hololens
commited on
Commit
·
bc81988
1
Parent(s):
a2c3ed9
fix iteach
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- iteach_toolkit/DHYOLO/__init__.py +0 -1
- iteach_toolkit/DHYOLO/__pycache__/__init__.cpython-310.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/__init__.cpython-311.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/__init__.cpython-312.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/__init__.cpython-38.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/__init__.cpython-39.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/detect.cpython-310.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/detect.cpython-311.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/detect.cpython-312.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/detect.cpython-38.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/detect.cpython-39.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/export.cpython-310.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/export.cpython-311.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/export.cpython-312.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/export.cpython-38.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/export.cpython-39.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/hubconf.cpython-39.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/inference.cpython-310.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/load_model.cpython-310.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/load_model.cpython-39.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/model.cpython-310.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/model.cpython-311.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/model.cpython-312.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/model.cpython-38.pyc +0 -0
- iteach_toolkit/DHYOLO/__pycache__/model.cpython-39.pyc +0 -0
- iteach_toolkit/DHYOLO/detect.py +0 -290
- iteach_toolkit/DHYOLO/export.py +0 -1537
- iteach_toolkit/DHYOLO/hubconf.py +0 -510
- iteach_toolkit/DHYOLO/model.py +0 -174
- iteach_toolkit/DHYOLO/models/__init__.py +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/__init__.cpython-310.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/__init__.cpython-311.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/__init__.cpython-312.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/__init__.cpython-38.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/__init__.cpython-39.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/common.cpython-310.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/common.cpython-311.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/common.cpython-312.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/common.cpython-38.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/common.cpython-39.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/experimental.cpython-310.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/experimental.cpython-311.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/experimental.cpython-312.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/experimental.cpython-38.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/experimental.cpython-39.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/yolo.cpython-310.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/yolo.cpython-311.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/yolo.cpython-312.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/yolo.cpython-38.pyc +0 -0
- iteach_toolkit/DHYOLO/models/__pycache__/yolo.cpython-39.pyc +0 -0
iteach_toolkit/DHYOLO/__init__.py
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
from .model import DHYOLODetector
|
|
|
|
|
|
iteach_toolkit/DHYOLO/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (231 Bytes)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/__init__.cpython-311.pyc
DELETED
|
Binary file (210 Bytes)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/__init__.cpython-312.pyc
DELETED
|
Binary file (201 Bytes)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/__init__.cpython-38.pyc
DELETED
|
Binary file (235 Bytes)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/__init__.cpython-39.pyc
DELETED
|
Binary file (178 Bytes)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/detect.cpython-310.pyc
DELETED
|
Binary file (10.6 kB)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/detect.cpython-311.pyc
DELETED
|
Binary file (20.6 kB)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/detect.cpython-312.pyc
DELETED
|
Binary file (18.1 kB)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/detect.cpython-38.pyc
DELETED
|
Binary file (10.6 kB)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/detect.cpython-39.pyc
DELETED
|
Binary file (10.6 kB)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/export.cpython-310.pyc
DELETED
|
Binary file (58.1 kB)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/export.cpython-311.pyc
DELETED
|
Binary file (87 kB)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/export.cpython-312.pyc
DELETED
|
Binary file (82.3 kB)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/export.cpython-38.pyc
DELETED
|
Binary file (58 kB)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/export.cpython-39.pyc
DELETED
|
Binary file (58.1 kB)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/hubconf.cpython-39.pyc
DELETED
|
Binary file (22.4 kB)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/inference.cpython-310.pyc
DELETED
|
Binary file (350 Bytes)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/load_model.cpython-310.pyc
DELETED
|
Binary file (629 Bytes)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/load_model.cpython-39.pyc
DELETED
|
Binary file (667 Bytes)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/model.cpython-310.pyc
DELETED
|
Binary file (806 Bytes)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/model.cpython-311.pyc
DELETED
|
Binary file (922 Bytes)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/model.cpython-312.pyc
DELETED
|
Binary file (2.8 kB)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/model.cpython-38.pyc
DELETED
|
Binary file (5.38 kB)
|
|
|
iteach_toolkit/DHYOLO/__pycache__/model.cpython-39.pyc
DELETED
|
Binary file (684 Bytes)
|
|
|
iteach_toolkit/DHYOLO/detect.py
DELETED
|
@@ -1,290 +0,0 @@
|
|
| 1 |
-
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
| 2 |
-
"""
|
| 3 |
-
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
| 4 |
-
|
| 5 |
-
Usage - sources:
|
| 6 |
-
$ python detect.py --weights yolov5s.pt --source 0 # webcam
|
| 7 |
-
img.jpg # image
|
| 8 |
-
vid.mp4 # video
|
| 9 |
-
screen # screenshot
|
| 10 |
-
path/ # directory
|
| 11 |
-
list.txt # list of images
|
| 12 |
-
list.streams # list of streams
|
| 13 |
-
'path/*.jpg' # glob
|
| 14 |
-
'https://youtu.be/LNwODJXcvt4' # YouTube
|
| 15 |
-
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
| 16 |
-
|
| 17 |
-
Usage - formats:
|
| 18 |
-
$ python detect.py --weights yolov5s.pt # PyTorch
|
| 19 |
-
yolov5s.torchscript # TorchScript
|
| 20 |
-
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
| 21 |
-
yolov5s_openvino_model # OpenVINO
|
| 22 |
-
yolov5s.engine # TensorRT
|
| 23 |
-
yolov5s.mlmodel # CoreML (macOS-only)
|
| 24 |
-
yolov5s_saved_model # TensorFlow SavedModel
|
| 25 |
-
yolov5s.pb # TensorFlow GraphDef
|
| 26 |
-
yolov5s.tflite # TensorFlow Lite
|
| 27 |
-
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
| 28 |
-
yolov5s_paddle_model # PaddlePaddle
|
| 29 |
-
"""
|
| 30 |
-
|
| 31 |
-
import argparse
|
| 32 |
-
import csv
|
| 33 |
-
import os
|
| 34 |
-
import platform
|
| 35 |
-
import sys
|
| 36 |
-
from pathlib import Path
|
| 37 |
-
from PIL import Image as PILImg
|
| 38 |
-
import shutil
|
| 39 |
-
import torch
|
| 40 |
-
|
| 41 |
-
FILE = Path(__file__).resolve()
|
| 42 |
-
ROOT = FILE.parents[0] # YOLOv5 root directory
|
| 43 |
-
if str(ROOT) not in sys.path:
|
| 44 |
-
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 45 |
-
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
| 46 |
-
|
| 47 |
-
from ultralytics.utils.plotting import Annotator, colors, save_one_box
|
| 48 |
-
|
| 49 |
-
from models.common import DetectMultiBackend
|
| 50 |
