File size: 13,635 Bytes
ca65aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# # servers/emotion_server.py
# from fastmcp import FastMCP, tool
# import re

# app = FastMCP("emotion-server")

# _PATTERNS = {
#     "happy":   r"\b(happy|grateful|excited|joy|delighted|content|optimistic)\b",
#     "sad":     r"\b(sad|down|depressed|cry|lonely|upset|miserable)\b",
#     "angry":   r"\b(angry|mad|furious|irritated|pissed|annoyed|resentful)\b",
#     "anxious": r"\b(worried|anxious|nervous|stressed|overwhelmed|scared)\b",
#     "tired":   r"\b(tired|exhausted|drained|burnt|sleepy|fatigued)\b",
#     "love":    r"\b(love|affection|caring|fond|admire|cherish)\b",
#     "fear":    r"\b(afraid|fear|terrified|panicked|shaken)\b",
# }

# _TONES = {"happy":"light","love":"light","sad":"gentle","fear":"gentle",
#           "angry":"calming","anxious":"calming","tired":"gentle"}

# def _analyze(text: str) -> dict:
#     t = text.lower()
#     found = [k for k,pat in _PATTERNS.items() if re.search(pat, t)]
#     valence = 0.0
#     if "happy" in found or "love" in found: valence += 0.6
#     if "sad" in found or "fear" in found:   valence -= 0.6
#     if "angry" in found:                    valence -= 0.4
#     if "anxious" in found:                  valence -= 0.3
#     if "tired" in found:                    valence -= 0.2
#     arousal = 0.5 + (0.3 if ("angry" in found or "anxious" in found) else 0) - (0.2 if "tired" in found else 0)
#     tone = "neutral"
#     for e in found:
#         if e in _TONES: tone = _TONES[e]; break
#     return {
#         "labels": found or ["neutral"],
#         "valence": max(-1, min(1, round(valence, 2))),
#         "arousal": max(0, min(1, round(arousal, 2))),
#         "tone": tone,
#     }

# @tool
# def analyze(text: str) -> dict:
#     """
#     Analyze user text for emotion.
#     Args:
#       text: str - user message
#     Returns: dict {labels, valence, arousal, tone}
#     """
#     return _analyze(text)

# if __name__ == "__main__":
#     app.run()  # serves MCP over stdio
# servers/emotion_server.py
from __future__ import annotations
# ---- FastMCP import shim (works across versions) ----
# Ensures: FastMCP is imported and `@tool` is ALWAYS a callable decorator.
from typing import Callable, Any

try:
    from fastmcp import FastMCP  # present across versions
except Exception as e:
    raise ImportError(f"FastMCP missing: {e}")

_tool_candidate: Any = None
# Try common locations
try:
    from fastmcp import tool as _tool_candidate       # newer API: function
except Exception:
    try:
        from fastmcp.tools import tool as _tool_candidate  # older API: function
    except Exception:
        _tool_candidate = None

# If we somehow got a module instead of a function, try attribute
if _tool_candidate is not None and not callable(_tool_candidate):
    try:
        _tool_candidate = _tool_candidate.tool  # some builds expose module.tools.tool
    except Exception:
        _tool_candidate = None

def tool(*dargs, **dkwargs):
    """
    Wrapper that behaves correctly in both usages:
      @tool
      @tool(...)
    If real decorator exists, delegate. Otherwise:
      - If called as @tool (i.e., first arg is fn), return fn (no-op).
      - If called as @tool(...), return a decorator that returns fn (no-op).
    """
    if callable(_tool_candidate):
        return _tool_candidate(*dargs, **dkwargs)

    # No real decorator available β€” provide no-op behavior.
    if dargs and callable(dargs[0]) and not dkwargs:
        # Used as @tool
        fn = dargs[0]
        return fn

    # Used as @tool(...)
    def _noop_decorator(fn):
        return fn
    return _noop_decorator
# ---- end shim ----


import re, math, time
from typing import Dict, List, Tuple, Optional

app = FastMCP("emotion-server")

