FlagEmbedding)\n",
            "  Downloading accelerate-0.30.1-py3-none-any.whl (302 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m302.6/302.6 kB\u001b[0m \u001b[31m19.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: sentence_transformers in /usr/local/lib/python3.10/dist-packages (from FlagEmbedding) (3.0.0)\n",
            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.20.1->FlagEmbedding) (1.25.2)\n",
            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.20.1->FlagEmbedding) (24.0)\n",
            "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.20.1->FlagEmbedding) (5.9.5)\n",
            "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.20.1->FlagEmbedding) (6.0.1)\n",
            "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.20.1->FlagEmbedding) (0.23.1)\n",
            "Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.20.1->FlagEmbedding) (0.4.3)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (3.14.0)\n",
            "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (4.11.0)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (1.12)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (3.3)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (3.1.4)\n",
            "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (2023.6.0)\n",
            "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (12.1.105)\n",
            "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (12.1.105)\n",
            "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (12.1.105)\n",
            "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (8.9.2.26)\n",
            "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (12.1.3.1)\n",
            "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (11.0.2.54)\n",
            "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (10.3.2.106)\n",
            "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (11.4.5.107)\n",
            "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (12.1.0.106)\n",
            "Requirement already satisfied: nvidia-nccl-cu12==2.20.5 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (2.20.5)\n",
            "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (12.1.105)\n",
            "Requirement already satisfied: triton==2.3.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->FlagEmbedding) (2.3.0)\n",
            "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.6.0->FlagEmbedding) (12.5.40)\n",
            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.33.0->FlagEmbedding) (2024.5.15)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers>=4.33.0->FlagEmbedding) (2.31.0)\n",
            "Requirement already satisfied: tokenizers<0.20,>=0.19 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.33.0->FlagEmbedding) (0.19.1)\n",
            "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.33.0->FlagEmbedding) (4.66.4)\n",
            "Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets->FlagEmbedding) (14.0.2)\n",
            "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets->FlagEmbedding) (0.6)\n",
            "Collecting dill<0.3.9,>=0.3.0 (from datasets->FlagEmbedding)\n",
            "  Downloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets->FlagEmbedding) (2.0.3)\n",
            "Collecting requests (from transformers>=4.33.0->FlagEmbedding)\n",
            "  Downloading requests-2.32.3-py3-none-any.whl (64 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m64.9/64.9 kB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting xxhash (from datasets->FlagEmbedding)\n",
            "  Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m19.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting multiprocess (from datasets->FlagEmbedding)\n",
            "  Downloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m15.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets->FlagEmbedding) (3.9.5)\n",
            "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from sentence_transformers->FlagEmbedding) (1.2.2)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence_transformers->FlagEmbedding) (1.11.4)\n",
            "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from sentence_transformers->FlagEmbedding) (9.4.0)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->FlagEmbedding) (1.3.1)\n",
            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->FlagEmbedding) (23.2.0)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->FlagEmbedding) (1.4.1)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->FlagEmbedding) (6.0.5)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->FlagEmbedding) (1.9.4)\n",
            "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->FlagEmbedding) (4.0.3)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.33.0->FlagEmbedding) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.33.0->FlagEmbedding) (3.7)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.33.0->FlagEmbedding) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.33.0->FlagEmbedding) (2024.2.2)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.6.0->FlagEmbedding) (2.1.5)\n",
            "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets->FlagEmbedding) (2.8.2)\n",
            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets->FlagEmbedding) (2023.4)\n",
            "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets->FlagEmbedding) (2024.1)\n",