-
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
| 51 |
-
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
|
| 52 |
-
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
|
| 53 |
-
from utils.torch_utils import select_device, smart_inference_mode
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
@smart_inference_mode()
|
| 57 |
-
def run(
|
| 58 |
-
weights=ROOT / 'yolov5s.pt', # model path or triton URL
|
| 59 |
-
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
|
| 60 |
-
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
| 61 |
-
imgsz=(640, 640), # inference size (height, width)
|
| 62 |
-
conf_thres=0.25, # confidence threshold
|
| 63 |
-
iou_thres=0.45, # NMS IOU threshold
|
| 64 |
-
max_det=1000, # maximum detections per image
|
| 65 |
-
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
| 66 |
-
view_img=False, # show results
|
| 67 |
-
save_txt=False, # save results to *.txt
|
| 68 |
-
save_csv=False, # save results in CSV format
|
| 69 |
-
save_conf=False, # save confidences in --save-txt labels
|
| 70 |
-
save_crop=False, # save cropped prediction boxes
|
| 71 |
-
nosave=False, # do not save images/videos
|
| 72 |
-
classes=None, # filter by class: --class 0, or --class 0 2 3
|
| 73 |
-
agnostic_nms=False, # class-agnostic NMS
|
| 74 |
-
augment=False, # augmented inference
|
| 75 |
-
visualize=False, # visualize features
|
| 76 |
-
update=False, # update all models
|
| 77 |
-
project=ROOT / 'inference', # save results to project/name
|
| 78 |
-
name='_dhyolo', # save results to project/name
|
| 79 |
-
exist_ok=False, # existing project/name ok, do not increment
|
| 80 |
-
line_thickness=3, # bounding box thickness (pixels)
|
| 81 |
-
hide_labels=False, # hide labels
|
| 82 |
-
hide_conf=False, # hide confidences
|
| 83 |
-
half=False, # use FP16 half-precision inference
|
| 84 |
-
dnn=False, # use OpenCV DNN for ONNX inference
|
| 85 |
-
vid_stride=1, # video frame-rate stride
|
| 86 |
-
):
|
| 87 |
-
source = str(source)
|
| 88 |
-
save_img = False #not nosave and not source.endswith('.txt') # save inference images
|
| 89 |
-
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
| 90 |
-
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
| 91 |
-
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
|
| 92 |
-
screenshot = source.lower().startswith('screen')
|
| 93 |
-
if is_url and is_file:
|
| 94 |
-
source = check_file(source) # download
|
| 95 |
-
|
| 96 |
-
# Directories
|
| 97 |
-
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
| 98 |
-
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
| 99 |
-
|
| 100 |
-
# Load model
|
| 101 |
-
device = select_device(device)
|
| 102 |
-
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
| 103 |
-
stride, names, pt = model.stride, model.names, model.pt
|
| 104 |
-
imgsz = check_img_size(imgsz, s=stride) # check image size
|
| 105 |
-
|
| 106 |
-
# Dataloader
|
| 107 |
-
bs = 1 # batch_size
|
| 108 |
-
if webcam:
|
| 109 |
-
view_img = check_imshow(warn=True)
|
| 110 |
-
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
| 111 |
-
bs = len(dataset)
|
| 112 |
-
elif screenshot:
|
| 113 |
-
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
| 114 |
-
else:
|
| 115 |
-
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
| 116 |
-
vid_path, vid_writer = [None] * bs, [None] * bs
|
| 117 |
-
|
| 118 |
-
# Run inference
|
| 119 |
-
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
| 120 |
-
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
|
| 121 |
-
for path, im, im0s, vid_cap, s in dataset:
|
| 122 |
-
with dt[0]:
|
| 123 |
-
im = torch.from_numpy(im).to(model.device)
|
| 124 |
-
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
| 125 |
-
im /= 255 # 0 - 255 to 0.0 - 1.0
|
| 126 |
-
if len(im.shape) == 3:
|
| 127 |
-
im = im[None] # expand for batch dim
|
| 128 |
-
|
| 129 |
-
# Inference
|
| 130 |
-
with dt[1]:
|
| 131 |
-
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
| 132 |
-
pred = model(im, augment=augment, visualize=visualize)
|
| 133 |
-
|
| 134 |
-
# NMS
|
| 135 |
-
with dt[2]:
|
| 136 |
-
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
| 137 |
-
|
| 138 |
-
# Second-stage classifier (optional)
|
| 139 |
-
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
| 140 |
-
|
| 141 |
-
# Define the path for the CSV file
|
| 142 |
-
csv_path = save_dir / 'predictions.csv'
|
| 143 |
-
|
| 144 |
-
# Create or append to the CSV file
|
| 145 |
-
def write_to_csv(image_name, prediction, confidence):
|
| 146 |
-
data = {'Image Name': image_name, 'Prediction': prediction, 'Confidence': confidence}
|
| 147 |
-
with open(csv_path, mode='a', newline='') as f:
|
| 148 |
-
writer = csv.DictWriter(f, fieldnames=data.keys())
|
| 149 |
-
if not csv_path.is_file():
|
| 150 |
-
writer.writeheader()
|
| 151 |
-
writer.writerow(data)
|
| 152 |
-
|
| 153 |
-
# Process predictions
|
| 154 |
-
for i, det in enumerate(pred): # per image
|
| 155 |
-
seen += 1
|
| 156 |
-
if webcam: # batch_size >= 1
|
| 157 |
-
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
| 158 |
-
s += f'{i}: '
|
| 159 |
-
else:
|
| 160 |
-
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
| 161 |
-
|
| 162 |
-
p = Path(p) # to Path
|
| 163 |
-
save_path = str(save_dir / p.name) # im.jpg
|
| 164 |
-
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
|
| 165 |
-
s += '%gx%g ' % im.shape[2:] # print string
|
| 166 |
-
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
| 167 |
-
imc = im0.copy() if save_crop else im0 # for save_crop
|
| 168 |
-
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
| 169 |
-
if len(det):
|
| 170 |
-
# Rescale boxes from img_size to im0 size
|
| 171 |
-
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
| 172 |
-
|
| 173 |
-
# Print results
|
| 174 |
-
for c in det[:, 5].unique():
|
| 175 |
-
n = (det[:, 5] == c).sum() # detections per class
|
| 176 |
-
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
| 177 |
-
|
| 178 |
-
# Write results
|
| 179 |
-
for *xyxy, conf, cls in reversed(det):
|
| 180 |
-
c = int(cls) # integer class
|
| 181 |
-
label = names[c] if hide_conf else f'{names[c]}'
|
| 182 |
-
confidence = float(conf)
|
| 183 |
-
confidence_str = f'{confidence:.2f}'
|
| 184 |
-
|
| 185 |
-
if save_csv:
|
| 186 |
-
write_to_csv(p.name, label, confidence_str)
|
| 187 |
-
|
| 188 |
-
if save_txt: # Write to file
|
| 189 |
-
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
| 190 |
-
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
| 191 |
-
with open(f'{txt_path}.txt', 'a') as f:
|
| 192 |
-
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
| 193 |
-
|
| 194 |
-
if save_img or save_crop or view_img: # Add bbox to image
|
| 195 |
-
c = int(cls) # integer class
|
| 196 |
-
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
| 197 |
-
annotator.box_label(xyxy, label, color=colors(c, True))
|
| 198 |
-
if save_crop:
|
| 199 |
-
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
| 200 |
-
|
| 201 |
-
# Stream results
|
| 202 |
-
im0 = annotator.result()
|
| 203 |
-
if view_img:
|
| 204 |
-
if platform.system() == 'Linux' and p not in windows:
|
| 205 |
-
windows.append(p)
|
| 206 |
-
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
| 207 |
-
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
| 208 |
-
cv2.imshow(str(p), im0)
|
| 209 |
-
cv2.waitKey(1) # 1 millisecond
|
| 210 |
-
|
| 211 |
-
# Save results (image with detections)
|
| 212 |
-
if save_img:
|
| 213 |
-
if dataset.mode == 'image':
|
| 214 |
-
cv2.imwrite(save_path, im0)
|
| 215 |
-
else: # 'video' or 'stream'
|
| 216 |
-
if vid_path[i] != save_path: # new video
|
| 217 |
-
vid_path[i] = save_path
|
| 218 |
-
if isinstance(vid_writer[i], cv2.VideoWriter):
|
| 219 |
-
vid_writer[i].release() # release previous video writer
|
| 220 |
-
if vid_cap: # video
|
| 221 |
-
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
| 222 |
-
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 223 |
-
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 224 |
-
else: # stream
|
| 225 |
-
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
| 226 |
-
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
| 227 |
-
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
| 228 |
-
vid_writer[i].write(im0)
|
| 229 |
-
|
| 230 |
-
