File size: 885 Bytes
8dbaa1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch

# Load model
@st.cache_resource
def load_model():
    model_id = "ibm-granite/granite-3.3-2b-instruct"
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32)
    return pipeline("text-generation", model=model, tokenizer=tokenizer)

generator = load_model()

# Streamlit UI
st.title("🧠 HealthAI Chatbot")
st.markdown("Ask me about your symptoms or health advice!")

user_input = st.text_input("💬 Enter your symptoms or question:", "")

if user_input:
    prompt = f"Answer as a health assistant: {user_input}"
    output = generator(prompt, max_new_tokens=150, do_sample=True)[0]["generated_text"]
    cleaned_output = output.replace(prompt, "").strip()
    st.success(cleaned_output)