Spaces:
Running
Running
File size: 15,454 Bytes
ca65aec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
"""
Intervention Lexicon: Need-based actionable suggestions
Maps psychological needs to concrete, evidence-based interventions.
"""
from typing import List, Dict
# Intervention strategies for each need
INTERVENTIONS = {
"autonomy": {
"label": "Autonomy/Control",
"icon": "⚖️",
"strategies": [
{
"action": "Set a boundary",
"prompt": "What would it sound like to say 'no' here?",
"context": "blocked, powerless, micromanaged",
"evidence": "Self-Determination Theory: autonomy is core psychological need",
},
{
"action": "Reclaim decision-making",
"prompt": "What's one choice that's yours to make right now?",
"context": "dismissed, underutilized",
"evidence": "Locus of control research",
},
{
"action": "Name what you need",
"prompt": "If you could ask for one thing to change, what would it be?",
"context": "powerless, micromanaged",
"evidence": "Assertiveness training principles",
},
{
"action": "Take one small action",
"prompt": "What's the smallest step you could take that's fully in your control?",
"context": "blocked, powerless",
"evidence": "Behavioral activation therapy",
},
],
},
"connection": {
"label": "Connection/Belonging",
"icon": "🗣️",
"strategies": [
{
"action": "Text someone who's seen you at your worst",
"prompt": "Not the person you perform for - who actually knows your mess?",
"context": "isolated, rejected, misunderstood",
"evidence": "Social support research, attachment theory",
},
{
"action": "Voice memo instead of typing",
"prompt": "Sometimes hearing your own voice say it out loud hits different",
"context": "isolated, disconnected",
"evidence": "Expressive writing research, self-disclosure benefits",
},
{
"action": "Do your usual connection ritual",
"prompt": "Coffee? Walk? Game? Your body remembers what works even when your brain doesn't",
"context": "isolated, rejected",
"evidence": "Behavioral activation, habit-based connection",
},
{
"action": "Show up somewhere people know your face",
"prompt": "Even if you don't talk much - being seen counts",
"context": "isolated, disconnected",
"evidence": "Social presence research, third places theory",
},
{
"action": "Send the messy text",
"prompt": "Not the cleaned-up version - the real one. Someone can handle it.",
"context": "misunderstood, rejected",
"evidence": "Vulnerability research (Brené Brown), authentic relating",
},
],
},
"security": {
"label": "Security/Clarity",
"icon": "🛡️",
"context": "isolated, disconnected",
"evidence": "Loneliness intervention research",
},
{
"action": "Ask for what you need",
"prompt": "What would it sound like to say 'I need you to...'?",
"context": "rejected, misunderstood",
"evidence": "Relationship research (Gottman)",
},
],
},
"security": {
"label": "Security/Clarity",
"icon": "🛡️",
"strategies": [
{
"action": "Get more information",
"prompt": "What's one question that would help you feel more grounded?",
"context": "uncertain, unstable",
"evidence": "Information-seeking coping (Lazarus & Folkman)",
},
{
"action": "Make a backup plan",
"prompt": "If the worst happened, what would you do next?",
"context": "threatened, unstable, loss",
"evidence": "Cognitive-behavioral therapy, anxiety reduction",
},
{
"action": "Identify what you can control",
"prompt": "What's one thing that's yours to decide or influence?",
"context": "uncertain, threatened",
"evidence": "Control theory, stress management",
},
{
"action": "Ground in the present",
"prompt": "What's actually true right now, in this moment?",
"context": "threatened, uncertain",
"evidence": "Mindfulness-based interventions",
},
{
"action": "Reach out for support",
"prompt": "Who could you talk to about this uncertainty?",
"context": "threatened, uncertain, loss",
"evidence": "Social support buffering effect",
},
],
},
"rest": {
"label": "Rest/Boundaries",
"icon": "🛌",
"strategies": [
{
"action": "Say 'no' to something",
"prompt": "What's one thing you could decline or delay?",
"context": "overwhelmed, exhausted, overextended",
"evidence": "Burnout prevention research",
},