# ---------------------------
# Lexicons & heuristics
# ---------------------------
EMO_LEX = {
    "happy":   r"\b(happy|grateful|excited|joy(?:ful)?|delighted|content|optimistic|glad|thrilled|yay)\b",
    "sad":     r"\b(sad|down|depress(?:ed|ing)|cry(?:ing)?|lonely|upset|miserable|heartbroken)\b",
    "angry":   r"\b(angry|mad|furious|irritated|pissed|annoyed|resentful|rage|hate)\b",
    "anxious": r"\b(worried|anxious|nervous|stressed|overwhelmed|scared|uneasy|tense|on edge)\b",
    "tired":   r"\b(tired|exhaust(?:ed|ing)|drained|burnt(?:\s*out)?|sleepy|fatigued|worn out)\b",
    "love":    r"\b(love|affection|caring|fond|admire|cherish|adore)\b",
    "fear":    r"\b(afraid|fear|terrified|panic(?:ky|ked)?|panicked|shaken|petrified)\b",
}

# Emojis contribute signals even without words
EMOJI_SIGNAL = {
    "happy": ["πŸ˜€","πŸ˜„","😊","πŸ™‚","😁","πŸ₯³","✨"],
    "sad":   ["😒","😭","😞","πŸ˜”","☹️"],
    "angry": ["😠","😑","🀬","πŸ’’"],
    "anxious":["😰","😱","😬","😟","😧"],
    "tired": ["πŸ₯±","πŸ˜ͺ","😴"],
    "love":  ["❀️","πŸ’–","πŸ’•","😍","🀍","πŸ’—","πŸ’“","😘"],
    "fear":  ["🫣","😨","😱","πŸ‘€"],
}

NEGATORS = r"\b(no|not|never|hardly|barely|scarcely|isn['’]t|aren['’]t|can['’]t|don['’]t|doesn['’]t|won['’]t|without)\b"
INTENSIFIERS = {
    r"\b(very|really|super|so|extremely|incredibly|totally|absolutely)\b": 1.35,
    r"\b(kinda|kind of|somewhat|slightly|a bit|a little)\b": 0.75,
}
SARCASM_CUES = [
    r"\byeah right\b", r"\bsure\b", r"\".+\"", r"/s\b", r"\bokayyy+\b", r"\blol\b(?!\w)"
]

# Tone map by quadrant
# arousal high/low Γ— valence pos/neg
def quad_tone(valence: float, arousal: float) -> str:
    if arousal >= 0.6 and valence >= 0.1:  return "excited"
    if arousal >= 0.6 and valence < -0.1:  return "concerned"
    if arousal <  0.6 and valence < -0.1:  return "gentle"
    if arousal <  0.6 and valence >= 0.1:  return "calm"
    return "neutral"

# ---------------------------
# Utilities
# ---------------------------
_compiled = {k: re.compile(p, re.I) for k, p in EMO_LEX.items()}
_neg_pat = re.compile(NEGATORS, re.I)
_int_pats = [(re.compile(p, re.I), w) for p, w in INTENSIFIERS.items()]
_sarcasm = [re.compile(p, re.I) for p in SARCASM_CUES]

def _emoji_hits(text: str) -> Dict[str, int]:
    hits = {k: 0 for k in EMO_LEX}
    for emo, arr in EMOJI_SIGNAL.items():
        for e in arr:
            hits[emo] += text.count(e)
    return hits

def _intensity_multiplier(text: str) -> float:
    mult = 1.0
    for pat, w in _int_pats:
        if pat.search(text):
            mult *= w
    # Exclamation marks increase arousal a bit (cap effect)
    bangs = min(text.count("!"), 5)
    mult *= (1.0 + 0.04 * bangs)
    # ALL CAPS word run nudges intensity
    if re.search(r"\b[A-Z]{3,}\b", text):
        mult *= 1.08
    return max(0.5, min(1.8, mult))