# Print time (inference-only)
|
| 231 |
-
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
|
| 232 |
-
|
| 233 |
-
# Print results
|
| 234 |
-
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
| 235 |
-
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
| 236 |
-
if save_txt or save_img:
|
| 237 |
-
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
| 238 |
-
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
| 239 |
-
if update:
|
| 240 |
-
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
| 241 |
-
|
| 242 |
-
# need to remove as we are not saving anything
|
| 243 |
-
shutil.rmtree(project, ignore_errors=True)
|
| 244 |
-
|
| 245 |
-
return pred
|
| 246 |
-
|
| 247 |
-
def parse_opt():
|
| 248 |
-
parser = argparse.ArgumentParser()
|
| 249 |
-
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL')
|
| 250 |
-
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
|
| 251 |
-
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
| 252 |
-
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
| 253 |
-
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
| 254 |
-
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
| 255 |
-
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
|
| 256 |
-
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
| 257 |
-
parser.add_argument('--view-img', action='store_true', help='show results')
|
| 258 |
-
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
| 259 |
-
parser.add_argument('--save-csv', action='store_true', help='save results in CSV format')
|
| 260 |
-
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
| 261 |
-
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
|
| 262 |
-
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
| 263 |
-
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
|
| 264 |
-
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
| 265 |
-
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
| 266 |
-
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
| 267 |
-
parser.add_argument('--update', action='store_true', help='update all models')
|
| 268 |
-
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
|
| 269 |
-
parser.add_argument('--name', default='exp', help='save results to project/name')
|
| 270 |
-
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
| 271 |
-
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
|
| 272 |
-
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
|
| 273 |
-
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
| 274 |
-
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
| 275 |
-
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
| 276 |
-
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
|
| 277 |
-
opt = parser.parse_args()
|
| 278 |
-
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
| 279 |
-
print_args(vars(opt))
|
| 280 |
-
return opt
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
def main(opt):
|
| 284 |
-
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
|
| 285 |
-
run(**vars(opt))
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
if __name__ == '__main__':
|
| 289 |
-
opt = parse_opt()
|
| 290 |
-
main(opt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
iteach_toolkit/DHYOLO/export.py
DELETED
|
@@ -1,1537 +0,0 @@
|
|
| 1 |
-
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
| 2 |
-
"""
|
| 3 |
-
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
|
| 4 |
-
|
| 5 |
-
Format | `export.py --include` | Model
|
| 6 |
-
--- | --- | ---
|
| 7 |
-
PyTorch | - | yolov5s.pt
|
| 8 |
-
TorchScript | `torchscript` | yolov5s.torchscript
|
| 9 |
-
ONNX | `onnx` | yolov5s.onnx
|
| 10 |
-
OpenVINO | `openvino` | yolov5s_openvino_model/
|
| 11 |
-
TensorRT | `engine` | yolov5s.engine
|
| 12 |
-
CoreML | `coreml` | yolov5s.mlmodel
|
| 13 |
-
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
| 14 |
-
TensorFlow GraphDef | `pb` | yolov5s.pb
|
| 15 |
-
TensorFlow Lite | `tflite` | yolov5s.tflite
|
| 16 |
-
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
| 17 |
-
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
| 18 |
-
PaddlePaddle | `paddle` | yolov5s_paddle_model/
|
| 19 |
-
|
| 20 |
-
Requirements:
|
| 21 |
-
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
| 22 |
-
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
| 23 |
-
|
| 24 |
-
Usage:
|
| 25 |
-
$ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
|
| 26 |
-
|
| 27 |
-
Inference:
|
| 28 |
-
$ python detect.py --weights yolov5s.pt # PyTorch
|
| 29 |
-
yolov5s.torchscript # TorchScript
|
| 30 |
-
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
| 31 |
-
yolov5s_openvino_model # OpenVINO
|
| 32 |
-
yolov5s.engine # TensorRT
|
| 33 |
-
yolov5s.mlmodel # CoreML (macOS-only)
|
| 34 |
-
yolov5s_saved_model # TensorFlow SavedModel
|
| 35 |
-
yolov5s.pb # TensorFlow GraphDef
|
| 36 |
-
yolov5s.tflite # TensorFlow Lite
|
| 37 |
-
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
| 38 |
-
yolov5s_paddle_model # PaddlePaddle
|
| 39 |
-
|
| 40 |
-
TensorFlow.js:
|
| 41 |
-
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
| 42 |
-
$ npm install
|
| 43 |
-
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
|
| 44 |
-
$ npm start
|
| 45 |
-
"""
|
| 46 |
-
|
| 47 |
-
import argparse
|
| 48 |
-
import contextlib
|
| 49 |
-
import json
|
| 50 |
-
import os
|
| 51 |
-
import platform
|
| 52 |
-
import re
|
| 53 |
-
import subprocess
|
| 54 |
-
import sys
|
| 55 |
-
import time
|
| 56 |
-
import warnings
|
| 57 |
-
from pathlib import Path
|
| 58 |
-
|
| 59 |
-
import pandas as pd
|
| 60 |
-
import torch
|
| 61 |
-
from torch.utils.mobile_optimizer import optimize_for_mobile
|
| 62 |
-
|
| 63 |
-
FILE = Path(__file__).resolve()
|
| 64 |
-
ROOT = FILE.parents[0] # YOLOv5 root directory
|
| 65 |
-
if str(ROOT) not in sys.path:
|
| 66 |
-
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 67 |
-
if platform.system() != "Windows":
|
| 68 |
-
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
| 69 |
-
|
| 70 |
-
from models.experimental import attempt_load
|
| 71 |
-
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
|
| 72 |
-
from utils.dataloaders import LoadImages
|
| 73 |
-
from utils.general import (
|
| 74 |
-
LOGGER,
|
| 75 |
-
Profile,
|
| 76 |
-
check_dataset,
|
| 77 |
-
check_img_size,
|
| 78 |
-
check_requirements,
|
| 79 |
-
check_version,
|
| 80 |
-
check_yaml,
|
| 81 |
-
colorstr,
|
| 82 |
-
file_size,
|
| 83 |
-
get_default_args,
|
| 84 |
-
print_args,
|
| 85 |
-
url2file,
|
| 86 |
-
yaml_save,
|
| 87 |
-
)
|
| 88 |
-
from utils.torch_utils import select_device, smart_inference_mode
|
| 89 |
-
|
| 90 |
-
MACOS = platform.system() == "Darwin" # macOS environment
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
class iOSModel(torch.nn.Module):
|
| 94 |
-
def __init__(self, model, im):
|
| 95 |
-
"""
|
| 96 |
-
Initializes an iOS compatible model with normalization based on image dimensions.
|
| 97 |
-
|
| 98 |
-
Args:
|
| 99 |
-
model (torch.nn.Module): The PyTorch model to be adapted for iOS compatibility.
|
| 100 |
-
im (torch.Tensor): An input tensor representing a batch of images with shape (B, C, H, W).
|
| 101 |
-
|
| 102 |
-
Returns:
|
| 103 |
-
None: This method does not return any value.
|
| 104 |
-
|
| 105 |
-
Notes:
|
| 106 |
-
This initializer configures normalization based on the input image dimensions, which is critical for
|
| 107 |
-
ensuring the model's compatibility and proper functionality on iOS devices. The normalization step
|
| 108 |
-
involves dividing by the image width if the image is square; otherwise, additional conditions might apply.
|
| 109 |
-
"""
|
| 110 |
-
super().__init__()
|
| 111 |
-
b, c, h, w = im.shape # batch, channel, height, width
|
| 112 |
-
self.model = model
|
| 113 |
-
self.nc = model.nc # number of classes
|
| 114 |
-
if w == h:
|
| 115 |
-
self.normalize = 1.0 / w
|
| 116 |
-
else:
|
| 117 |
-
self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller)
|
| 118 |
-
# np = model(im)[0].shape[1] # number of points
|
| 119 |
-
# self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]).expand(np, 4) # explicit (faster, larger)
|
| 120 |
-
|
| 121 |
-
def forward(self, x):
|
| 122 |
-
"""
|
| 123 |
-
Run a forward pass on the input tensor, returning class confidences and normalized coordinates.