{
"action": "Ask for help",
"prompt": "What's one thing someone else could take off your plate?",
"context": "overwhelmed, exhausted",
"evidence": "Social support, task delegation",
},
{
"action": "Set a boundary",
"prompt": "What boundary do you need to protect your energy?",
"context": "boundary_violated, overextended",
"evidence": "Boundary research, relationship psychology",
},
{
"action": "Take a real break",
"prompt": "When could you actually stop for 15 minutes today?",
"context": "exhausted, overwhelmed",
"evidence": "Recovery research, rest benefits",
},
{
"action": "Name what's draining you",
"prompt": "What's taking the most from you right now?",
"context": "exhausted, overextended",
"evidence": "Energy management, self-awareness",
},
],
},
"recognition": {
"label": "Recognition/Value",
"icon": "✨",
"strategies": [
{
"action": "Acknowledge yourself",
"prompt": "What did you do well here, even if no one noticed?",
"context": "unappreciated, overlooked, inadequate",
"evidence": "Self-compassion research (Neff)",
},
{
"action": "Ask for feedback",
"prompt": "Who could you ask: 'How did you see that?'",
"context": "unappreciated, inadequate",
"evidence": "Feedback-seeking behavior research",
},
{
"action": "Share your contribution",
"prompt": "What's one thing you could make visible?",
"context": "overlooked, unappreciated",
"evidence": "Visibility in the workplace research",
},
{
"action": "Separate their view from your worth",
"prompt": "What do you know about your value, regardless of their reaction?",
"context": "criticized, inadequate",
"evidence": "Cognitive restructuring (CBT)",
},
{
"action": "Find recognition elsewhere",
"prompt": "Where else do people see your value?",
"context": "unappreciated, overlooked",
"evidence": "Multiple life domains, resilience research",
},
],
},
}
def get_interventions(
need_type: str, contexts: List[str] = None, limit: int = 3
) -> List[Dict]:
"""
Get contextually appropriate interventions for a detected need.
Args:
need_type: One of autonomy, connection, security, rest, recognition
contexts: List of detected contexts (e.g., ["isolated", "rejected"])
limit: Maximum number of interventions to return
Returns:
List of intervention dicts with action, prompt, context, evidence
"""
if need_type not in INTERVENTIONS:
return []
strategies = INTERVENTIONS[need_type]["strategies"]
# If contexts provided, prioritize matching interventions
if contexts:
scored_strategies = []
for strategy in strategies:
# Count how many user contexts match this strategy's contexts
strategy_contexts = set(strategy["context"].split(", "))
user_contexts = set(contexts)
matches = len(strategy_contexts & user_contexts)
scored_strategies.append((matches, strategy))
# Sort by match count (descending), then take top N
scored_strategies.sort(key=lambda x: x[0], reverse=True)
return [s[1] for s in scored_strategies[:limit]]
# No contexts - return first N strategies
return strategies[:limit]
def should_show_interventions(
confidence: float,
message_count: int,
emotional_intensity: float = None,
min_messages: int = 2, # Simplified: just wait one exchange
min_confidence: float = 0.70, # Simplified: lower bar
min_arousal: float = 0.40, # Simplified: catch more cases
) -> bool:
"""
SIMPLIFIED for demo: Show interventions when there's a clear need.
Args:
confidence: Confidence in the detected need (0-1)
message_count: Number of messages in conversation
emotional_intensity: Arousal level (0-1)
min_messages: Minimum messages (default: 2)
min_confidence: Minimum confidence (default: 0.70)
min_arousal: Minimum arousal (default: 0.40)
Returns:
True if interventions should be displayed
"""
# Simple checks - if there's a strong need and emotions, show help
if message_count < min_messages:
return False
if confidence < min_confidence:
return False
if emotional_intensity is not None and emotional_intensity < min_arousal:
return False
return True
def format_interventions(
need_type: str,
interventions: List[Dict],
confidence: float,
emotion_arc: Dict = None,
user_text: str = None,
) -> str:
"""
Format interventions for display in the UI.
