Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,56 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
st.
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
st.
|
| 57 |
-
img = Image.open(image_file)
|
| 58 |
-
st.image(img, caption="Uploaded Image", use_column_width=True)
|
| 59 |
-
|
| 60 |
-
with st.spinner("Running OCR..."):
|
| 61 |
-
result = reader.readtext(np.array(img))
|
| 62 |
-
extracted_text = "\n".join([line[1] for line in result])
|
| 63 |
-
st.code(extracted_text)
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import pytesseract
|
| 4 |
+
from transformers import RagRetriever, RagTokenForGeneration, RagTokenizer
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
|
| 7 |
+
# --- App Title ---
|
| 8 |
+
st.set_page_config(page_title="Landmark Mapper", layout="wide")
|
| 9 |
+
st.title("πΊοΈ Landmark Mapper - Discover, Describe & Contribute")
|
| 10 |
+
|
| 11 |
+
# --- Image Upload ---
|
| 12 |
+
uploaded_file = st.file_uploader("Upload a landmark image", type=["jpg", "jpeg", "png"])
|
| 13 |
+
|
| 14 |
+
# --- OCR + Description Input ---
|
| 15 |
+
description = ""
|
| 16 |
+
if uploaded_file:
|
| 17 |
+
image = Image.open(uploaded_file)
|
| 18 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 19 |
+
|
| 20 |
+
if st.checkbox("Run OCR to extract text from image"):
|
| 21 |
+
with st.spinner("Extracting text..."):
|
| 22 |
+
ocr_text = pytesseract.image_to_string(image)
|
| 23 |
+
st.text_area("Extracted Text", ocr_text, height=100)
|
| 24 |
+
|
| 25 |
+
description = st.text_area("Enter a description in your local language", height=150)
|
| 26 |
+
|
| 27 |
+
# --- RAG Integration ---
|
| 28 |
+
if st.button("Analyze with AI") and description:
|
| 29 |
+
with st.spinner("Running RAG model..."):
|
| 30 |
+
# Load RAG model components
|
| 31 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")
|
| 32 |
+
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-base")
|
| 33 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-token-base", index_name="legacy")
|
| 34 |
+
|
| 35 |
+
# Encode and retrieve
|
| 36 |
+
input_dict = tokenizer.prepare_seq2seq_batch(description, return_tensors="pt")
|
| 37 |
+
input_dict["input_ids"] = input_dict["input_ids"][:, :128] # limit input length
|
| 38 |
+
input_dict["retrieval_kwargs"] = {"n_docs": 5}
|
| 39 |
+
|
| 40 |
+
generated = model.generate(
|
| 41 |
+
input_ids=input_dict["input_ids"],
|
| 42 |
+
context_input_ids=None,
|
| 43 |
+
context_attention_mask=None,
|
| 44 |
+
num_beams=2,
|
| 45 |
+
min_length=30,
|
| 46 |
+
max_length=128
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
output = tokenizer.batch_decode(generated, skip_special_tokens=True)
|
| 50 |
+
st.subheader("π AI-Enhanced Landmark Info")
|
| 51 |
+
st.write(output[0])
|
| 52 |
+
|
| 53 |
+
# --- Corpus Contribution ---
|
| 54 |
+
if description:
|
| 55 |
+
st.success("β
Thank you! Your description is now part of the landmark language corpus.")
|
| 56 |
+
st.markdown("Help us map Indian culture, one landmark at a time.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|