|
| 124 |
-
|
| 125 |
-
Args:
|
| 126 |
-
x (torch.Tensor): Input tensor containing the image data with shape (batch, channels, height, width).
|
| 127 |
-
|
| 128 |
-
Returns:
|
| 129 |
-
torch.Tensor: Concatenated tensor with normalized coordinates (xywh), confidence scores (conf),
|
| 130 |
-
and class probabilities (cls), having shape (N, 4 + 1 + C), where N is the number of predictions,
|
| 131 |
-
and C is the number of classes.
|
| 132 |
-
|
| 133 |
-
Examples:
|
| 134 |
-
```python
|
| 135 |
-
model = iOSModel(pretrained_model, input_image)
|
| 136 |
-
output = model.forward(torch_input_tensor)
|
| 137 |
-
```
|
| 138 |
-
"""
|
| 139 |
-
xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1)
|
| 140 |
-
return cls * conf, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
def export_formats():
|
| 144 |
-
"""
|
| 145 |
-
Returns a DataFrame of supported YOLOv5 model export formats and their properties.
|
| 146 |
-
|
| 147 |
-
Returns:
|
| 148 |
-
pandas.DataFrame: A DataFrame containing supported export formats and their properties. The DataFrame
|
| 149 |
-
includes columns for format name, CLI argument suffix, file extension or directory name, and boolean flags
|
| 150 |
-
indicating if the export format supports training and detection.
|
| 151 |
-
|
| 152 |
-
Examples:
|
| 153 |
-
```python
|
| 154 |
-
formats = export_formats()
|
| 155 |
-
print(f"Supported export formats:\n{formats}")
|
| 156 |
-
```
|
| 157 |
-
|
| 158 |
-
Notes:
|
| 159 |
-
The DataFrame contains the following columns:
|
| 160 |
-
- Format: The name of the model format (e.g., PyTorch, TorchScript, ONNX, etc.).
|
| 161 |
-
- Include Argument: The argument to use with the export script to include this format.
|
| 162 |
-
- File Suffix: File extension or directory name associated with the format.
|
| 163 |
-
- Supports Training: Whether the format supports training.
|
| 164 |
-
- Supports Detection: Whether the format supports detection.
|
| 165 |
-
"""
|
| 166 |
-
x = [
|
| 167 |
-
["PyTorch", "-", ".pt", True, True],
|
| 168 |
-
["TorchScript", "torchscript", ".torchscript", True, True],
|
| 169 |
-
["ONNX", "onnx", ".onnx", True, True],
|
| 170 |
-
["OpenVINO", "openvino", "_openvino_model", True, False],
|
| 171 |
-
["TensorRT", "engine", ".engine", False, True],
|
| 172 |
-
["CoreML", "coreml", ".mlpackage", True, False],
|
| 173 |
-
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True],
|
| 174 |
-
["TensorFlow GraphDef", "pb", ".pb", True, True],
|
| 175 |
-
["TensorFlow Lite", "tflite", ".tflite", True, False],
|
| 176 |
-
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", False, False],
|
| 177 |
-
["TensorFlow.js", "tfjs", "_web_model", False, False],
|
| 178 |
-
["PaddlePaddle", "paddle", "_paddle_model", True, True],
|
| 179 |
-
]
|
| 180 |
-
return pd.DataFrame(x, columns=["Format", "Argument", "Suffix", "CPU", "GPU"])
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
def try_export(inner_func):
|
| 184 |
-
"""
|
| 185 |
-
Log success or failure, execution time, and file size for YOLOv5 model export functions wrapped with @try_export.
|
| 186 |
-
|
| 187 |
-
Args:
|
| 188 |
-
inner_func (Callable): The model export function to be wrapped by the decorator.
|
| 189 |
-
|
| 190 |
-
Returns:
|
| 191 |
-
Callable: The wrapped function that logs execution details. When executed, this wrapper function returns either:
|
| 192 |
-
- Tuple (str | torch.nn.Module): On success — the file path of the exported model and the model instance.
|
| 193 |
-
- Tuple (None, None): On failure — None values indicating export failure.
|
| 194 |
-
|
| 195 |
-
Examples:
|
| 196 |
-
```python
|
| 197 |
-
@try_export
|
| 198 |
-
def export_onnx(model, filepath):
|
| 199 |
-
# implementation here
|
| 200 |
-
pass
|
| 201 |
-
|
| 202 |
-
exported_file, exported_model = export_onnx(yolo_model, 'path/to/save/model.onnx')
|
| 203 |
-
```
|
| 204 |
-
|
| 205 |
-
Notes:
|
| 206 |
-
For additional requirements and model export formats, refer to the
|
| 207 |
-
[Ultralytics YOLOv5 GitHub repository](https://github.com/ultralytics/ultralytics).
|
| 208 |
-
"""
|
| 209 |
-
inner_args = get_default_args(inner_func)
|
| 210 |
-
|
| 211 |
-
def outer_func(*args, **kwargs):
|
| 212 |
-
"""Logs success/failure and execution details of model export functions wrapped with @try_export decorator."""
|
| 213 |
-
prefix = inner_args["prefix"]
|
| 214 |
-
try:
|
| 215 |
-
with Profile() as dt:
|
| 216 |
-
f, model = inner_func(*args, **kwargs)
|
| 217 |
-
LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)")
|
| 218 |
-
return f, model
|
| 219 |
-
except Exception as e:
|
| 220 |
-
LOGGER.info(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}")
|
| 221 |
-
return None, None
|
| 222 |
-
|
| 223 |
-
return outer_func
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
@try_export
|
| 227 |
-
def export_torchscript(model, im, file, optimize, prefix=colorstr("TorchScript:")):
|
| 228 |
-
"""
|
| 229 |
-
Export a YOLOv5 model to the TorchScript format.
|
| 230 |
-
|
| 231 |
-
Args:
|
| 232 |
-
model (torch.nn.Module): The YOLOv5 model to be exported.
|
| 233 |
-
im (torch.Tensor): Example input tensor to be used for tracing the TorchScript model.
|
| 234 |
-
file (Path): File path where the exported TorchScript model will be saved.
|
| 235 |
-
optimize (bool): If True, applies optimizations for mobile deployment.
|
| 236 |
-
prefix (str): Optional prefix for log messages. Default is 'TorchScript:'.
|
| 237 |
-
|
| 238 |
-
Returns:
|
| 239 |
-
(str | None, torch.jit.ScriptModule | None): A tuple containing the file path of the exported model
|
| 240 |
-
(as a string) and the TorchScript model (as a torch.jit.ScriptModule). If the export fails, both elements
|
| 241 |
-
of the tuple will be None.
|
| 242 |
-
|
| 243 |
-
Notes:
|
| 244 |
-
- This function uses tracing to create the TorchScript model.
|
| 245 |
-
- Metadata, including the input image shape, model stride, and class names, is saved in an extra file (`config.txt`)
|
| 246 |
-
within the TorchScript model package.
|
| 247 |
-
- For mobile optimization, refer to the PyTorch tutorial: https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
| 248 |
-
|
| 249 |
-
Example:
|
| 250 |
-
```python
|
| 251 |
-
from pathlib import Path
|
| 252 |
-
import torch
|
| 253 |
-
from models.experimental import attempt_load
|
| 254 |
-
from utils.torch_utils import select_device
|
| 255 |
-
|
| 256 |
-
# Load model
|
| 257 |
-
weights = 'yolov5s.pt'
|
| 258 |
-
device = select_device('')
|
| 259 |
-
model = attempt_load(weights, device=device)
|
| 260 |
-
|
| 261 |
-
# Example input tensor
|
| 262 |
-
im = torch.zeros(1, 3, 640, 640).to(device)
|
| 263 |
-
|
| 264 |
-
# Export model
|
| 265 |
-
file = Path('yolov5s.torchscript')
|
| 266 |
-
export_torchscript(model, im, file, optimize=False)
|
| 267 |
-
```
|
| 268 |
-
"""
|
| 269 |
-
LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
|
| 270 |
-
f = file.with_suffix(".torchscript")
|
| 271 |
-
|
| 272 |
-
ts = torch.jit.trace(model, im, strict=False)
|
| 273 |
-
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
|
| 274 |
-
extra_files = {"config.txt": json.dumps(d)} # torch._C.ExtraFilesMap()
|
| 275 |
-
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
| 276 |
-
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
| 277 |
-
else:
|
| 278 |
-
ts.save(str(f), _extra_files=extra_files)
|
| 279 |
-
return f, None
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
@try_export
|
| 283 |
-
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr("ONNX:")):
|
| 284 |
-
"""
|
| 285 |
-
Export a YOLOv5 model to ONNX format with dynamic axes support and optional model simplification.