def _negation_factor(text: str, span_start: int) -> float:
    """
    Look 5 words (~40 chars) backwards for a negator.
    If present, invert or dampen signal.
    """
    window_start = max(0, span_start - 40)
    window = text[window_start:span_start]
    if _neg_pat.search(window):
        return -0.7  # invert and dampen
    return 1.0

def _sarcasm_penalty(text: str) -> float:
    return 0.85 if any(p.search(text) for p in _sarcasm) else 1.0

def _softmax(d: Dict[str, float]) -> Dict[str, float]:
    xs = list(d.values())
    if not xs: return d
    m = max(xs)
    exps = [math.exp(x - m) for x in xs]
    s = sum(exps) or 1.0
    return {k: exps[i] / s for i, k in enumerate(d.keys())}

# ---------------------------
# Per-user calibration (in-memory)
# ---------------------------
CALIBRATION: Dict[str, Dict[str, float]] = {}  # user_id -> {bias_emo: float, arousal_bias: float, valence_bias: float}

def _apply_calibration(user_id: Optional[str], emo_scores: Dict[str, float], valence: float, arousal: float):
    if not user_id or user_id not in CALIBRATION:
        return emo_scores, valence, arousal
    calib = CALIBRATION[user_id]
    # shift emotions
    for k, bias in calib.items():
        if k in emo_scores:
            emo_scores[k] += bias * 0.2
    # dedicated valence/arousal bias keys if present
    valence += calib.get("valence_bias", 0.0) * 0.15
    arousal += calib.get("arousal_bias", 0.0) * 0.15
    return emo_scores, valence, arousal

# ---------------------------
# Core analysis
# ---------------------------
def _analyze(text: str, user_id: Optional[str] = None) -> dict:
    t = text or ""
    tl = t.lower()

    # Base scores from lexicon hits
    emo_scores: Dict[str, float] = {k: 0.0 for k in EMO_LEX}
    spans: Dict[str, List[Tuple[int, int, str]]] = {k: [] for k in EMO_LEX}

    for emo, pat in _compiled.items():
        for m in pat.finditer(tl):
            factor = _negation_factor(tl, m.start())
            emo_scores[emo] += 1.0 * factor
            spans[emo].append((m.start(), m.end(), tl[m.start():m.end()]))

    # Emoji contributions
    e_hits = _emoji_hits(t)
    for emo, c in e_hits.items():
        if c:
            emo_scores[emo] += 0.6 * c

    # Intensifiers / sarcasm / punctuation adjustments (global)
    intensity = _intensity_multiplier(t)
    sarcasm_mult = _sarcasm_penalty(t)

    for emo in emo_scores:
        emo_scores[emo] *= intensity * sarcasm_mult

    # Map to valence/arousal
    pos = emo_scores["happy"] + emo_scores["love"]
    neg = emo_scores["sad"] + emo_scores["fear"] + 0.9 * emo_scores["angry"] + 0.6 * emo_scores["anxious"]
    valence = max(-1.0, min(1.0, round((pos - neg) * 0.4, 3)))

    base_arousal = 0.5
    arousal = base_arousal \
        + 0.12 * (emo_scores["angry"] > 0) \
        + 0.08 * (emo_scores["anxious"] > 0) \
        - 0.10 * (emo_scores["tired"] > 0) \
        + 0.02 * min(t.count("!"), 5)

    arousal = max(0.0, min(1.0, round(arousal, 3)))

    # Confidence: count signals + consistency
    hits = sum(1 for v in emo_scores.values() if abs(v) > 0.01) + sum(e_hits.values())
    consistency = 0.0
    if hits:
        top2 = sorted(emo_scores.items(), key=lambda kv: kv[1], reverse=True)[:2]
        if len(top2) == 2 and top2[1][1] > 0:
            ratio = top2[0][1] / (top2[1][1] + 1e-6)
            consistency = max(0.0, min(1.0, (ratio - 1) / 3))  # >1 means some separation
        elif len(top2) == 1:
            consistency = 0.6
    conf = max(0.0, min(1.0, 0.25 + 0.1 * hits + 0.5 * consistency))
    # downweight very short texts
    if len(t.strip()) < 6:
        conf *= 0.6