Uses memory/emotion arc to personalize suggestions when available.
Args:
need_type: The detected need type
interventions: List of intervention dicts
confidence: Confidence in the need detection
emotion_arc: Optional emotion trajectory from memory
user_text: Optional current user message for context extraction
Returns:
Formatted markdown string with personalized interventions
"""
if not interventions:
return ""
need_info = INTERVENTIONS[need_type]
icon = need_info["icon"]
label = need_info["label"]
output = f"\n\n---\n\n"
output += f"💡 **Based on your need for {icon} {label}:**\n\n"
# Extract names/places from current text for personalization
entities = _extract_entities(user_text) if user_text else {}
# Check if there's a pattern in emotion arc
pattern_insight = _analyze_emotion_pattern(emotion_arc) if emotion_arc else None
for i, intervention in enumerate(interventions):
# Personalize the prompt if we have context
prompt = intervention["prompt"]
# Add memory-based personalization
if pattern_insight and i == 0: # First intervention gets pattern insight
output += f"• **{intervention['action']}** \n"
output += f" ↳ *{pattern_insight}*\n\n"
elif entities.get("person") and "reach out" in intervention["action"].lower():
# Personalize "reach out" with mentioned person
person = entities["person"][0]
output += f"• **{intervention['action']}** \n"
output += f" ↳ *Could {person} be someone to talk to about this?*\n\n"
elif entities.get("place") and "connection" in need_type:
# Reference places where user felt better
place = entities["place"][0]
output += f"• **{intervention['action']}** \n"
output += f" ↳ *What about {place} helped you feel more connected?*\n\n"
else:
# Use default prompt
output += f"• **{intervention['action']}** \n"
output += f" ↳ *{prompt}*\n\n"
output += "*These are just ideas — only you know what fits right now.*"
return output
def _extract_entities(text: str) -> Dict[str, List[str]]:
"""
Simple entity extraction - finds names, places mentioned.
(Could be enhanced with NER later, but regex works for now)
"""
import re
entities = {"person": [], "place": []}
if not text:
return entities
# Look for capitalized words that might be names
# Pattern: capitalized word not at start of sentence
words = text.split()
for i, word in enumerate(words):
# Skip first word and common words
if i == 0 or word.lower() in ["i", "the", "a", "an", "my", "her", "his"]:
continue
# Check if capitalized and looks like a name
if word[0].isupper() and len(word) > 2:
entities["person"].append(word.rstrip(".,!?"))
return entities
def _analyze_emotion_pattern(emotion_arc: Dict) -> str:
"""
Analyze emotion trajectory for patterns and insights.
Returns a personalized prompt based on what we've seen.
"""
trajectory = emotion_arc.get("trajectory", [])
if not trajectory or len(trajectory) < 2:
return None
# Check if emotions are getting worse
recent_valence = [e.get("valence", 0) for e in trajectory[-3:]]
if len(recent_valence) >= 2:
if all(
recent_valence[i] < recent_valence[i - 1]
for i in range(1, len(recent_valence))
):
return "Your emotions have been getting heavier - what could help you shift this pattern?"
# Check if stuck in same emotion
recent_labels = [e.get("primary_label") for e in trajectory[-3:]]
if len(set(recent_labels)) == 1:
emotion = recent_labels[0]
if emotion in ["anxious", "sad"]:
return f"You've been feeling {emotion} for a while now - what's one thing that might give you a break from this?"
# Check if there was a better moment
best_valence = max(e.get("valence", -1) for e in trajectory)
if best_valence > 0:
best_moment = [e for e in trajectory if e.get("valence") == best_valence][0]
snippet = best_moment.get("text", "")[:50]
return f'Earlier when you said "{snippet}..." you seemed lighter - what was different then?'
return None
|