|
| 286 |
-
|
| 287 |
-
Args:
|
| 288 |
-
model (torch.nn.Module): The YOLOv5 model to be exported.
|
| 289 |
-
im (torch.Tensor): A sample input tensor for model tracing, usually the shape is (1, 3, height, width).
|
| 290 |
-
file (pathlib.Path | str): The output file path where the ONNX model will be saved.
|
| 291 |
-
opset (int): The ONNX opset version to use for export.
|
| 292 |
-
dynamic (bool): If True, enables dynamic axes for batch, height, and width dimensions.
|
| 293 |
-
simplify (bool): If True, applies ONNX model simplification for optimization.
|
| 294 |
-
prefix (str): A prefix string for logging messages, defaults to 'ONNX:'.
|
| 295 |
-
|
| 296 |
-
Returns:
|
| 297 |
-
tuple[pathlib.Path | str, None]: The path to the saved ONNX model file and None (consistent with decorator).
|
| 298 |
-
|
| 299 |
-
Raises:
|
| 300 |
-
ImportError: If required libraries for export (e.g., 'onnx', 'onnx-simplifier') are not installed.
|
| 301 |
-
AssertionError: If the simplification check fails.
|
| 302 |
-
|
| 303 |
-
Notes:
|
| 304 |
-
The required packages for this function can be installed via:
|
| 305 |
-
```
|
| 306 |
-
pip install onnx onnx-simplifier onnxruntime onnxruntime-gpu
|
| 307 |
-
```
|
| 308 |
-
|
| 309 |
-
Example:
|
| 310 |
-
```python
|
| 311 |
-
from pathlib import Path
|
| 312 |
-
import torch
|
| 313 |
-
from models.experimental import attempt_load
|
| 314 |
-
from utils.torch_utils import select_device
|
| 315 |
-
|
| 316 |
-
# Load model
|
| 317 |
-
weights = 'yolov5s.pt'
|
| 318 |
-
device = select_device('')
|
| 319 |
-
model = attempt_load(weights, map_location=device)
|
| 320 |
-
|
| 321 |
-
# Example input tensor
|
| 322 |
-
im = torch.zeros(1, 3, 640, 640).to(device)
|
| 323 |
-
|
| 324 |
-
# Export model
|
| 325 |
-
file_path = Path('yolov5s.onnx')
|
| 326 |
-
export_onnx(model, im, file_path, opset=12, dynamic=True, simplify=True)
|
| 327 |
-
```
|
| 328 |
-
"""
|
| 329 |
-
check_requirements("onnx>=1.12.0")
|
| 330 |
-
import onnx
|
| 331 |
-
|
| 332 |
-
LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__}...")
|
| 333 |
-
f = str(file.with_suffix(".onnx"))
|
| 334 |
-
|
| 335 |
-
output_names = ["output0", "output1"] if isinstance(model, SegmentationModel) else ["output0"]
|
| 336 |
-
if dynamic:
|
| 337 |
-
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
|
| 338 |
-
if isinstance(model, SegmentationModel):
|
| 339 |
-
dynamic["output0"] = {0: "batch", 1: "anchors"} # shape(1,25200,85)
|
| 340 |
-
dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
|
| 341 |
-
elif isinstance(model, DetectionModel):
|
| 342 |
-
dynamic["output0"] = {0: "batch", 1: "anchors"} # shape(1,25200,85)
|
| 343 |
-
|
| 344 |
-
torch.onnx.export(
|
| 345 |
-
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
|
| 346 |
-
im.cpu() if dynamic else im,
|
| 347 |
-
f,
|
| 348 |
-
verbose=False,
|
| 349 |
-
opset_version=opset,
|
| 350 |
-
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
| 351 |
-
input_names=["images"],
|
| 352 |
-
output_names=output_names,
|
| 353 |
-
dynamic_axes=dynamic or None,
|
| 354 |
-
)
|
| 355 |
-
|
| 356 |
-
# Checks
|
| 357 |
-
model_onnx = onnx.load(f) # load onnx model
|
| 358 |
-
onnx.checker.check_model(model_onnx) # check onnx model
|
| 359 |
-
|
| 360 |
-
# Metadata
|
| 361 |
-
d = {"stride": int(max(model.stride)), "names": model.names}
|
| 362 |
-
for k, v in d.items():
|
| 363 |
-
meta = model_onnx.metadata_props.add()
|
| 364 |
-
meta.key, meta.value = k, str(v)
|
| 365 |
-
onnx.save(model_onnx, f)
|
| 366 |
-
|
| 367 |
-
# Simplify
|
| 368 |
-
if simplify:
|
| 369 |
-
try:
|
| 370 |
-
cuda = torch.cuda.is_available()
|
| 371 |
-
check_requirements(("onnxruntime-gpu" if cuda else "onnxruntime", "onnxslim"))
|
| 372 |
-
import onnxslim
|
| 373 |
-
|
| 374 |
-
LOGGER.info(f"{prefix} slimming with onnxslim {onnxslim.__version__}...")
|
| 375 |
-
model_onnx = onnxslim.slim(model_onnx)
|
| 376 |
-
onnx.save(model_onnx, f)
|
| 377 |
-
except Exception as e:
|
| 378 |
-
LOGGER.info(f"{prefix} simplifier failure: {e}")
|
| 379 |
-
return f, model_onnx
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
@try_export
|
| 383 |
-
def export_openvino(file, metadata, half, int8, data, prefix=colorstr("OpenVINO:")):
|
| 384 |
-
"""
|
| 385 |
-
Export a YOLOv5 model to OpenVINO format with optional FP16 and INT8 quantization.
|
| 386 |
-
|
| 387 |
-
Args:
|
| 388 |
-
file (Path): Path to the output file where the OpenVINO model will be saved.
|
| 389 |
-
metadata (dict): Dictionary including model metadata such as names and strides.
|
| 390 |
-
half (bool): If True, export the model with FP16 precision.
|
| 391 |
-
int8 (bool): If True, export the model with INT8 quantization.
|
| 392 |
-
data (str): Path to the dataset YAML file required for INT8 quantization.
|
| 393 |
-
prefix (str): Prefix string for logging purposes (default is "OpenVINO:").
|
| 394 |
-
|
| 395 |
-
Returns:
|
| 396 |
-
(str, openvino.runtime.Model | None): The OpenVINO model file path and openvino.runtime.Model object if export is
|
| 397 |
-
successful; otherwise, None.
|
| 398 |
-
|
| 399 |
-
Notes:
|
| 400 |
-
- Requires `openvino-dev` package version 2023.0 or higher. Install with:
|
| 401 |
-
`$ pip install openvino-dev>=2023.0`
|
| 402 |
-
- For INT8 quantization, also requires `nncf` library version 2.5.0 or higher. Install with:
|
| 403 |
-
`$ pip install nncf>=2.5.0`
|
| 404 |
-
|
| 405 |
-
Examples:
|
| 406 |
-
```python
|
| 407 |
-
from pathlib import Path
|
| 408 |
-
from ultralytics import YOLOv5
|
| 409 |
-
|
| 410 |
-
model = YOLOv5('yolov5s.pt')
|
| 411 |
-
export_openvino(Path('yolov5s.onnx'), metadata={'names': model.names, 'stride': model.stride}, half=True,
|
| 412 |
-
int8=False, data='data.yaml')
|
| 413 |
-
```
|
| 414 |
-
|
| 415 |
-
This will export the YOLOv5 model to OpenVINO with FP16 precision but without INT8 quantization, saving it to
|
| 416 |
-
the specified file path.