            "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence_transformers->FlagEmbedding) (1.4.2)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence_transformers->FlagEmbedding) (3.5.0)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.6.0->FlagEmbedding) (1.3.0)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->datasets->FlagEmbedding) (1.16.0)\n",
            "Building wheels for collected packages: FlagEmbedding\n",
            "  Building wheel for FlagEmbedding (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for FlagEmbedding: filename=FlagEmbedding-1.2.10-py3-none-any.whl size=166100 sha256=ca6f18fd1fb323c394c0167e72caa2000768e874a5089fe59dbcf9cbad44a27c\n",
            "  Stored in directory: /root/.cache/pip/wheels/3b/1d/d2/eec38cd59144f4c9767d7c55cfae8e8feec699071aa41ca5da\n",
            "Successfully built FlagEmbedding\n",
            "Installing collected packages: xxhash, requests, dill, multiprocess, datasets, accelerate, FlagEmbedding\n",
            "  Attempting uninstall: requests\n",
            "    Found existing installation: requests 2.31.0\n",
            "    Uninstalling requests-2.31.0:\n",
            "      Successfully uninstalled requests-2.31.0\n",
            "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
            "google-colab 1.0.0 requires requests==2.31.0, but you have requests 2.32.3 which is incompatible.\u001b[0m\u001b[31m\n",
            "\u001b[0mSuccessfully installed FlagEmbedding-1.2.10 accelerate-0.30.1 datasets-2.19.2 dill-0.3.8 multiprocess-0.70.16 requests-2.32.3 xxhash-3.4.1\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "application/vnd.colab-display-data+json": {
              "pip_warning": {
                "packages": [
                  "requests"
                ]
              },
              "id": "5b75402cdac5426eb5d603f7f313417e"
            }
          },
          "metadata": {}
        }
      ],
      "source": [
        "!pip install FlagEmbedding"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "x1hvpu9mjR-I"
      },
      "outputs": [],
      "source": [
        "from FlagEmbedding import FlagModel\n",
        "# TODO : charge le modèle\n",
        "#model_name = \"BAAI/bge-reranker-large\"\n",
        "model = FlagModel('BAAI/bge-large-zh-v1.5',\n",
        "                  use_fp16=True)\n",
        "# TODO : Calculer les scores et les ajouter au dictionnaire des scores\n",
        "# Supposons que passages est une liste de chaînes de caractères contenant vos passages\n",
        "\n",
        "# Calculer les scores pour chaque passage\n",
        "passages = [\n",
        "    \"Le chat est sur le canapé.\",\n",
        "    \"Il fait beau aujourd'hui.\",\n",
        "    \"L'intelligence artificielle transforme le monde.\"\n",
        "]\n",
        "scores = {}\n",
        "\n",
        "for passage in passages:\n",
        "    # Récupérer les scores\n",
        "    embedding1 = model.encode(\"aujourd'hui\")\n",
        "    embedding2 = model.encode(passage)\n",
        "    score = embedding1 @ embedding2\n",
        "    # Ajouter le score au dictionnaire des scores\n",
        "    scores[passage] = score\n",
        "\n",
        "# Afficher les scores\n",
        "print(scores)\n",
        "# TODO : Calculer les scores et les ajouter au dictionnaire des scores\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "5Nd5v6Qyq5rt"
      },
      "outputs": [],
      "source": [
        "# Trie les phrases selon le score calculé et affiche les meilleurs passages.\n",
        "passages_tries = sorted(scores.items(), key=lambda x: x[1], reverse=True)\n",
        "print(passages_tries)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ONBhMBDgtZb6"
      },
      "source": [
        "## Analyse des résultas"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "R3mPmpyBuPml"
      },
      "source": [
        "### Représenter sous la forme de bar plot les scores des extraits pour les deux méthodes (dense embedding + cosine similarity et modèle reranker)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 35,
      "metadata": {
        "id": "-wCRTfUms7FL",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 430
        },
        "outputId": "eb035d54-09de-41ba-a893-f1c7452a7548"
      },
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 640x480 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABb4ElEQVR4nO3dd3iT5f7H8XeSLigdQGnLKFT2XgUqIAJaBAcKLvSoICoeEXFU/UnxCIpoHehBBUQ5evQ4cQAOFMQyBQQsomXvTVtmW7qb5PfHU4soo0CTJ0k/r+vKxW14kvtDhebb514Wp9PpRERERMRLWM0OICIiInIuVLyIiIiIV1HxIiIiIl5FxYuIiIh4FRUvIiIi4lVUvIiIiIhXUfEiIiIiXkXFi4iIiHgVP7MDVDSHw8H+/fsJCQnBYrGYHUdERETKwel0kpOTQ506dbBaz3xvxeeKl/379xMTE2N2DBERETkPe/bsoV69eme8xueKl5CQEMD4w4eGhpqcRkRERMojOzubmJiYss/xM/G54uWPoaLQ0FAVLyIiIl6mPFM+NGFXREREvIqKFxEREfEqKl5ERETEq6h4EREREa+i4kVERES8iooXERER8SoqXkRERMSrqHgRERERr6LiRURERLyKihcRERHxKipeRERExKuoeBERERGvouJFREREysdeAh8PgvVfgdNpWgyfO1VaREREXCT1v7B5DuxZAQ17QVCYKTF050VERETOLu8ILHjOaPd+0rTCBVS8iIiISHksfAHyj0JkS4gbamoUFS8iIiJyZpkbYNV/jHa/ZLCZO+tExYuIiIicntMJc5LAaYfm1xhzXUym4kVEREROb9P3sH0B2ALgivFmpwFUvIiIiMjplBTC3NFGu+sDUOMic/OUUvEiIiIip/bzm3B0B1SLgh6JZqcpo+JFRERE/i4nAxa/bLQTnobAEFPj/JmKFxEREfm7lHFQdBzqdIS2t5id5iQqXkRERORk+1JhzYdG+8oXwepZ5YJnpRERERFz/bE0GqDtIIjpYm6eU1DxIiIiIies/dI4u8i/qjHXxQOpeBERERFDUS7MG2O0eyRCaB1z85yGihcRERExLH0NsvdBeH1jXxcPpeJFRERE4Nhuo3gBYydd/yrm5jkDFS8iIiJiDBeVFEBsD2hxrdlpzkjFi4iISGW3cymsmwkWq3FqtMVidqIzUvEiIiJSmTnsMOcJox13J0S3MTVOeah4ERERqcx+/QDS0yAoDHo/aXaaclHxIiIiUlnlH4OUZ412z1EQHGFqnPJS8SIiIlJZLX4Z8g5BRFPoMszsNOWm4kVERKQyOrQFVkw12n2TweZvbp5z4JbiZfLkycTGxhIUFER8fDwrV6484/XHjh1jxIgR1K5dm8DAQJo2bcp3333njqgiIiKVw9zR4CiBJn2hSYLZac6Jn6s7mD59OomJiUydOpX4+HgmTpxI37592bRpE5GRkX+7vqioiD59+hAZGckXX3xB3bp12bVrF+Hh4a6OKiIiUjlsmQdbfgCrH/R93uw058zidDqdruwgPj6ezp07M2nSJAAcDgcxMTGMHDmSUaNG/e36qVOn8vLLL7Nx40b8/c/9FlZ2djZhYWFkZWURGhp6wflFRER8ir0YpnSFw1uMIwD6Pmd2IuDcPr9dOmxUVFREamoqCQknbkdZrVYSEhJYvnz5KV/z9ddf07VrV0aMGEFUVBStW7fm+eefx263n/L6wsJCsrOzT3qIiIjIaaycZhQuVSOg5/+Znea8uLR4OXToEHa7naioqJOej4qKIj09/ZSv2b59O1988QV2u53vvvuOp556ildeeYXx48ef8vrk5GTCwsLKHjExMRX+5xAREfEJuYdg4QtG+/Ixxt4uXsjjVhs5HA4iIyN5++23iYuLY9CgQTz55JNMnTr1lNcnJSWRlZVV9tizZ4+bE4uIiHiJ+eOhMAui20KH281Oc95cOmE3IiICm81GRkbGSc9nZGQQHR19ytfUrl0bf39/bDZb2XMtWrQgPT2doqIiAgICTro+MDCQwMDAig8vIiLiSw78DqnvGe0rXwSr7YyXezKX3nkJCAggLi6OlJSUsuccDgcpKSl07dr1lK/p3r07W7duxeFwlD23efNmateu/bfCRURERMrB6YQ5SYATWl0PDbqZneiCuHzYKDExkWnTpvH++++zYcMGhg8fTm5uLkOHDgVg8ODBJCUllV0/fPhwjhw5wkMPPcTmzZuZPXs2zz//PCNGjHB1VBEREd+0/ivY9RP4BUGfcWanuWAu3+dl0KBBHDx4kDFjxpCenk779u2ZM2dO2STe3bt3Y7WeqKFiYmKYO3cujzzyCG3btqVu3bo89NBDPPHEE66OKiIi4nuK8+GHp4x294ch3PsXtrh8nxd30z4vIiIif7LoZVgwHkLrwgO/QEBVsxOdksfs8yIiIiImytoHP71qtPuM89jC5VypeBEREfFVPz4NxXkQczG0vsHsNBVGxYuIiIgv2r0C0j4DLHDlC2CxmJ2owqh4ERER8TUOB8wpXejS4Tao08HcPBVMxYuIiIiv+f1T2P8rBITAZWPMTlPhVLyIiIj4ksIcY64LQM/HISTqjJd7IxUvIiIivmTJK3A8A2o0hPj7zE7jEipeREREfMWR7bB8stHu+zz4+ebZfypeREREfMUPT4G9CBpdBk37mZ3GZVS8iIiI+IJtC2Djt2CxQd9kn1oa/VcqXkRERLydvaT01GigyzCIbG5uHhdT8SIiIuLtUv8LBzdAlRrQa5TZaVxOxYuIiIg3yzsC88cb7d6joUp1c/O4gYoXERERb7YwGQqOQWRLiBtqdhq3UPEiIiLirTLWw6p3jHa/ZLD5mZvHTVS8iIiIeCOnE+aMAqcdml8DDXuZnchtVLyIiIh4o03fwY5FYAuAK8abncatVLyIiIh4m5JCmPuk0e76ANS4yNw8bqbiRURExNv8/CYc3QHVoqFHotlp3E7Fi4iIiDfJyYDFLxvthKchMMTUOGZQ8SIiIuJNUsZB0XGoGwdtB5mdxhQqXkRERLzFvlRY86HR7vciWCvnx3jl/FOLiIh4G6cTvi/d+r/tLRDT2dw8JlLxIiIi4g3SvoC9K8E/GBLGmp3GVCpeREREPF1RLswbY7R7JEJoHXPzmEzFi4iIiKf7aSLk7Ifw+sa+LpWcihcRERFPdnQXLHvdaF8xHvyDzM3jAVS8iIiIeLJ5Y6CkAGJ7QItrzU7jEVS8iIiIeKqdP8H6WWCxGqdGWyxmJ/IIKl5EREQ8kcN+Yml03J0Q3cbUOJ5ExYuIiIgn+vUDyEiDoDDo/aTZaTyKihcRERFPk38MUp412r2SIDjC1DieRsWLiIiIp1n8MuQdgoim0Pkes9N4HBUvIiIinuTQFlgx1Wj3Swabv7l5PJBbipfJkycTGxtLUFAQ8fHxrFy58rTXvvfee1gslpMeQUFa0y4iIpXE3NHgKIGm/aBxgtlpPJLLi5fp06eTmJjI2LFjWb16Ne3ataNv375kZmae9jWhoaEcOHCg7LFr1y5XxxQRETHf5h9gyw9g9YcrnjM7jcdyefHy6quvMmzYMIYOHUrLli2ZOnUqVatW5d133z3taywWC9HR0WWPqKgoV8cUERExV0mRcdcF4OL7IKKxuXk8mEuLl6KiIlJTU0lIOHHby2q1kpCQwPLly0/7uuPHj9OgQQNiYmK47rrrWLdu3WmvLSwsJDs7+6SHiIiI11k1DQ5vgeBacOnjZqfxaC4tXg4dOoTdbv/bnZOoqCjS09NP+ZpmzZrx7rvv8tVXX/Hhhx/icDjo1q0be/fuPeX1ycnJhIWFlT1iYmIq/M8hIiLiUscPwsIXjfZlTxl7u8hpedxqo65duzJ48GDat29Pz549mTFjBrVq1eKtt9465fVJSUlkZWWVPfbs2ePmxCIiIhdowXgozILottDhdrPTeDw/V755REQENpuNjIyMk57PyMggOjq6XO/h7+9Phw4d2Lp16yl/PzAwkMDAwAvOKiIiYooDv0Pq+0b7yhfBajM3jxdw6Z2XgIAA4uLiSElJKXvO4XCQkpJC165dy/UedrudtLQ0ateu7aqYIiIi5nA6Yc4owAmtrocG3cxO5BVceucFIDExkSFDhtCpUye6dOnCxIkTyc3NZejQoQAMHjyYunXrkpycDMC4ceO4+OKLady4MceOHePll19m165d3HOPdhgUEREfs34W7FoKfkHQZ5zZabyGy4uXQYMGcfDgQcaMGUN6ejrt27dnzpw5ZZN4d+/ejdV64gbQ0aNHGTZsGOnp6VSvXp24uDiWLVtGy5YtXR1VRETEfYrz4YenjHb3hyFcC07Ky+J0Op1mh6hI2dnZhIWFkZWVRWhoqNlxRERETm3Ry8ZE3dC68MAvEFDV7ESmOpfPb49bbSQiIuLzsvbBT68a7T7jKn3hcq5UvIiIiLjbj09DcR7EXAytbzA7jddR8SIiIuJOu1dA2meABa58ASwWsxN5HRUvIiIi7uJwwJwnjHaH26FOB3PzeCkVLyIiIu7y2yew/1cICIHLx5idxmupeBEREXGHgmxjrgtAz/+DapGmxvFmKl5ERETcYckrkJsJNRpB/H1mp/FqKl5ERERc7fA2+HmK0e77HPgFmJvHy6l4ERERcbUfngJ7ETS6DJr2MzuN11PxIiIi4krb5sOm2WCxQd9kLY2uACpeREREXMVeAnOSjHaXYRDZ3Nw8PkLFi4iIiKv88i4c3AhVakCvUWan8RkqXkRERFwh7wgseM5oX/YkVKlubh4fouJFRETEFRYmQ8ExiGwFHe80O41PUfEiIiJS0TLWw6p3jHa/ZLD5mZvHx6h4ERERqUhOJ8wZBU47tOgPDXuancjnqHgRERGpSJu+gx2LwBYIfZ41O41PUvEiIiJSUUoKYe5oo93tAahxkbl5fJSKFxERkYry8xQ4uhOqRcMliWan8VkqXkRERCpCTjosnmC0+zwDgdXMzePDVLyIiIhUhJRxUHQc6sZBm5vNTuPTVLyIiIhcqH2psOYjo93vRbDq49WV9NUVERG5EE4nfP+E0W57C8R0NjdPJaDiRURE5EKkfQ57V4F/MCSMNTtNpaDiRURE5HwV5cK80oKlRyKE1jE3TyWh4kVEROR8/TQRcvZDeH3o+oDZaSoNFS8iIiLn4+guWPa60b7iOfAPMjdPJaLiRURE5HzMGwMlBRDbwzjDSNxGxYuIiMi52vkTrJ8FFiv0ewEsFrMTVSoqXkRERM6Fww7fjzLacUMhurW5eSohFS8iIiLnYvX/ICMNgsKg95Nmp6mUVLyIiIiUV/4xmP+s0e41GoJrmhqnslLxIiIiUl6LXoK8wxDRDDrfbXaaSkvFi4iISHkc3Awr3zLa/Z4Hm7+5eSoxtxQvkydPJjY2lqCgIOLj41m5cmW5Xvfpp59isVgYMGCAawOKiIiczdzR4CiBpv2gcYLZaSo1lxcv06dPJzExkbFjx7J69WratWtH3759yczMPOPrdu7cyWOPPUaPHj1cHVFEROTMNv8AW+eB1d/YkE5M5fLi5dVXX2XYsGEMHTqUli1bMnXqVKpWrcq777572tfY7XZuu+02nnnmGRo2bOjqiCIiIqdXUgRzk4z2xfdBRGNz84hri5eioiJSU1NJSDhxe81qtZKQkMDy5ctP+7px48YRGRnJ3XeffTJUYWEh2dnZJz1EREQqzMq34fBWCK4Flz5udhrBxcXLoUOHsNvtREVFnfR8VFQU6enpp3zNTz/9xDvvvMO0adPK1UdycjJhYWFlj5iYmAvOLSIiAsDxg8YKI4DLxxh7u4jpPGq1UU5ODnfccQfTpk0jIiKiXK9JSkoiKyur7LFnzx4XpxQRkUpjwXgozILa7aD9bWankVJ+rnzziIgIbDYbGRkZJz2fkZFBdHT0367ftm0bO3fupH//EwdcORwOI6ifH5s2baJRo0YnvSYwMJDAwEAXpBcRkUrtwO+Q+r7R7vciWG3m5pEyLr3zEhAQQFxcHCkpKWXPORwOUlJS6Nq169+ub968OWlpaaxZs6bsce2119K7d2/WrFmjISEREXEPpxPmjAKc0PoGaPD3zywxj0vvvAAkJiYyZMgQOnXqRJcuXZg4cSK5ubkMHToUgMGDB1O3bl2Sk5MJCgqideuTD7gKDw8H+NvzIiIiLrN+FuxaCn5VIOEZs9PIX7i8eBk0aBAHDx5kzJgxpKen0759e+bMmVM2iXf37t1YrR419UZERCqz4nz44SmjfcnDEK67/p7G4nQ6nWaHqEjZ2dmEhYWRlZVFaGio2XFERMTbLHoJFjwHofXggVUQUNXsRJXCuXx+65aHiIjIH7L2wpJXjfYV41S4eCgVLyIiIn/48WkoyYf6XaHV9WankdNQ8SIiIgKw+2dI+xywQL9ksFjMTiSnoeJFRETE4YDvnzDaHW6HOh3MzSNnpOJFRETkt4/hwBoICDGOARCPpuJFREQqt4Js+LF0L5ee/wfVIs3NI2el4kVERCq3JRMgNxNqNIL4+8xOI+Wg4kVERCqvw9vg5zeNdt/nwS/A3DxSLipeRESk8vrhKbAXQaPLoWlfs9NIOal4ERGRymnbfNg0Gyw2LY32MipeRESk8rGXwJwko93lXqjVzNw8ck5UvIiISOXzy7twcCNUqQG9njA7jZwjFS8iIlK55B0xDl4EuOxfUKW6uXnknKl4ERGRymXB81BwDKJaQ9ydZqeR86DiRUREKo+MdfDLO0a7XzJYbebmkfOi4kVERCoHpxPmjAKnA1r0h4suNTuRnCcVLyIiUjlsnA07FoMtEPo8a3YauQAqXkRExPcVF8APTxrtbg9AjYvMzSMXRMXLubKXmJ1ARETO1c9T4OhOqBYNlySanUYukIqX8so9BJ/fCd//n9lJRETkXOSkw