Spaces:
Sleeping
Sleeping
Upload llm_functionality.py
Browse files- llm_functionality.py +86 -0
llm_functionality.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
| 2 |
+
import torch
|
| 3 |
+
from typing import Literal
|
| 4 |
+
|
| 5 |
+
# Initialize models
|
| 6 |
+
profanity_model_name = "Dabid/abusive-tagalog-profanity-detection"
|
| 7 |
+
privacy_model_name = "roberta-base"
|
| 8 |
+
|
| 9 |
+
# Load profanity model
|
| 10 |
+
profanity_tokenizer = AutoTokenizer.from_pretrained(profanity_model_name)
|
| 11 |
+
profanity_model = AutoModelForSequenceClassification.from_pretrained(profanity_model_name)
|
| 12 |
+
|
| 13 |
+
# Load privacy model
|
| 14 |
+
privacy_tokenizer = AutoTokenizer.from_pretrained(privacy_model_name)
|
| 15 |
+
privacy_model = AutoModelForSequenceClassification.from_pretrained(privacy_model_name)
|
| 16 |
+
|
| 17 |
+
# Use GPU if available
|
| 18 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 19 |
+
|
| 20 |
+
# Create classifiers
|
| 21 |
+
profanity_classifier = pipeline(
|
| 22 |
+
"text-classification",
|
| 23 |
+
model=profanity_model,
|
| 24 |
+
tokenizer=profanity_tokenizer,
|
| 25 |
+
device=device,
|
| 26 |
+
framework="pt"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
privacy_classifier = pipeline(
|
| 30 |
+
"text-classification",
|
| 31 |
+
model=privacy_model,
|
| 32 |
+
tokenizer=privacy_tokenizer,
|
| 33 |
+
device=device,
|
| 34 |
+
framework="pt"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
PROMPT_TEMPLATES = {
|
| 39 |
+
"Profanity Detection": {
|
| 40 |
+
"system": """Detect profanity in debt collection conversations. Flag if the text contains:
|
| 41 |
+
1. Explicit swear words (e.g., "damn", "hell", "crap").
|
| 42 |
+
2. Threats ("Pay or else").
|
| 43 |
+
3. Derogatory terms ("idiot", "fraud").
|
| 44 |
+
4. Aggressive tone ("Listen up!").
|
| 45 |
+
|
| 46 |
+
Examples:
|
| 47 |
+
- Text: "Pay your damn bill!" → Label: 1
|
| 48 |
+
- Text: "Can we discuss payment options?" → Label: 0
|
| 49 |
+
|
| 50 |
+
Text: "{text}"
|
| 51 |
+
Label:""",
|
| 52 |
+
"label_map": {"LABEL_0": 0, "LABEL_1": 1}
|
| 53 |
+
},
|
| 54 |
+
|
| 55 |
+
"Privacy Violation": {
|
| 56 |
+
"system": """Flag privacy violations if:
|
| 57 |
+
1. Financial details (balance, account info) are shared **before** verifying:
|
| 58 |
+
- Full address, DOB, or SSN (last 4 digits).
|
| 59 |
+
2. Verification is skipped or unconfirmed by the customer.
|
| 60 |
+
|
| 61 |
+
Examples:
|
| 62 |
+
- No Violation: Agent asks for DOB first, then shares balance. → Label: 0
|
| 63 |
+
- Violation: Agent says, "You owe $300" without verification. → Label: 1
|
| 64 |
+
|
| 65 |
+
Text: "{text}"
|
| 66 |
+
Label:""",
|
| 67 |
+
"label_map": {"LABEL_0": 0, "LABEL_1": 1}
|
| 68 |
+
}
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def analyze_text(text: str, analysis_type: Literal["Profanity Detection", "Privacy Violation"]):
|
| 74 |
+
"""Analyses the given text using Profanity and Compliance LLMs."""
|
| 75 |
+
template = PROMPT_TEMPLATES[analysis_type]
|
| 76 |
+
|
| 77 |
+
if analysis_type == "Profanity Detection":
|
| 78 |
+
# Use the Tagalog-English profanity model directly
|
| 79 |
+
result = profanity_classifier(text, truncation=True, max_length=512)
|
| 80 |
+
return 1 if result[0]['label'] == 'LABEL_1' else 0
|
| 81 |
+
else:
|
| 82 |
+
# Use RoBERTa with prompt engineering for privacy checks
|
| 83 |
+
prompt = template["system"].format(text=text)
|
| 84 |
+
result = privacy_classifier(prompt, truncation=True, max_length=512)
|
| 85 |
+
return template["label_map"][result[0]['label']]
|
| 86 |
+
|