|
| 417 |
-
"""
|
| 418 |
-
check_requirements("openvino-dev>=2023.0") # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
| 419 |
-
import openvino.runtime as ov # noqa
|
| 420 |
-
from openvino.tools import mo # noqa
|
| 421 |
-
|
| 422 |
-
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
|
| 423 |
-
f = str(file).replace(file.suffix, f"_{'int8_' if int8 else ''}openvino_model{os.sep}")
|
| 424 |
-
f_onnx = file.with_suffix(".onnx")
|
| 425 |
-
f_ov = str(Path(f) / file.with_suffix(".xml").name)
|
| 426 |
-
|
| 427 |
-
ov_model = mo.convert_model(f_onnx, model_name=file.stem, framework="onnx", compress_to_fp16=half) # export
|
| 428 |
-
|
| 429 |
-
if int8:
|
| 430 |
-
check_requirements("nncf>=2.5.0") # requires at least version 2.5.0 to use the post-training quantization
|
| 431 |
-
import nncf
|
| 432 |
-
import numpy as np
|
| 433 |
-
|
| 434 |
-
from utils.dataloaders import create_dataloader
|
| 435 |
-
|
| 436 |
-
def gen_dataloader(yaml_path, task="train", imgsz=640, workers=4):
|
| 437 |
-
"""Generates a DataLoader for model training or validation based on the given YAML dataset configuration."""
|
| 438 |
-
data_yaml = check_yaml(yaml_path)
|
| 439 |
-
data = check_dataset(data_yaml)
|
| 440 |
-
dataloader = create_dataloader(
|
| 441 |
-
data[task], imgsz=imgsz, batch_size=1, stride=32, pad=0.5, single_cls=False, rect=False, workers=workers
|
| 442 |
-
)[0]
|
| 443 |
-
return dataloader
|
| 444 |
-
|
| 445 |
-
# noqa: F811
|
| 446 |
-
|
| 447 |
-
def transform_fn(data_item):
|
| 448 |
-
"""
|
| 449 |
-
Quantization transform function.
|
| 450 |
-
|
| 451 |
-
Extracts and preprocess input data from dataloader item for quantization.
|
| 452 |
-
Parameters:
|
| 453 |
-
data_item: Tuple with data item produced by DataLoader during iteration
|
| 454 |
-
Returns:
|
| 455 |
-
input_tensor: Input data for quantization
|
| 456 |
-
"""
|
| 457 |
-
assert data_item[0].dtype == torch.uint8, "input image must be uint8 for the quantization preprocessing"
|
| 458 |
-
|
| 459 |
-
img = data_item[0].numpy().astype(np.float32) # uint8 to fp16/32
|
| 460 |
-
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
| 461 |
-
return np.expand_dims(img, 0) if img.ndim == 3 else img
|
| 462 |
-
|
| 463 |
-
ds = gen_dataloader(data)
|
| 464 |
-
quantization_dataset = nncf.Dataset(ds, transform_fn)
|
| 465 |
-
ov_model = nncf.quantize(ov_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED)
|
| 466 |
-
|
| 467 |
-
ov.serialize(ov_model, f_ov) # save
|
| 468 |
-
yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata) # add metadata.yaml
|
| 469 |
-
return f, None
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
@try_export
|
| 473 |
-
def export_paddle(model, im, file, metadata, prefix=colorstr("PaddlePaddle:")):
|
| 474 |
-
"""
|
| 475 |
-
Export a YOLOv5 PyTorch model to PaddlePaddle format using X2Paddle, saving the converted model and metadata.
|
| 476 |
-
|
| 477 |
-
Args:
|
| 478 |
-
model (torch.nn.Module): The YOLOv5 model to be exported.
|
| 479 |
-
im (torch.Tensor): Input tensor used for model tracing during export.
|
| 480 |
-
file (pathlib.Path): Path to the source file to be converted.
|
| 481 |
-
metadata (dict): Additional metadata to be saved alongside the model.
|
| 482 |
-
prefix (str): Prefix for logging information.
|
| 483 |
-
|
| 484 |
-
Returns:
|
| 485 |
-
tuple (str, None): A tuple where the first element is the path to the saved PaddlePaddle model, and the
|
| 486 |
-
second element is None.
|
| 487 |
-
|
| 488 |
-
Examples:
|
| 489 |
-
```python
|
| 490 |
-
from pathlib import Path
|
| 491 |
-
import torch
|
| 492 |
-
|
| 493 |
-
# Assume 'model' is a pre-trained YOLOv5 model and 'im' is an example input tensor
|
| 494 |
-
model = ... # Load your model here
|
| 495 |
-
im = torch.randn((1, 3, 640, 640)) # Dummy input tensor for tracing
|
| 496 |
-
file = Path("yolov5s.pt")
|
| 497 |
-
metadata = {"stride": 32, "names": ["person", "bicycle", "car", "motorbike"]}
|
| 498 |
-
|
| 499 |
-
export_paddle(model=model, im=im, file=file, metadata=metadata)
|
| 500 |
-
```
|
| 501 |
-
|
| 502 |
-
Notes:
|
| 503 |
-
Ensure that `paddlepaddle` and `x2paddle` are installed, as these are required for the export function. You can
|
| 504 |
-
install them via pip:
|
| 505 |
-
```
|
| 506 |
-
$ pip install paddlepaddle x2paddle
|
| 507 |
-
```
|
| 508 |
-
"""
|
| 509 |
-
check_requirements(("paddlepaddle", "x2paddle"))
|
| 510 |
-
import x2paddle
|
| 511 |
-
from x2paddle.convert import pytorch2paddle
|
| 512 |
-
|
| 513 |
-
LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...")
|
| 514 |
-
f = str(file).replace(".pt", f"_paddle_model{os.sep}")
|
| 515 |
-
|
| 516 |
-
pytorch2paddle(module=model, save_dir=f, jit_type="trace", input_examples=[im]) # export
|
| 517 |
-
yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata) # add metadata.yaml
|
| 518 |
-
return f, None
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
@try_export
|
| 522 |
-
def export_coreml(model, im, file, int8, half, nms, mlmodel, prefix=colorstr("CoreML:")):
|
| 523 |
-
"""
|
| 524 |
-
Export a YOLOv5 model to CoreML format with optional NMS, INT8, and FP16 support.
|
| 525 |
-
|
| 526 |
-
Args:
|
| 527 |
-
model (torch.nn.Module): The YOLOv5 model to be exported.
|
| 528 |
-
im (torch.Tensor): Example input tensor to trace the model.
|
| 529 |
-
file (pathlib.Path): Path object where the CoreML model will be saved.
|
| 530 |
-
int8 (bool): Flag indicating whether to use INT8 quantization (default is False).
|
| 531 |
-
half (bool): Flag indicating whether to use FP16 quantization (default is False).
|
| 532 |
-
nms (bool): Flag indicating whether to include Non-Maximum Suppression (default is False).
|
| 533 |
-
mlmodel (bool): Flag indicating whether to export as older *.mlmodel format (default is False).
|
| 534 |
-
prefix (str): Prefix string for logging purposes (default is 'CoreML:').
|
| 535 |
-
|
| 536 |
-
Returns:
|
| 537 |
-
tuple[pathlib.Path | None, None]: The path to the saved CoreML model file, or (None, None) if there is an error.
|
| 538 |
-
|
| 539 |
-
Notes:
|
| 540 |
-
The exported CoreML model will be saved with a .mlmodel extension.