+IJRrvPMxBYzdw8csH8zA7gNTI3wLqZRrvlddCwp7l5RESkfFLGQXEu1O0EbW42O41UAN15Ka+LekCnu4321w9A4XFz84iIyNntS4U1HxntK18Eqz72fIH+L56LPs9AWH04thtSnjE7jYiInInTCd+Xbv3f7lao18ncPFJhVLyci8AQuO4No73ybdj5k7l5RETk9NI+h72rwD8YLh9rdhqpQCpezlXDXhA31Gh/NQKKck2NIyIip1B4HOaNMdqXPgqhtc3NIxVKxcv56DMOQusZy+5SxpmdRkRE/mrpRMg5AOEN4OIRZqeRCqbi5XwEhcK1rxvtFW/BrmXm5hERkROO7oKlpd+j+z4H/kHm5pEKp+LlfDW+HDoOBpylw0d5ZicSERGAeU+BvRBie0Dza8xOIy6g4uVCXDEeQuvCke0wf7zZaUREZMcSWP8VWKzQ7wWwWMxOJC6g4uVCBIVB/9Jbkz9Pgd0/m5tHRKQyc9iNU6PBWFgR3drcPOIyKl4uVJMEaH87ZcNHxflmJxIRqZxWvw8Za40fLHs/aXYacSEVLxWh73MQUhsOb4UFz5mdRkSk8sk/dmL4vtdoCK5pahxxLRUvFaFKOPR/zWgvnwx7VpoaR0SkUnE6YfajkHcYIppB57vNTiQupuKlojTtC+3+AU4HzLpfw0ciIu6S+l9Y+wVYbHDtG2DzNzuRuJhbipfJkycTGxtLUFAQ8fHxrFx5+jsTM2bMoFOnToSHhxMcHEz79u354IMP3BHzwvV7HqpFw+EtsDDZ7DQiIr7vwG/wfekk3YSxUD/e3DziFi4vXqZPn05iYiJjx45l9erVtGvXjr59+5KZmXnK62vUqMGTTz7J8uXL+f333xk6dChDhw5l7ty5ro564apUh/4TjfayN2BvqqlxRER8WkE2fH6nsadL037QdaTZicRNLE6n0+nKDuLj4+ncuTOTJk0CwOFwEBMTw8iRIxk1alS53qNjx45cffXVPPvss2e9Njs7m7CwMLKysggNDb2g7Odtxr3w+3So1RzuXaTdHUVEKprTCV8MhXUzISwG/rkYqtYwO5VcgHP5/HbpnZeioiJSU1NJSEg40aHVSkJCAsuXLz/r651OJykpKWzatIlLL730lNcUFhaSnZ190sN0/V6A4Eg4uBEWvWh2GhER37PqP0bhYvWDG/+rwqWScWnxcujQIex2O1FRUSc9HxUVRXp6+mlfl5WVRbVq1QgICODqq6/mjTfeoE+fPqe8Njk5mbCwsLJHTExMhf4ZzkvVGnDNv4320tdg32pz84iI+JL9a2DuaKOd8AzEdDY1jrifR642CgkJYc2aNaxatYrnnnuOxMREFi5ceMprk5KSyMrKKnvs2bPHvWFPp8U10PpGcNqNzetKCs1OJCLi/Qqy4PMhYC+CZldBV50YXRn5ufLNIyIisNlsZGRknPR8RkYG0dHRp32d1WqlcePGALRv354NGzaQnJxMr169/nZtYGAggYGBFZq7wlz5EuxYBJnrYfHLcNm/zE4kIuK9nE74eiQc3Qlh9WHAFJ1dVEm59M5LQEAAcXFxpKSklD3ncDhISUmha9eu5X4fh8NBYaEX3rkIrglXv2q0l7xq3OoUEZHzs3Kaceii1R9ues9Y4SmVksuHjRITE5k2bRrvv/8+GzZsYPjw4eTm5jJ06FAABg8eTFJSUtn1ycnJzJs3j+3bt7NhwwZeeeUVPvjgA26//XZXR3WNltdCq4HG8NGs+6GkyOxEIiLeZ9/qE/Nc+oyDenHm5hFTuXTYCGDQoEEcPHiQMWPGkJ6eTvv27ZkzZ07ZJN7du3djtZ6ooXJzc7n//vvZu3cvVapUoXnz5nz44YcMGjTI1VFd56oJsGMxZK6DJROg92izE4mIeI/8Y8Z+Lo5iaH4NXDzc7ERiMpfv8+JuHrHPy6msm2n847P6wbAFULut2YlERDyf0wnTb4eN30J4ffjnEuM8OfE5HrPPi/xJq4HQ8jpwlBjDR/ZisxOJiHi+FVONwqVsnku42YnEA6h4caerXoEqNSAjzZjAKyIip7c3FX54ymj3fQ7qap6LGFS8uFO1WnDVy0Z78UuQvtbcPCIinir/6Il5Li2uhS73mp1IPIiKF3drfYMx4cxRAl9p+EhE5G+cTpg1ArJ2Q/VYuG6S9nORk6h4cTeLxdj7pUp14yj3pRPNTiQi4ll+ngKbZoMtAG56H4LCzE4kHkbFixlCoozddwEWvggZ683NIyLiKfasgnljjHbf56FOe1PjiGdS8WKWNjcZ53I4imHWcLCXmJ1IRMRceUfgi6HGsHrLAdD5HrMTiYdS8WIWi8U4eTooDA6sgWWvm51IRMQ8Tqfxg1zWHqh+EVz7hua5yGmpeDFTSPSfho+SIXOjuXlERMyy7A3YPAdsgXDz+xDkQZuMisdR8WK2toOgSV/jePev7tfwkYhUPrtXwI9PG+1+yVC7nalxxPOpeDGbxQL9J0JgGOxLheWTzE4kIuI+eUfgi7uMw2tb3wCd7jI7kXgBFS+eILSO8dMGwILn4eBmc/OIiLiDwwEz/wnZe6FGI7hmoua5SLmoePEU7f8BjfuAvdAYPnLYzU4kIuJay16HLT+AX5Dmucg5UfHiKSwW6P8aBIbC3lXGJk0iIr5q13JIGWe0r3wRotuYm0e8iooXTxJW1zh8DGD+eDi0xdw8IiKukHvoxDyXNjdBxyFmJxIvo+LF03S4AxpdBiUF8NUIDR+JiG/5Y55Lzn6o2UTzXOS8qHjxNBYL9H8dAkJgzwpY8ZbZiUREKs7Sf8PWH0/McwmsZnYi8UIqXjxReAz0HW+0U8bB4W3m5hERqQg7lxpD4gBXvQxRrczNI15LxYun6jgEGvaCkvzS4SOH2YlERM7f8YPw5d3gdEDbW4whcpHzpOLFU5UNH1WD3cth5dtmJxIROT8OB8y8F3IOQEQzuOZVzXORC6LixZNVbwB9SpcSpjwDR7abm0dE5Hz89Apsmw9+VeCm9yAg2OxE4uVUvHi6uKFw0aVQnAdfjdTwkYh4lx1LjJ3DAa5+BaJamptHfIKKF09ntRpHw/sHw66f4Jd3zE4kIlI+xzNPzHNp9w/ocJvZicRHqHjxBtVjoc8zRnveWDiyw9Q4IiJn5bDDjGFwPANqNYerJ7i0u12Hc7nn/V/4z5LtFJXoDrWvU/HiLTrdDQ0ugeJc+FrDRyLi4RZPgO0Lwb8q3PS+S+e5OBxOEj/7jR83ZDB+9gb6TVzMgo2ZLutPzKfixVtYrXDdG8Y3gp1LIPW/ZicSETm17YtgYbLRvvpViGzu0u4+WbWb1F1HqRpgI6JaINsP5TL0vVXc+d+VbM087tK+xRwqXrxJjYZw+VijPW8MHN1lbh4Rkb/KyYAv7wGc0OF2aH+rS7vLzC7ghe83AvDYFc1Y8FhP/nlpQ/xtFhZuOki/iYt59tv1ZOUXuzSHuJeKF2/T5V6o3w2KjhvDR06n2YlERAwOuzFBNzcTIlvClS+7vMtnvllPTkEJbeuFMaRbLCFB/iRd1YIfHulJQotIShxO3vlpB5dNWMgnK3djd+h7pi9Q8eJtrFa4bpKxX8KORZD6ntmJREQMi140hrX9g0vnuVR1aXfzN2YwO+0ANquF5we2wWY9sfHdRRHB/GdIZ96/qwuNI6txOLeIpBlp9H/jJ1ZsP+zSXOJ6Kl68Uc1GcPkYo/3DU3Bsj7l5RES2LYBFLxnt/hOhVlOXdpdbWMJTs9YBcFf3WFrXDTvldT2b1uL7h3owtn9LQoP8WH8gm0Fv/8yIj1ez92ieSzOK66h48Vbx/4SYeCjKgW8e1PCRiJgnJ91YFo3TOJet7c0u7/Lf8zaz71g+dcOr8EifMxdK/jYrQ7tfxMLHe3P7xfWxWmD27we4/JVFvDpvM3lFJS7PKxVLxYu3strgusnGsfLb5sOvH5idSEQqI3sJfHE35B6EqNZw5Ysu7zJtbxbvLjX2uxo/oDVVA/zK9boawQGMH9CG2Q/24OKGNSgscfB6yhYuf2URX63Zh1M/BHoNFS/eLKIJXPYvoz33ScjaZ24eEal8Fr1g7P4dUM2Y5+JfxaXdldgdJM38HYcTrmlbm97NI8/5PVrUDuWTYRcz9faO1KtehQNZBTz06RpumrqctL1ZLkgtFU3Fi7e7+H6o1xkKs+GbhzR8JCLuszXF2IwOoP9rENHY5V2+t2wna/dlExrkx5j+539OksVioV/r2vyY2JPHrmhKFX8bv+w6yrWTf+L/vviNzJyCCkwtFc0txcvkyZOJjY0lKCiI+Ph4Vq5cedprp02bRo8ePahevTrVq1cnISHhjNdXelYbXDcFbIGwdR6s+djsRCJSGWTvPzHPJW4otLnR5V3uO5bPq/M2AzDqyhZEhgRd8HsG+dt44LImLHisFwM71MXphM9+2ctlExbx9uJtOmrAQ7m8eJk+fTqJiYmMHTuW1atX065dO/r27Utm5qm3bl64cCG33norCxYsYPny5cTExHDFFVewb5+GRE6rVlPoPdpoz0kyvqmIiLjKH/Nc8g5DVBvo94LLu3Q6nYyZtZa8IjudGlTnls4xFfr+0WFB/HtQe74c3o129cI4XljC899tpO/ExaRsyNB8GA9jcbr4/0h8fDydO3dm0qRJADgcDmJiYhg5ciSjRo066+vtdjvVq1dn0qRJDB48+KzXZ2dnExYWRlZWFqGhoRec32vYS+DdK2BfKjTpC/+YDhbL2V8nInKufnwGfnoVAkLgn4uM7Rtc7Lu0A9z/0Wr8bRa+e7AHTaJCXNaXw+Fkxq/7eHHORg7mFAJwadNajLmmBY0jXddvZXcun98uvfNSVFREamoqCQkJJzq0WklISGD58uXleo+8vDyKi4upUaPGKX+/sLCQ7Ozskx6Vks2vdPgoALbMhd8+NTuRiPiiLT8ahQvAta+7pXDJyi9m7NfGni7DezZyaeECYLVauDGuHgse68XwXo0IsFlZvPkgfScu4Zlv1pGVp6MGzObS4uXQoUPY7XaioqJOej4qKor09PRyvccTTzxBnTp1TiqA/iw5OZmwsLCyR0xMxd5K9CqRzaFXktGe84Sx94KISEXJ2lc6zwXofA+0vt4t3b5UegekYUQw9/d2/aTgP1QL9OOJfs2Zl3gpfVpGYXc4+e/SnfSasIAPf96lowZM5NGrjV544QU+/fRTZs6cSVDQqSdmJSUlkZWVVfbYs6eS7zbb7UGo0wEKsuCbh7X6SEQqhr0YvrgL8o9AdFu44jm3dJu66wgfrdgNwPiBrQnyt7ml3z9rUDOYaYM78cHdXWgSWY2jecX8a9Zarn59Ccu36agBM7i0eImIiMBms5GRkXHS8xkZGURHR5/xtRMmTOCFF17ghx9+oG3btqe9LjAwkNDQ0JMeldofw0dWf9j8PaR9bnYiEfEF88fDnp8hMBRufh/8L3ylz9kUlThImpEGwI1x9ejWKMLlfZ5JjybGUQPPXNuKsCr+bEzP4dZpPzP8w1T2HNFRA+7k0uIlICCAuLg4UlJSyp5zOBykpKTQtWvX077upZde4tlnn2XOnDl06tTJlRF9