    # Normalize emotions to pseudo-probs (softmax over positive scores)
    pos_scores = {k: max(0.0, v) for k, v in emo_scores.items()}
    probs = _softmax(pos_scores)

    # Apply per-user calibration
    probs, valence, arousal = _apply_calibration(user_id, probs, valence, arousal)

    # Tone
    tone = quad_tone(valence, arousal)

    # Explanations
    reasons = []
    if intensity > 1.0: reasons.append(f"intensifiers x{intensity:.2f}")
    if sarcasm_mult < 1.0: reasons.append("sarcasm cues detected")
    if any(_neg_pat.search(tl[max(0,s-40):s]) for emo, spans_ in spans.items() for (s,_,_) in spans_):
        reasons.append("negation near emotion tokens")
    if any(e_hits.values()): reasons.append("emoji signals")

    labels_sorted = sorted(probs.items(), key=lambda kv: kv[1], reverse=True)
    top_labels = [k for k, v in labels_sorted[:3] if v > 0.05] or ["neutral"]

    return {
        "labels": top_labels,
        "scores": {k: round(v, 3) for k, v in probs.items()},
        "valence": round(valence, 3),
        "arousal": round(arousal, 3),
        "tone": tone,
        "confidence": round(conf, 3),
        "reasons": reasons,
        "spans": {k: spans[k] for k in top_labels if spans.get(k)},
        "ts": time.time(),
        "user_id": user_id,
    }

# ---------------------------
# MCP tools
# ---------------------------

@app.tool()
def analyze(text: str, user_id: Optional[str] = None) -> dict:
    """
    Analyze text for emotion.
    Args:
      text: user message
      user_id: optional user key for calibration
    Returns:
      dict with labels, scores (per emotion), valence [-1..1], arousal [0..1],
      tone (calm/neutral/excited/concerned/gentle), confidence, reasons, spans.
    """
    return _analyze(text, user_id=user_id)

@app.tool()
def batch_analyze(messages: List[str], user_id: Optional[str] = None) -> List[dict]:
    """
    Batch analyze a list of messages.
    """
    return [_analyze(m or "", user_id=user_id) for m in messages]

@app.tool()
def calibrate(user_id: str, bias: Dict[str, float] = None, arousal_bias: float = 0.0, valence_bias: float = 0.0) -> dict:
    """
    Adjust per-user calibration.
    - bias: e.g. {"anxious": -0.1, "love": 0.1}
    - arousal_bias/valence_bias: small nudges (-1..1) applied after scoring.
    """
    if user_id not in CALIBRATION:
        CALIBRATION[user_id] = {}
    if bias:
        for k, v in bias.items():
            CALIBRATION[user_id][k] = float(v)
    if arousal_bias:
        CALIBRATION[user_id]["arousal_bias"] = float(arousal_bias)
    if valence_bias:
        CALIBRATION[user_id]["valence_bias"] = float(valence_bias)
    return {"ok": True, "calibration": CALIBRATION[user_id]}

@app.tool()
def reset_calibration(user_id: str) -> dict:
    """Remove per-user calibration."""
    CALIBRATION.pop(user_id, None)
    return {"ok": True}

@app.tool()
def health() -> dict:
    """Simple health check for MCP status chips."""
    return {"status": "ok", "version": "1.2.0", "time": time.time()}

@app.tool()
def version() -> dict:
    """Return server version & feature flags."""
    return {
        "name": "emotion-server",
        "version": "1.2.0",
        "features": ["negation", "intensifiers", "emoji", "sarcasm", "confidence", "batch", "calibration"],
        "emotions": list(EMO_LEX.keys()),
    }

if __name__ == "__main__":
    app.run()  # serves MCP over stdio