|
| 541 |
-
Quantization is supported only on macOS.
|
| 542 |
-
|
| 543 |
-
Example:
|
| 544 |
-
```python
|
| 545 |
-
from pathlib import Path
|
| 546 |
-
import torch
|
| 547 |
-
from models.yolo import Model
|
| 548 |
-
model = Model(cfg, ch=3, nc=80)
|
| 549 |
-
im = torch.randn(1, 3, 640, 640)
|
| 550 |
-
file = Path("yolov5s_coreml")
|
| 551 |
-
export_coreml(model, im, file, int8=False, half=False, nms=True, mlmodel=False)
|
| 552 |
-
```
|
| 553 |
-
"""
|
| 554 |
-
check_requirements("coremltools")
|
| 555 |
-
import coremltools as ct
|
| 556 |
-
|
| 557 |
-
LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
|
| 558 |
-
if mlmodel:
|
| 559 |
-
f = file.with_suffix(".mlmodel")
|
| 560 |
-
convert_to = "neuralnetwork"
|
| 561 |
-
precision = None
|
| 562 |
-
else:
|
| 563 |
-
f = file.with_suffix(".mlpackage")
|
| 564 |
-
convert_to = "mlprogram"
|
| 565 |
-
if half:
|
| 566 |
-
precision = ct.precision.FLOAT16
|
| 567 |
-
else:
|
| 568 |
-
precision = ct.precision.FLOAT32
|
| 569 |
-
|
| 570 |
-
if nms:
|
| 571 |
-
model = iOSModel(model, im)
|
| 572 |
-
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
| 573 |
-
ct_model = ct.convert(
|
| 574 |
-
ts,
|
| 575 |
-
inputs=[ct.ImageType("image", shape=im.shape, scale=1 / 255, bias=[0, 0, 0])],
|
| 576 |
-
convert_to=convert_to,
|
| 577 |
-
compute_precision=precision,
|
| 578 |
-
)
|
| 579 |
-
bits, mode = (8, "kmeans") if int8 else (16, "linear") if half else (32, None)
|
| 580 |
-
if bits < 32:
|
| 581 |
-
if mlmodel:
|
| 582 |
-
with warnings.catch_warnings():
|
| 583 |
-
warnings.filterwarnings(
|
| 584 |
-
"ignore", category=DeprecationWarning
|
| 585 |
-
) # suppress numpy==1.20 float warning, fixed in coremltools==7.0
|
| 586 |
-
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
| 587 |
-
elif bits == 8:
|
| 588 |
-
op_config = ct.optimize.coreml.OpPalettizerConfig(mode=mode, nbits=bits, weight_threshold=512)
|
| 589 |
-
config = ct.optimize.coreml.OptimizationConfig(global_config=op_config)
|
| 590 |
-
ct_model = ct.optimize.coreml.palettize_weights(ct_model, config)
|
| 591 |
-
ct_model.save(f)
|
| 592 |
-
return f, ct_model
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
@try_export
|
| 596 |
-
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr("TensorRT:")):
|
| 597 |
-
"""
|
| 598 |
-
Export a YOLOv5 model to TensorRT engine format, requiring GPU and TensorRT>=7.0.0.
|
| 599 |
-
|
| 600 |
-
Args:
|
| 601 |
-
model (torch.nn.Module): YOLOv5 model to be exported.
|
| 602 |
-
im (torch.Tensor): Input tensor of shape (B, C, H, W).
|
| 603 |
-
file (pathlib.Path): Path to save the exported model.
|
| 604 |
-
half (bool): Set to True to export with FP16 precision.
|
| 605 |
-
dynamic (bool): Set to True to enable dynamic input shapes.
|
| 606 |
-
simplify (bool): Set to True to simplify the model during export.
|
| 607 |
-
workspace (int): Workspace size in GB (default is 4).
|
| 608 |
-
verbose (bool): Set to True for verbose logging output.
|
| 609 |
-
prefix (str): Log message prefix.
|
| 610 |
-
|
| 611 |
-
Returns:
|
| 612 |
-
(pathlib.Path, None): Tuple containing the path to the exported model and None.
|
| 613 |
-
|
| 614 |
-
Raises:
|
| 615 |
-
AssertionError: If executed on CPU instead of GPU.
|
| 616 |
-
RuntimeError: If there is a failure in parsing the ONNX file.
|
| 617 |
-
|
| 618 |
-
Example:
|
| 619 |
-
```python
|
| 620 |
-
from ultralytics import YOLOv5
|
| 621 |
-
import torch
|
| 622 |
-
from pathlib import Path
|
| 623 |
-
|
| 624 |
-
model = YOLOv5('yolov5s.pt') # Load a pre-trained YOLOv5 model
|
| 625 |
-
input_tensor = torch.randn(1, 3, 640, 640).cuda() # example input tensor on GPU
|
| 626 |
-
export_path = Path('yolov5s.engine') # export destination
|
| 627 |
-
|
| 628 |
-
export_engine(model.model, input_tensor, export_path, half=True, dynamic=True, simplify=True, workspace=8, verbose=True)
|
| 629 |
-
```
|
| 630 |
-
"""
|
| 631 |
-
assert im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. `python export.py --device 0`"
|
| 632 |
-
try:
|
| 633 |
-
import tensorrt as trt
|
| 634 |
-
except Exception:
|
| 635 |
-
if platform.system() == "Linux":
|
| 636 |
-
check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com")
|
| 637 |
-
import tensorrt as trt
|
| 638 |
-
|
| 639 |
-
if trt.__version__[0] == "7": # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
|
| 640 |
-
grid = model.model[-1].anchor_grid
|
| 641 |
-
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
|
| 642 |
-
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
| 643 |
-
model.model[-1].anchor_grid = grid
|
| 644 |
-
else: # TensorRT >= 8
|
| 645 |
-
check_version(trt.__version__, "8.0.0", hard=True) # require tensorrt>=8.0.0
|
| 646 |
-
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
| 647 |
-
onnx = file.with_suffix(".onnx")
|
| 648 |
-
|
| 649 |
-
LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
|
| 650 |
-
is_trt10 = int(trt.__version__.split(".")[0]) >= 10 # is TensorRT >= 10
|
| 651 |
-
assert onnx.exists(), f"failed to export ONNX file: {onnx}"
|
| 652 |
-
f = file.with_suffix(".engine") # TensorRT engine file
|
| 653 |
-
logger = trt.Logger(trt.Logger.INFO)
|
| 654 |
-
if verbose:
|
| 655 |
-
logger.min_severity = trt.Logger.Severity.VERBOSE
|
| 656 |
-
|
| 657 |
-
builder = trt.Builder(logger)
|
| 658 |
-
config = builder.create_builder_config()
|
| 659 |
-
if is_trt10:
|
| 660 |
-
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30)
|
| 661 |
-
else: # TensorRT versions 7, 8
|
| 662 |
-
config.max_workspace_size = workspace * 1 << 30
|
| 663 |
-
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
| 664 |
-
network = builder.create_network(flag)
|
| 665 |
-
parser = trt.OnnxParser(network, logger)
|
| 666 |
-
if not parser.parse_from_file(str(onnx)):
|
| 667 |
-
raise RuntimeError(f"failed to load ONNX file: {onnx}")
|
| 668 |
-
|
| 669 |
-
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
| 670 |
-
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
| 671 |
-
for inp in inputs:
|
| 672 |
-
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
| 673 |
-
for out in outputs:
|
| 674 |
-
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
| 675 |
-
|
| 676 |
-
if dynamic:
|
| 677 |
-
if im.shape[0] <= 1:
|
| 678 |
-
LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
|
| 679 |
-
profile = builder.create_optimization_profile()
|
| 680 |
-
for inp in inputs:
|
| 681 |
-
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
|
| 682 |
-
config.add_optimization_profile(profile)
|
| 683 |
-
|
| 684 |
-
LOGGER.info(f"{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}")
|
| 685 |
-
if builder.platform_has_fast_fp16 and half:
|
| 686 |
-
config.set_flag(trt.BuilderFlag.FP16)
|
| 687 |
-
|
| 688 |
-
build = builder.build_serialized_network if is_trt10 else builder.build_engine
|
| 689 |
-
with build(network, config) as engine, open(f, "wb") as t:
|
| 690 |
-
t.write(engine if is_trt10 else engine.serialize())
|
| 691 |
-
return f, None
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
@try_export
|
| 695 |
-
def export_saved_model(
|
| 696 |
-
model,
|
| 697 |
-
im,
|
| 698 |
-
file,
|
| 699 |
-
dynamic,
|
| 700 |
-
tf_nms=False,
|
| 701 |
-
agnostic_nms=False,
|
| 702 |
-
topk_per_class=100,
|
| 703 |
-
topk_all=100,
|
| 704 |
-
iou_thres=0.45,
|
| 705 |
-
conf_thres=0.25,
|
| 706 |
-
keras=False,
|
| 707 |
-
prefix=colorstr("TensorFlow SavedModel:"),
|
| 708 |
-
):
|
| 709 |
-
"""
|
| 710 |
-
Export a YOLOv5 model to the TensorFlow SavedModel format, supporting dynamic axes and non-maximum suppression
|
| 711 |
-
(NMS).