U1RL6PWE0f7uceOIehGR87V5LiydaLSvfQNqNHRLt9OWbGdzxnFqBAfw5FUt3NLn2fjZrAzpFsvCx3oxuGsDrBb4fm06l7+6iAlzN5FbqKMG3MHlw0aJiYlMmzaN999/nw0bNjB8+HByc3MZOnQoAIMHDyYpKans+hdffJGnnnqKd999l9jYWNLT00lPT+f48eOujupbuj8MtdtBwTGYnajhIxE5P1l7YeY/jXaXe6HVALd0u+NQLq+lbAHgqWtaUD04wC39llf14ADGXdea7x7qQbdGNSkqcTBpwVYue2UhM3/dq6XVLuby4mXQoEFMmDCBMWPG0L59e9asWcOcOXPKJvHu3r2bAwcOlF3/5ptvUlRUxI033kjt2rXLHhMmTHB1VN9i8z8xfLTxW1j7pdmJRMTb2Ivh86GQf9SYS3fFeLd063Q6eXJmGkUlDno0iWBA+7pu6fd8NI8O5aN74nnrjjhialQhI7uQR6b/xg1vLuO3PcfMjuezXL7Pi7tV2n1eTmfhi7DweahSA0asgGrnfg6IiFRSP/wLlr0BgWHGfi41LnJLt1+m7uXRz38j0M/KD49cSoOawW7p90IVFNt5d+kOJs3fSl6RHTDm6vxf32ZEhrp+jpC385h9XsQD9EiE6DbGCoHZj5qdRkS8xabvjcIFYMBktxUuR3KLGD97PQAPXt7EawoXMI4auL9XYxY81ovrOxp3i75I3UvvCQt5c+E2CkvsJif0HSpefF3Z8JEfbPga1s00O5GIeLpju2HmfUY7fji06O+2rp+bvYGjecU0iwrh3kvdMzG4okWFBvHqze2ZeX832seEk1tk58U5G7ni34v5YV265sNUABUvlUHtttCj9K7L7Ech95C5eUTEc5UUGfNcCo5BnY7QZ5zbul629RBfrt6LxQLJN7TB3+bdH1Ed6ldnxvBuvHpzOyJDAtl1OI97P0jljndWsjkjx+x4Xs27/2ZI+fV4DCJbGQepffeY2WlExFOlPAP7foGgMLjpPfBzzyqfgmI7o2cae7rcHt+AjvWru6VfV7NaLVzf0ThqYETvRgT4Wflp6yGufG0JY79ay7G8IrMjeiUVL5WFXwAMmAIWmzF0tG6W2YlExNNsnA3LjUN0GfAmVG/gtq4nzd/KzsN5RIYE8ni/Zm7r112CA/14vG9zfnykJ/1aRWN3OHl/+S56TVjI/5bvpMTuMDuiV1HxUpnUaW9M4IXS4SNtay0ipY7uhFnDjfbFI6D51W7renNGDlMXbQPgmWtbERrk77a+3a1+zapMvSOOj++Jp1lUCMfyihnz1Tqufv0nlm7VkH55qXipbC59HGq1gLxD8P3/mZ1GRDxB2TyXLKjbCRKedlvXDoeTpBlplDicJLSIpF/rMx8d4yu6NY5g9oOX8Ox1rQiv6s+mjBxu+88K/vnBL+w+rKMGzkbFS2XjF3hi+GjtF7DhG7MTiYjZ5o2B/ashKBxu+q/b5rkAfLJqN6m7jhIcYGPcda2xWCxu69tsfjYrd3Q1jhq4s1ssNquFuesySHh1ES/N2chxHTVwWipeKqO6HaH7Q0b720TIO2JuHhExz4ZvYMWbRnvgVAiv77auM7MLeOH7jQA8ekUz6oRXcVvfniS8agBPX9uK7x/qwSWNIyiyO5iycBuXTVjIl6l7cTi0tPqvVLxUVr1GQa3mkJsJ3z9hdhoRMcORHTBrhNHuNhKaXenW7p/5Zj05BSW0rRfGkG6xbu3bEzWNCuGDu7swbXAnGtSsSmZOIY9+/hsD31zGr7uPmh3Po6h4qaz8Ao3N6yxWSPsMNn5ndiIRcaeSQvj8TijMgnpd4PKxbu1+/sYMZqcdwGa18PzANtislWe46EwsFgt9WkbxwyOXMurK5gQH2PhtzzEGTllG4vQ1ZGQXmB3RI6h4qczqxRk/bQF8+7CGj0Qqkx+eggNroEp1Y56LzX0rfHILS3hq1joA7uoeS+u6YW7r21sE+tm4r2cjFjzei5vi6gEw49d99J6wkMkLtlJQXLmPGlDxUtn1Gg0RTeF4BswdbXYaEXGHdbNg5VtGe+DbEFbPrd3/e95m9h3Lp254FR7p09StfXubyJAgXr6pHV+N6E7H+uHkFdl5ee4m+vx7EXPWVt6jBlS8VHb+QSeGj377BDbPNTuRiLjSke3wdekd1+4PQ9Mr3Nr92n1ZvLt0BwDjB7amaoCfW/v3Vu1iwvlyeDcmDmpPVGgge47kc9+Hqdz2nxVsTM82O57bqXgRiOkMXUsn7X3zEOQfMzWOiLhIcQF8NgQKsyHmYrjsX27tvsTuYNSM33E44Zq2tendLNKt/Xs7i8XCgA51mf9oL0Ze1pgAPyvLth3mqteW8NSstRzNrTxHDah4EUPvJ6FmY8g5AHOfNDuNiLjCD09C+u9QtSbc+K5b57kAvLdsJ2v3ZRMa5MeY/i3d2rcvCQ7049ErmpGS2JOr2kTjcMIHPxtHDby3dAfFleCoARUvYvCvAtdNBiyw5kPYMs/sRCJSkdZ+Cav+Y7QHvg1hdd3a/b5j+bw6bzMAo65sQWRIkFv790UxNaoy5bY4Phl2Mc2jQ8jKL+bpb9Zz1WtLWLLloNnxXErFi5xQ/2K4+H6j/fWDxlbhIuL9Dm+Dr0s3prwkEZokuLV7p9PJmFlrySuy0zm2Ord0jnFr/76ua6OazH6wB88NbE31qv5syTzOHe+s5J73f2HnoVyz47mEihc52WX/ghoNIWe/ho9EfEFxAXw+BIpyoH43Y4jYzb5fm07Kxkz8bRaSr2+DVXu6VDib1cJt8Q1Y+Fhv7up+EX5WCz9uyKDPvxeR/P0GnztqQMWLnCyg6onho18/gK0pZicSkQsxNwnS06BqBNz4Dtjcu7onK7+YsV8be7oM79mIxpEhbu2/sgmr6s+Y/i2Z83APejSJoNju5K1F2+k9YSGf/7LHZ44aUPEif9egG8T/02h//SAUVL5leCI+Ie0L+OVdwALXvw2hddwe4aU5GzmYU0jDiGDu793Y7f1XVo0jQ/jfXV14Z0gnYmtW5WBOIY9/8TsDpiwldZf3HzWg4kVO7fIxUD0WsvfCvKfMTiMi5+rQFmPrA4BLH4PGl7s9QuquI3y0Yjdg7OkS5G9ze4bKzGKxcHmLKH54pCejr2pOtUA/ft+bxQ1vLuPhT3/lQFa+2RHPm4oXObWA4NLhIyD1Pdi2wNQ4InIOivONc4uKjkODS6DnKLdHKCpxkDQjDYCb4urRrVGE2zOIIcDPyr2XNmLBY70Y1CkGiwVmrdnPZRMW8UbKFq88akDFi5xe7CXQeZjR/vpBKMwxN4+IlM/3T0DGWgiuZco8F4BpS7azOeM4NYIDGH1VC7f3L39XKySQF29sy9cjLqFTg+rkF9t5Zd5mLn9lEd+lHfCqowZUvMiZJTwN4fUhazfMc++psyJyHn7/DFa/jzHPZRqERLs9wo5DubyWsgWAp65pQfXgALdnkNNrUy+Mz+/ryuu3dqB2WBD7juVz/0erueXtn1m/3zvmOKp4kTMLrAbXTjLav7wD2xeZm0dETu/gZvjmYaPd8/+gUW+3R3A6nTw5M42iEgc9mkQwoL17N8OT8rFYLFzbrg4pj/bkocubEOhnZcWOI1zzxhJGz0zj8PFCsyOekYoXObuGPaHT3Ub76weg8Li5eUTk74ryjP1cinPhokuh5xOmxJixeh/Lth0m0M/K+AGtsVi0p4snqxrgxyN9mpLyaE+ublsbhxM+XrGb3hMW8u5PnnvUgIoXKZ8+z0BYfTi2G1KeMTuNiPzV949D5noIjoTr/wNW96/sOZJbxPjZ6wF48PImNKgZ7PYMcn7qVa/K5H90ZPq9F9OydijZBSWM+3Y9/SYuZtFmzztqQMWLlE9gCFz7utFe+Tbs/MncPCJywppP4NcPwWKFG/4DIVGmxHhu9gaO5hXTLCqEey9taEoGuTDxDWvyzchLSL6+DTWCA9h2MJch767k7vdWsf2g59x1V/Ei5deoN8TdabS/GgFFvnlmhohXydwIsxONds9RxjCvCZZtPcSXq/disUDyDW3wt+njxVvZrBZu7VKfBY/14p5LjKMGUjZm0nfiYp7/bgPZBcVmR1TxIueoz7MQWg+O7oSUcWanEancinJL57nkQcNexmZ0JigotjN6prGny+3xDehYv7opOaRihVXx51/XtGTuI5fSq1ktiu1O3l68ncsmLGT6qt3YTTxqQMWLnJugULj2NaO9YirsWmZuHpHK7LvH4eBGqBZlLIs2YZ4LwKT5W9l5OI/IkEAe79fMlAziOo1qVeO9oV34752daRgRzKHjRbw8dzN5ReYd9uj+nYvE+zVOgA53GAc3fjUC7ltqHOgoIu7z60ew5qPSeS7vQLVIU2Jszshh6qJtADxzbStCg/xNySGu17t5JN0bR/C/5TupFRJIiIn/r91y52Xy5MnExsYSFBREfHw8K1euPO2169at44YbbiA2NhaLxcLEiRPdEVHOVd/nILQuHNkO88ebnUakcsncALMfNdq9RsNFPUyJ4XA4SZqRRonDSUKLKPq1dv+GeOJeAX5W7unRkOtM3r/H5cXL9OnTSUxMZOzYsaxevZp27drRt29fMjMzT3l9Xl4eDRs25IUXXiA6Wv8QPFZQGPQvHT76eQrs/tncPCKVReFx+GwIlORDo8ugx6OmRflk1W5Sdx0lOMDGuOtaaU8XcRuL08WHGcTHx9O5c2cmTTJ2aXU4HMTExDBy5EhGjTrzYWGxsbE8/PDDPPzww+XuLzs7m7CwMLKysggNDb2Q6FIes+43bl3XbAz3/QT+VS7o7ewOJ+8v28nafVnUCgmkVkggkaFBRIYEElX6a3CgRjulknI6YeZ98PunEFIb/rkEqtUyJUpmdgGXv7qInIISxlzTkrsuuciUHOI7zuXz26WfAkVFRaSmppKUlFT2nNVqJSEhgeXLl7uya3GXvs/BtvlweCsseA6uOP8hpMycAh76ZA3Ltx8+43XBAbaygqbs1z8VN5GhxvMhgX76SVB8y68fGoVL2TwXcwoXgGe+WU9OQQlt64UxpFusaTmkcnJp8XLo0CHsdjtRUSdvmBQVFcXGjRsrpI/CwkIKC0+cwZCd7R2HSvmMKtWN4aOPb4blk6HFtRDT5ZzfZunWQzz06RoOHS8kOMDG0O4XkV9sJyO7gMycQg7mFJKRXUBekZ3cIjs7DuWy49CZ95kJ8rcSGXLirk2tPwqbkCCiSn+NDAkkvKq/ihzxfBnr4LvSpdCX/Qtiu5sWZf7GDGanHcBmtfD8wDbYrPr3I+7l9fffk5OTeeYZbVdvqqZ9od2t8NsnxjDSfUvKPXxkdzh5Y/4WXkvZgtMJzaNDmHxbRxrVqnbK648XlpBZWtBk5hSeaGcXkJFdSGaO8d85BSUUFDvYfSSP3UfyzpghwGb9U2FzcnFTK/TEXZ0aVQOw6pu0mKEwp3SeS4Gx2q/7I6ZFyS0s4alZ6wC4+5KLaF03zLQsUnm5tHiJiIjAZrORkZFx0vMZGRkVNhk3KSmJxMTEsv/Ozs4mJiamQt5bzkG/ZNi2AA5vgYXJ0OfsG9hl5hTw8KdrWLbNGCa6tUsMY/u3Isj/9HtVVAv0o1qtajQ8TXHzh/wie1khk1la1PxR3BwsfS4jp4BjecUU2R3sO5bPvmP5Z3xPP6uFiGon7t5Ehv5luKr0uZrBAfhpd1GpKE4nfPuI8W8rpA4MfBus5v39+ve8zew7lk/d8Co8nNDEtBxSubm0eAkICCAuLo6UlBQGDBgAGBN2U1JSeOCBByqkj8DAQAIDAyvkveQCVKkO1/wbPr0Vlr0BLa6DenGnvXzZ1kM8WDpMVDXAxvMD2zCgQ8UtvasSYKNBzeCzHgxXWGIvHZIq5OCfip2MP93dOZhTwKHjRZQ4nKRnF5CeXQBknfY9rRaoWS3wb3Nxav1l4nGtkEBtoS5nt/p9SPscLDa46b8QXNO0KGv3ZfHu0h0AjB/YmqoBXn/zXryUy//mJSYmMmTIEDp16kSXLl2YOHEiubm5DB06FIDBgwdTt25dkpOTAWOS7/r168va+/btY82aNVSrVo3GjRu7Oq5ciOZXQZubIe0z+Op+uHcR+AeddInd4WTS/K28lrIZhxOaRRnDRI0jz3wnxVUC/WzUq16VetXPvMlesd3BoeN/3MUp/NNcnIKyuziZ2YUcOl6IwwkHS+fprDtL/zWCA8488TjEmKtzprtR4sPS0+C7/zPal4+B+hebFqXE7mDUjN9xOOGatrXp3cycTfFEwA3Fy6BBgzh48CBjxowhPT2d9u3bM2fOnLJJvLt378b6p1ug+/fvp0OHDmX/PWHCBCZMmEDPnj1ZuHChq+PKhbryRdi+0NiyfNGLkDC27LcO5hTy8PRfWbrVGCYa1CmGp69tRZUAz/9g9rdZqR1WhdphZ57LY3c4OXy8dD7OH4XNn+bi/DE/52BOISUOJ0dyiziSW8TG9Jwzvm9YFf+/3MX5+8TjyNBA/STsSwpz4PM7wV4ITa6Abg+aGue9ZTtZuy+b0CA/xvRvaWoWEZfv8+Ju2ufFA2z4FqbfZiznvOdHqBvHsm3GaqKDOYVU8bfx3MDWXN+xntlJTeNwODmaV/SXuzil7T8XO9mFFNkd5X7fkEC/sknGJxU3ocYw1R/FTzUtI/dsTid8eTes/dI4CPW+JVC1hmlx9h3Lp8+ri8grsvP8wDb8I76+aVnEd3nMPi9SSbW4BlrfAGu/xDlrBFOavsMr83f+aZioA40jQ8xOaSqr1ULNaoHUrBZIi9qn/0fqdDrJyi8+xVycgr+stiokv9hOTmEJOQdL2H7wzMvIq/jbiAwNpElkCGP7tySmhs6m8iip/zUKF6ufMc/FxMLF6XQyZtZa8orsdI6tzi2dtSBCzKfiRVzjypdxbFuE9eAG7AdewuG82auGiTyFxWIhvGoA4VUDaBp1+oLP6XRyvLDkpBVVJ+7inBjCyswp5HhhCfnFdnYdzmPX4Tx+3X2UaUM60bF+dTf+yeS0DvwG35fuPn752PPaN6kifb82nZSNmfjbLCRf30bbBYhHUPEiLrE8HWYV3cmLTOB+29e06n0bl1/e1uxYPstisRAS5E9IkP9ZJz/nFZWQmV3I/qx8npu9gXX7s7n17Z959eb2XN22tpsSyykVZJ+Y59L0Sug20tQ4WfnFjP3amHY+vGejSn/HVDyH1mlKhXI4nLyRsoXb/vMz03M7stDvEvwsDi7f9DSUFJkdT4CqAX7ERgTTrVEEn/2zKwktIikscTDi49VMXrAVH5sG5z2cTvjmQeOk9rAYGDAFTJ6X9NKcjRzMKaRhRDD399ZqT/EcKl6kwhw6XsiQ/67klXnGMuib4urRZcQ7ULUmZK6DJRPMjih/ERzox1t3dGJo91gAXp67iSe+/J2ikvJPEpYKsuo/sG6mMc/lRnPnuQCk7jrCRyt2A8aeLlquL55ExYtUiJ+3H+aq15awZMshqvjbmHBTO16+qR1Vq0fDVaVFy5JX4MDv5gaVv7FZLYzt34px17XCaoHPftnLnf9dSVZesdnRKo/9v8Lc0Ua7zziI6WxqnKISB0kz0gDjh5BujSJMzSPyVype5II4HE4mL9jKP6b9TGZOIU0iq/H1A925Me5Py6BbDTQObHSUGGcf2fWh6IkGd43lnSGdCQ6wsWzbYa5/cym7D5/5XCipAAVZpfNciqDZ1XDx/WYnYtqS7WzOOE6N4ABGX9XC7Dgif6PiRc7b4dJhopfnbsLhhBs61uOrB7rT5K+rYiwWuPoVqFIDMtJgyavmBJaz6t08ks/v60btsCC2Hcxl4JSlpO46anYs3+V0wlcPwNGdEF4fBkw2fZ7LjkO5vJayBYCnrmlB9eAAU/OInIqKFzkvK7Yf5qrXjWGiIH8rL9/Ylldubnf6HV6rRcJVLxvtxS9B+lr3hZVz0rJOKLNGdKd13VAO5xZx67Sf+ea3/WbH8k0rp8GGr8HqDze+Z5wRZiKn08mTM9MoKnHQo0kEA9pX3HljIhVJxYuckz+GiW6d9jMZ2YU0jqzG1w9cwk2dyrFxVesboPk1xvDRVxo+8mRRoUGlK5GiKCpxMPKTX7USqaLtW31inssVz57xIFN3mbF6H8u2HSbQz8r4Aa21C7N4LBUvUm6Hjxcy9L1VZcNE13esy9cPdD/j5mknsVjg6lchKNzYiGvpRFfGlQtUNcCPt+6I4+5LLgKMlUiPf6GVSBUi/5gxz8VRDC36Q/x9ZifiSG4R42cbh+I+lNDkrCeyi5hJm9RJuazaeYSRH/9KenYBQf5Wxl3Xmpvi6p37T2YhUcbw0YxhsPBFY4JilA55c4vC45C9H7L3lf66HwqzISjUKCiDwqHKn38NwxYUzlPXtCQ2IpixX63li9S97Duaz9Tb4wir6m/qH8drOZ3w1Qg4tgvCG8C1k0yf5wLw3OwNHM0rpnl0CMN6NDQ7jsgZqXiRM3I4nExdvI1XftiM3eGkUa1gptwWR7PoC9hps81NsHYGbP4eZg2He1LApr+K583pNFas/FGQlBUnfypSsvdDYdb5vb9/Ve4ICmdgZDU2HbNyZE9Vfn41jK6tGhEaHvGXgiccgsJOtP2reMQHs0dZMRU2fgu2ALjpPeNrZbJlWw/x5eq9WCzw/PVt8Lfpprx4Nn1iyGkdyS0i8bM1LNx0EICBHeoyfkBrggMv8K+NxQLX/BumLIMDa2DZa9Dj0QsP7IucTsg7fJqCZB9kHzDaxWc+iLFMYCiE1jnxCAwz7r4UHDOGMgqOQX6WUQz9UewU50FxHtWAOAtgA0qA3xacvT9bgFHMnK64Oe1zYUZWXyt89qbCD08Z7Sueg7odzc0DFBTbGT3T2NPl9vgGOuNKvIKKFzmlX3Ye4YHSYaJAPyvjrmvFzZ1iKm4CX2ht6PcizLoPFr5gDB9FNq+Y9/YWDjvkHjxFQfKX4sReWL73q1Lj5MIktO7J7ZDaxhDRueQryDIKmoKssuIm++hBvly2nvzsw1S35nFpjB91AwtPXJtfer3TbuxdknvQeJwri/VE4VPegico3FixExQGVg/bETb/6Il5Li2vgy7DzE4EwKT5W9l5OI/IkEAe79fM7Dgi5aLiRU7icDh5e8l2Xp67CbvDScNawUy5rSPNo8/hQ6+82t1ibIe+Za6x+uiuH3xn+MheDDnppylIStvH042VV+URHHnqguTPxYp/lYr9M1htxhb1f9mmPhQY1KWEhz9dww/rM2AbPNqnKQ9c1vhEcet0QtHxP93NOfaX4uY0z/1RJNkLwekwPvDzz3OfmcDQv9z1CTvlvJ5TPucXeH59no7TCbNGQNZuqH4RXPuGR9xV2pyRw9RF2wAYd10rQoM0j0m8g8XpY2sfs7OzCQsLIysri9BQF3zg+rAjuUU8+tkaFpQOEw1oX4fnBra58GGiM8neD5MvNoYoEp6BSx52XV8VpbgAcv4oRg6cekjneAZQjn9aFqtxRyS0TumvpyhOQmqDn+dtFGZ3OHnh+w1MW7IDMDYpTL6+DQF+FTBfojj/7wXN2QqeP54r7xDamfhVKccdntM851/174XJsknww5PGMNrd86BO+wvPeIEcDic3vbWc1F1HSWgRxbTBcVoaLaY6l89vH/kxVy7ULzuPMPKTXzmQ5aJhotMJrQP9njdWXyx4HppdBbWaurbPMynKPcOk19J23uHyvZfV3xgeO+XdktJfgyO99m6TzWrhyatb0qBmMGO/XseXq/ey92geb90RR3jVCyy2/KsYj9Da5/7akiJjHs9JBc9f238tiEqfK8gGnFCSDzn5kHPg3Pu3+p9c8ASFwY5Fxu/1fd4jCheAT1btJnXXUYIDbIy7rpUKF/EquvNSyf1tmCgimMm3daRFbTd+7ZxO+OhG2Poj1OsMd82t+PkKp1qRk3Pg78VJQTlX5PhVOf3wzR/PVY0Aa+VYtbFo80FGfLSa44UlNIwI5t07OxMb4YX7hDjsfyp8zmGY64/nnPbTv3er6+HGdz1iuCgzu4DLX11ETkEJY65pyV2le/mImOlcPr9VvFRiR3OLePTz35i/MROA60qHiaq5cpjodLL2wpSuxgfHFeOh28jyv9bphLwjZ75bci4rcgKq/f0OyV/bVap7xIeQJ9mYns3d7/3CvmP5VK/qz9uDO9E5tsbZX+grnE7jzt2pCh6n3dgioKLnJZ2nER+tZnbaAdrWC2Pm/d2xWfV3Wcyn4kXFy1ml7jrKyI9Xsz+rgAA/K89c24pbOrthmOhMVv8Pvh4JfkFw308Q0eQMK3IOnFyclHtFTvXTFyQhpb+ey4ocOUlmTgH3vP8Lv+/NIsBm5eWb2nKdzsfxKPM3ZnDXe79gs1r4akR3WtcNMzuSCKDiRcXLGTgcTv7z03ZemrOJktJhokn/6EjLOh7wtXI64cPrYdt8Yy6IX6AxtFPuFTm1znC3pHSpcEBV1/4ZhPwiOw9P/5W56zIAeCShKQ9e3lhzKjxAbmEJV/x7MfuO5XPvpQ0ZfVULsyOJlNGEXTmlY3lFPPrZb6SUDhNd264Oz19v0jDRqVgs0P91Y/goN/NPz1uhWvTp9y8JrQMh0RW/vFXOS5UAG2/eFscLczby9uLt/PvHzew6nEvyDW0I9POwvVcqmX/P28y+Y/nUDa/CwwlNzI4jct485FNLXG317qOM/PhX9h3LJ8DPytP9W3FrF5OHiU4lPAaGzYeDG04M41SL8toVOZWV1Wph9FUtiK0ZzFNfrWXGr/vYeyyft26Po3qw5y37rgzW7svi3aXGsvbxA1tTNUD/psR76W+vj3M6nfxnyQ5enLOREoeTiyKCmfSPDrSq48Hj3LWamrtcWirMP+LrU696FUZ8tJqVO45w/ZvLePfOzlzkjSuRvFiJ3cGoGb/jcMI1bWvTu1mk2ZFELkjlWMdZSR3LK2LY/37hue82UOJwck3b2nz9QHfPLlzE51zatBZfDO9G3fAq7DiUy8ApS1m544jZsSqV95btZO2+bEKD/BjTX6e4i/dT8eKjVu8+ytWv/8SPGzIJ8LPy3MDWvHFrB0K0/beYoFl0CDNHdKNdvTCO5RVz+39WMPPXvWbHqhT2Hcvn1XmbAUi6qgWRIUEmJxK5cCpefIwxTLSdm6cuZ9+xfGJrVmXG8G7cFt/A8+a3SKUSGRLEp/d25crW0RTZHTwy/Tf+PW8zPrbg0aM4nU7GzFpLXpGdzrHVGdQpxuxIIhVCxYsPycorZtj/Uhk/2xgmurptbb4ZeYn2cRCPUSXAxuR/dOSfPRsC8FrKFhI/+43CkjPsTCvn7fu16aRszMTfZiH5+jZYtRmd+AhN2PURv+4+ygN/rCayWXmqf0tuj6+vuy3icaxWC0lXGiuR/jVrLTN/3ce+o/m8dYdWIlWkrPxinv56HQDDezaicWSIyYlEKo7uvHg5p9PJOz/t4Oa3jGGiBjWrMuP+btxxsYaJxLPd2qU+7w/tQkigHyt3HmHglKVsP3jc7Fg+46U5G8nMKaRhRDD3925sdhyRCqXixYtl5RVz7wepPPvteortTq5uU5tvNUwkXuSSJhF8eb+xEmnn4Tyuf3MZK7aX89RuOa3UXUf4aMVuAJ4b2IYgf20OKL5FxYuXWrPnGFe/sYR56zMIsFl59rpWTPqHVhOJ92kaFcKsEd1pHxNurER6ZwUzVmsl0vkqKnGQNCMNgJvi6tG1UU2TE4lUPBUvXsbpdPLuTzu4aeoy9h7Np36N0mGirrEaJhKvVSskkE/vvZir2kRTbHeS+NlvvKqVSOdl2pLtbM44To3gAJ1dJD7LLcXL5MmTiY2NJSgoiPj4eFauXHnG6z///HOaN29OUFAQbdq04bvvvnNHTI+XlVfMPz9IZVzpMNFVbaL59kENE4lvCPK3MenWjgzv1QiA11O28PD0NRQUayVSee04lMtrKVsAeOqaFpoALT7L5cXL9OnTSUxMZOzYsaxevZp27drRt29fMjMzT3n9smXLuPXWW7n77rv59ddfGTBgAAMGDGDt2rWujurRfisdJvqhdJjomWtbMfkfHQnVMJH4EKvVwhP9mvPiDW3ws1r4as1+bv/PCo7kFpkdzeM5nU6enJlGUYmDHk0iGNC+rtmRRFzG4nTxfdn4+Hg6d+7MpEmTAHA4HMTExDBy5EhGjRr1t+sHDRpEbm4u3377bdlzF198Me3bt2fq1Kln7e9cjtT2Bk6nk/eX7eS57zZQbHcSU6MKk//Rkbb1ws2OJuJSS7ce4r4PU8kpKKFBzaq8e2dnGtWqZnYsj/Vl6l4e/fw3Av2s/PDIpTSoqfOjxLucy+e3S++8FBUVkZqaSkJCwokOrVYSEhJYvnz5KV+zfPnyk64H6Nu372mv92VZ+cUM/3A1T39jDBNd2Tqab0f2UOEilUL3xhHMGN6NetWrsOtwHtdPWcbybVqJdCpHcosYP3s9AA8lNFHhIj7PpcXLoUOHsNvtREVFnfR8VFQU6enpp3xNenr6OV1fWFhIdnb2SQ9f8PveY1zzxhLmrEvH32bhmWtbMeW2joRV0TCRVB5NSlcidagfTlZ+MYPfXcGXqVqJ9FfPzd7A0bximkeHMKxHQ7PjiLic1682Sk5OJiwsrOwRE+PdZ3c4nU7eW7qDG95cxp4j+cTUqMKXw7sxpJtWE0nlFFEtkE+GXczVbWtTbHfy6Oe/8coPm7QSqdSyrYf4cvVeLBZ4/vo2+Nu8/tu6yFm59G95REQENpuNjIyMk57PyMggOjr6lK+Jjo4+p+uTkpLIysoqe+zZs6diwpsgu6CY+z86MUzUt1WUholEMFYivXFLB0b0NlYivTF/Kw9+qpVIBcV2Rs809nS5Pb4BHetXNzmRiHu4tHgJCAggLi6OlJSUsuccDgcpKSl07dr1lK/p2rXrSdcDzJs377TXBwYGEhoaetLDG6XtzeKa13/i+7XGMNHY/i2ZenucholESlmtFh7v25yXbmyLn9XCN7/t57b/rODw8UKzo5lm0vyt7DycR2RIII/3a2Z2HBG3cfn9xcTERKZNm8b777/Phg0bGD58OLm5uQwdOhSAwYMHk5SUVHb9Qw89xJw5c3jllVfYuHEjTz/9NL/88gsPPPCAq6Oawul08r/lO7nhzWXsPpJHvepV+OK+bgztfpGGiURO4eZOMfzvri6EBvmRuusoA6csY2tm5TsTaXNGDlMXbQNg3HWttG2CVCouP1V60KBBHDx4kDFjxpCenk779u2ZM2dO2aTc3bt3Y7WeqKG6devGxx9/zL/+9S9Gjx5NkyZNmDVrFq1bt3Z1VLfLLigm6cs0ZqcdAKBvqyheurGd7raInEW3xhHMuL87Q99bye4jeVw/ZSlT74ijW6MIs6O5hcPhJGlGGiUOJwktoujb6tTD6iK+yuX7vLibt+zzsnZfFiM+Xs2uw3n42ywkXdmCod01KVfkXBw+Xsiw//3C6t3H8LNaSL6+DTd18u5J++Xx0YpdPDlzLcEBNuYl9qROeBWzI4lcMI/Z50X+zul08sHynVw/ZRm7DudRN7wKn9/Xjbsu0TCRyLmqWS2Qj4ddzDVta1PicPL4F7/z8tyNOBw+9TPZSTKzC3jh+40APHpFMxUuUim5fNhITsgpKGbUjDRm/24ME/VpGcWEG9sRVlXDRCLnK8jfxuu3dCC2ZjCTFmxl8oJt7Dqcx4Sb2hHkbzM7XoV75pv15BSU0LZeGEO6xZodR8QUKl7c5M/DRH5WC0lXteAuDROJVAir1cJjfZvRoGZVRs9M49vfD7D/WD7TBneiZrVAs+NVmPkbM5iddgCb1cLzA9tgs+r7h1ROGjZyMafTyQc/7/rLMFFX7tYwkUiFu6lTDP+7K57QID9W7z7GgClL2ZqZY3asCpFbWMJTs9YBcPclF+k0eanUVLy4UE5BMSM/+ZWnZq2lyO4goUUUsx+8hA7aSErEZbo2qsnMEd2pX6Mqe47kM3DKMpZtPWR2rAv273mb2Xcsn7rhVXg4oYnZcURMpeLFRdbtz6L/Gz/x7e8H8LNa+NfVLZg2OI7wqgFmRxPxeY1qVWPm/d2Ia1CdnIISBr+7ks9Wee/u22v3ZfHu0h0AjB/YmqoBGvGXyk3FSwVzOp18tGIXA6csY2fpMNFn93Xlnh4NNUwk4kY1qwXy0T3xXNuuDiUOJ//35e+8NMf7ViKV2B0kzUjD4YRr2tamd7NIsyOJmE7lewU6XlhC0ow0vvltPwAJLSKZcFM73W0RMUmQv43XbmlPbEQwr6dsYcpCYyXSKzd7z0qk95btJG1fFqFBfozp39LsOCIeQcVLBVm/P5sRH69mx6Fc/KwWnujXnHt6aFKuiNksFguJfZrSoEZVRs34ndlpB9ifZaxEivDwlUj7juXz6rzNACRd1YLIkCCTE4l4Bg0bXSCn08nHK3YzYMpSdhzKpU5YENP/2ZVhl2qYSMST3BBXjw/ujiesij+/7j7GgMlL2ZLhuSuRnE4nY2atJa/ITufY6gyqBDsHi5SXipcLcLywhIc+XcPomWkUlTi4rHkksx/sQVwDrSYS8UQXN6zJzPu7EVuzKnuP5nP9lGX8tMUzVyJ9vzadlI2Z+NuMYw+s2tNFpIyKl/O04UA2177xE1//th+b1ULSlc35z+BOVA/W/BYRT9awVjVm3N+dzrHVySks4c7/ruTTlbvNjnWSrPxinv7a2NNleM9GNI4MMTmRiGdR8XKOnE4nn67czYDJS9l+KJfaYUF89s+L+WfPRvrJSMRL1AgO4MN74hnQ3liJNGpGGsnfb/CYlUgvzdlIZk4hDSOCub93Y7PjiHgcTdg9B7mFJTw5M41Za4zVRL2b1eLVm9vrbouIFwr0s/HvQcZKpIk/buGtRdvZfTiPV29uT5UA81Yipe46wkcrjDtBzw1s4zWrokTcScVLOW3OyOG+D1PZfjAXm9XC//VtxrAeDXW3RcSLWSwWHk5oSoOaVXniizS+X5vO/qyfmTY4zpSVPUUlxp4uADfF1aNro5puzyDiDTRsVE5OJ+w/lk90aBDT79UwkYgvGdihHh/eE094VX9+23OMgZOXsdmElUjTlmxnc8ZxagQHMPqqFm7vX8RbqHgpp2bRIbx9Rye+e6gHnWJrmB1HRCpYl4tqMPP+7lwUEcy+Y/ncMGUZS7YcdFv/Ow/l8lrKFgCeuqaFhqNFzkDFyzm4tGktaugbiojPuigimBnDu9HlohqlK5FW8fEK169EcjqdPDnL2HKhR5MIBrSv6/I+RbyZihcRkT+pHhzAB3d3YWCHutgdTkbPTOP571y7EmnG6n0s3XqYQD8r4we01gaXImeh4kVE5C8C/Wy8enM7HkloCsDbi7cz/KNU8ovsFd7Xkdwixs9eD8BDCU1oUDO4wvsQ8TUqXkRETsFisfBQQhNeu6U9ATYrc9dlcMvby8nMKajQfp6bvYGjecU0jw5hWI+GFfreIr5KxYuIyBlc174uHw2Lp3pVf37bm8XAycvYlF4xK5GWbT3El6v3YrHA89e3wd+mb8ki5aF/KSIiZ9E51liJ1PCPlUhvLmPR5gtbiVRQbGf0TGNPl9vjG9Cxvs5EEykvFS8iIuUQGxHMjPu7EX9RDY4XlnDXe6v48Odd5/1+k+ZvZefhPKJCA3m8X7MKTCri+1S8iIiUU3jVAD64O57rOxorkf41ay3PzV6P/RxXIm3OyGHqom0APHNtK0KD/F0RV8RnqXgRETkHAX5WXrmpHY/2MVYiTVuyg+EfppJXVFKu1zscTpJmpFHicJLQIoq+raJdGVfEJ6l4ERE5RxaLhZGXl65E8rPyw/oMBr31M5nZZ1+J9Mmq3aTuOkpwgI1x17XSni4i50HFi4jIebqufV0+vieeGsEBpO3LYsDkpWw4kH3a6zOzC3jh+40APHpFM+qEV3FXVBGfouJFROQCdIqtwcz7u9GwVjD7swq4aepyFm7KPOW1z3yznpyCEtrWC2NIt1j3BhXxISpeREQuUIOawcwc3p2LG55YifTBX1Yizd+Ywey0A9isFpKvb4NNp9KLnDcVLyIiFSCsqj//uyueG+Pq4XDCU7PW8uy3xkqk3MISnpq1DoC7L7mIVnXCTE4r4t38zA4gIuIrAvysvHxjWy6KCObluZt456cd7DqcR+2wIPYdy6dueBUeTmhidkwRr6fiRUSkAlksFkb0bkz9GlV59PPf+HFDRtnvjR/YmqoB+rYrcqE0bCQi4gL929Xhk2HGSiSAa9rWpnezSJNTifgGlxUvR44c4bbbbiM0NJTw8HDuvvtujh8/fsbXvP322/Tq1YvQ0FAsFgvHjh1zVTwREZeLa1CDb0ZewnMDW/PiDW3NjiPiM1xWvNx2222sW7eOefPm8e2337J48WLuvffeM74mLy+Pfv36MXr0aFfFEhFxq7rhVbgtvgHBgRouEqkoFqfTeW6HcpTDhg0baNmyJatWraJTp04AzJkzh6uuuoq9e/dSp06dM75+4cKF9O7dm6NHjxIeHn5OfWdnZxMWFkZWVhahoaHn+0cQERERNzqXz2+X3HlZvnw54eHhZYULQEJCAlarlRUrVlRoX4WFhWRnZ5/0EBEREd/lkuIlPT2dyMiTJ6b5+flRo0YN0tPTK7Sv5ORkwsLCyh4xMTEV+v4iIiLiWc6peBk1ahQWi+WMj40bN7oq6yklJSWRlZVV9tizZ49b+xcRERH3OqcZZI8++ih33nnnGa9p2LAh0dHRZGaefLZHSUkJR44cITq6Yo9/DwwMJDAwsELfU0RERDzXORUvtWrVolatWme9rmvXrhw7dozU1FTi4uIAmD9/Pg6Hg/j4+PNLKiIiIoKL5ry0aNGCfv36MWzYMFauXMnSpUt54IEHuOWWW8pWGu3bt4/mzZuzcuXKstelp6ezZs0atm7dCkBaWhpr1qzhyJEjrogpIiIiXshl+7x89NFHNG/enMsvv5yrrrqKSy65hLfffrvs94uLi9m0aRN5eXllz02dOpUOHTowbNgwAC699FI6dOjA119/7aqYIiIi4mVcss+LmbTPi4iIiPcxfZ8XEREREVdR8SIiIiJeRcWLiIiIeBUVLyIiIuJVfO6Y0z/mH+uMIxEREe/xx+d2edYR+VzxkpOTA6AzjkRERLxQTk4OYWFhZ7zG55ZKOxwO9u/fT0hICBaLpULfOzs7m5iYGPbs2aNl2C6kr7N76OvsHvo6u4++1u7hqq+z0+kkJyeHOnXqYLWeeVaLz915sVqt1KtXz6V9hIaG6h+GG+jr7B76OruHvs7uo6+1e7ji63y2Oy5/0IRdERER8SoqXkRERMSrqHg5B4GBgYwdO5bAwECzo/g0fZ3dQ19n99DX2X30tXYPT/g6+9yEXREREfFtuvMiIiIiXkXFi4iIiHgVFS8iIiLiVVS8iIiIiFdR8VJOkydPJjY2lqCgIOLj41m5cqXZkXzO4sWL6d+/P3Xq1MFisTBr1iyzI/mk5ORkOnfuTEhICJGRkQwYMIBNmzaZHcvnvPnmm7Rt27ZsI6+uXbvy/fffmx3L573wwgtYLBYefvhhs6P4lKeffhqLxXLSo3nz5qblUfFSDtOnTycxMZGxY8eyevVq2rVrR9++fcnMzDQ7mk/Jzc2lXbt2TJ482ewoPm3RokWMGDGCn3/+mXnz5lFcXMwVV1xBbm6u2dF8Sr169XjhhRdITU3ll19+4bLLLuO6665j3bp1ZkfzWatWreKtt96ibdu2ZkfxSa1ateLAgQNlj59++sm0LFoqXQ7x8fF07tyZSZMmAcb5STExMYwcOZJRo0aZnM43WSwWZs6cyYABA8yO4vMOHjxIZGQkixYt4tJLLzU7jk+rUaMGL7/8MnfffbfZUXzO8ePH6dixI1OmTGH8+PG0b9+eiRMnmh3LZzz99NPMmjWLNWvWmB0F0J2XsyoqKiI1NZWEhISy56xWKwkJCSxfvtzEZCIVIysrCzA+WMU17HY7n376Kbm5uXTt2tXsOD5pxIgRXH311Sd9r5aKtWXLFurUqUPDhg257bbb2L17t2lZfO5gxop26NAh7HY7UVFRJz0fFRXFxo0bTUolUjEcDgcPP/ww3bt3p3Xr1mbH8TlpaWl07dqVgoICqlWrxsyZM2nZsqXZsXzOp59+yurVq1m1apXZUXxWfHw87733Hs2aNePAgQM888wz9OjRg7Vr1xISEuL2PCpeRCqxESNGsHbtWlPHrn1Zs2bNWLNmDVlZWXzxxRcMGTKERYsWqYCpQHv27OGhhx5i3rx5BAUFmR3HZ1155ZVl7bZt2xIfH0+DBg347LPPTBkGVfFyFhEREdhsNjIyMk56PiMjg+joaJNSiVy4Bx54gG+//ZbFixdTr149s+P4pICAABo3bgxAXFwcq1at4rXXXuOtt94yOZnvSE1NJTMzk44dO5Y9Z7fbWbx4MZMmTaKwsBCbzWZiQt8UHh5O06ZN2bp1qyn9a87LWQQEBBAXF0dKSkrZcw6Hg5SUFI1di1dyOp088MADzJw5k/nz53PRRReZHanScDgcFBYWmh3Dp1x++eWkpaWxZs2askenTp247bbbWLNmjQoXFzl+/Djbtm2jdu3apvSvOy/lkJiYyJAhQ+jUqRNdunRh4sSJ5ObmMnToULOj+ZTjx4+fVMXv2LGDNWvWUKNGDerXr29iMt8yYsQIPv74Y7766itCQkJIT08HICwsjCpVqpicznckJSVx5ZVXUr9+fXJycvj4449ZuHAhc+fONTuaTwkJCfnbfK3g4GBq1qypeVwV6LHHHqN///40aNCA/fv3M3bsWGw2G7feeqspeVS8lMOgQYM4ePAgY8aMIT09nfbt2zNnzpy/TeKVC/PLL7/Qu3fvsv9OTEwEYMiQIbz33nsmpfI9b775JgC9evU66fn//ve/3Hnnne4P5KMyMzMZPHgwBw4cICwsjLZt2zJ37lz69OljdjSRc7Z3715uvfVWDh8+TK1atbjkkkv4+eefqVWrlil5tM+LiIiIeBXNeRERERGvouJFREREvIqKFxEREfEqKl5ERETEq6h4EREREa+i4kVERES8iooXERER8SoqXkRERMSrqHgRERERr6LiRURERLyKihcRERHxKipeRERExKv8PyT/Es22fGTvAAAAAElFTkSuQmCC\n"
          },
          "metadata": {}
        }
      ],
      "source": [
        "import matplotlib.pyplot as plt\n",
        "import torch\n",
        "\n",
        "absc = [i for i in range(len(passages))]\n",
        "plt.clf()\n",
        "values = [t.item() for t in similarity]\n",
        "plt.plot(absc, values)\n",
        "plt.plot(absc, [res_scores[i]['tfidf_score'] for i in range(len(passages))])\n",
        "plt.show()\n",
        "\n",
        "# TODO"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "GUrZoXFevk99"
      },
      "source": [
        "\n",
        "\n",
        "\n",
        "\n",
        "*   Quelle est la différence fondamentale dans l'utilisation, en pratique, des deux méthodes précédentes?\n",
        "*   En examinant les deux modèles précédents, lequel devrait être en principe donner les meilleurs résultats et pourquoi?\n",
        "*   Finalement, quels sont les intérêts d'avoir à disposition ces deux modèles et en quoi peuvent-ils être complémentaires?\n",
        "*   Expliquez pourquoi le dernier modèle est appelé \"reranker\".\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_yBwAMkd-k2s"
      },
      "source": [
        "Réponses : TODO"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_3WdPTJP1Kkn"
      },
      "source": [
        "## Bonus"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "hr73GOyS1N4f"
      },
      "source": [
        "### BM25"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "PYYO-DWZ4psR"
      },
      "source": [
        "\n",
        "\n",
        "*   BM25 est-elle une méthode sparse/BOW ou bien dense?\n",
        "*   Quels sont les avantages de BM25 par rapport à d'autres méthodes du même type?\n",
        "*   Implémenter l'algorithme BM25.\n",
        "\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "4dTH1wr41MQ7"
      },
      "outputs": [],
      "source": [
        "def BM25(text_chunks,query):\n",
        "  return"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "eePC5Yhd1TAJ"
      },
      "source": [
        "### word2vec"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BoQNiMqiOReD"
      },
      "source": [
        "\n",
        "*   word2vec est-elle une méthode sparse/BOW ou bien dense?\n",
        "*   Quels sont les avantages de word2vec par rapport à d'autres méthodes du même type?\n",
        "*   Tester l'algorithme word2vec."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "2hl-wl0r1iSd"
      },
      "outputs": [],
      "source": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "43DD7Pjf1jbc"
      },
      "source": [
        "### BERT Encoder"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "GgKd8cq0OYHp"
      },
      "source": [
        "\n",
        "*   Utiliser un encodeur BERT correspond à une méthode sparse/BOW ou bien dense?\n",
        "*   Quels sont les avantages de BERT par rapport à d'autres méthodes du même type?\n",
        "*   Tester le modèle BERT."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "d0nedsBo1kG1"
      },
      "outputs": [],
      "source": []
    }
  ],
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}