|
| 712 |
-
|
| 713 |
-
Args:
|
| 714 |
-
model (torch.nn.Module): The PyTorch model to convert.
|
| 715 |
-
im (torch.Tensor): Sample input tensor with shape (B, C, H, W) for tracing.
|
| 716 |
-
file (pathlib.Path): File path to save the exported model.
|
| 717 |
-
dynamic (bool): Flag to indicate whether dynamic axes should be used.
|
| 718 |
-
tf_nms (bool, optional): Enable TensorFlow non-maximum suppression (NMS). Default is False.
|
| 719 |
-
agnostic_nms (bool, optional): Enable class-agnostic NMS. Default is False.
|
| 720 |
-
topk_per_class (int, optional): Top K detections per class to keep before applying NMS. Default is 100.
|
| 721 |
-
topk_all (int, optional): Top K detections across all classes to keep before applying NMS. Default is 100.
|
| 722 |
-
iou_thres (float, optional): IoU threshold for NMS. Default is 0.45.
|
| 723 |
-
conf_thres (float, optional): Confidence threshold for detections. Default is 0.25.
|
| 724 |
-
keras (bool, optional): Save the model in Keras format if True. Default is False.
|
| 725 |
-
prefix (str, optional): Prefix for logging messages. Default is "TensorFlow SavedModel:".
|
| 726 |
-
|
| 727 |
-
Returns:
|
| 728 |
-
tuple[str, tf.keras.Model | None]: A tuple containing the path to the saved model folder and the Keras model instance,
|
| 729 |
-
or None if TensorFlow export fails.
|
| 730 |
-
|
| 731 |
-
Notes:
|
| 732 |
-
- The method supports TensorFlow versions up to 2.15.1.
|
| 733 |
-
- TensorFlow NMS may not be supported in older TensorFlow versions.
|
| 734 |
-
- If the TensorFlow version exceeds 2.13.1, it might cause issues when exporting to TFLite.
|
| 735 |
-
Refer to: https://github.com/ultralytics/yolov5/issues/12489
|
| 736 |
-
|
| 737 |
-
Example:
|
| 738 |
-
```python
|
| 739 |
-
model, im = ... # Initialize your PyTorch model and input tensor
|
| 740 |
-
export_saved_model(model, im, Path("yolov5_saved_model"), dynamic=True)
|
| 741 |
-
```
|
| 742 |
-
"""
|
| 743 |
-
# YOLOv5 TensorFlow SavedModel export
|
| 744 |
-
try:
|
| 745 |
-
import tensorflow as tf
|
| 746 |
-
except Exception:
|
| 747 |
-
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}<=2.15.1")
|
| 748 |
-
|
| 749 |
-
import tensorflow as tf
|
| 750 |
-
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
| 751 |
-
|
| 752 |
-
from models.tf import TFModel
|
| 753 |
-
|
| 754 |
-
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
|
| 755 |
-
if tf.__version__ > "2.13.1":
|
| 756 |
-
helper_url = "https://github.com/ultralytics/yolov5/issues/12489"
|
| 757 |
-
LOGGER.info(
|
| 758 |
-
f"WARNING ⚠️ using Tensorflow {tf.__version__} > 2.13.1 might cause issue when exporting the model to tflite {helper_url}"
|
| 759 |
-
) # handling issue https://github.com/ultralytics/yolov5/issues/12489
|
| 760 |
-
f = str(file).replace(".pt", "_saved_model")
|
| 761 |
-
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
| 762 |
-
|
| 763 |
-
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
| 764 |
-
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
|
| 765 |
-
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
| 766 |
-
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
|
| 767 |
-
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
| 768 |
-
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
| 769 |
-
keras_model.trainable = False
|
| 770 |
-
keras_model.summary()
|
| 771 |
-
if keras:
|
| 772 |
-
keras_model.save(f, save_format="tf")
|
| 773 |
-
else:
|
| 774 |
-
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
|
| 775 |
-
m = tf.function(lambda x: keras_model(x)) # full model
|
| 776 |
-
m = m.get_concrete_function(spec)
|
| 777 |
-
frozen_func = convert_variables_to_constants_v2(m)
|
| 778 |
-
tfm = tf.Module()
|
| 779 |
-
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
|
| 780 |
-
tfm.__call__(im)
|
| 781 |
-
tf.saved_model.save(
|
| 782 |
-
tfm,
|
| 783 |
-
f,
|
| 784 |
-
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
|
| 785 |
-
if check_version(tf.__version__, "2.6")
|
| 786 |
-
else tf.saved_model.SaveOptions(),
|
| 787 |
-
)
|
| 788 |
-
return f, keras_model
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
@try_export
|
| 792 |
-
def export_pb(keras_model, file, prefix=colorstr("TensorFlow GraphDef:")):
|
| 793 |
-
"""
|
| 794 |
-
Export YOLOv5 model to TensorFlow GraphDef (*.pb) format.
|
| 795 |
-
|
| 796 |
-
Args:
|
| 797 |
-
keras_model (tf.keras.Model): The Keras model to be converted.
|
| 798 |
-
file (Path): The output file path where the GraphDef will be saved.
|
| 799 |
-
prefix (str): Optional prefix string; defaults to a colored string indicating TensorFlow GraphDef export status.
|
| 800 |
-
|
| 801 |
-
Returns:
|
| 802 |
-
Tuple[Path, None]: The file path where the GraphDef model was saved and a None placeholder.
|
| 803 |
-
|
| 804 |
-
Notes:
|
| 805 |
-
For more details, refer to the guide on frozen graphs: https://github.com/leimao/Frozen_Graph_TensorFlow
|
| 806 |
-
|
| 807 |
-
Example:
|
| 808 |
-
```python
|
| 809 |
-
from pathlib import Path
|
| 810 |
-
keras_model = ... # assume an existing Keras model
|
| 811 |
-
file = Path("model.pb")
|
| 812 |
-
export_pb(keras_model, file)
|
| 813 |
-
```
|
| 814 |
-
"""
|
| 815 |
-
import tensorflow as tf
|
| 816 |
-
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
| 817 |
-
|
| 818 |
-
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
|
| 819 |
-
f = file.with_suffix(".pb")
|
| 820 |
-
|
| 821 |
-
m = tf.function(lambda x: keras_model(x)) # full model
|
| 822 |
-
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
| 823 |
-
frozen_func = convert_variables_to_constants_v2(m)
|
| 824 |
-
frozen_func.graph.as_graph_def()
|
| 825 |
-
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
| 826 |
-
return f, None
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
@try_export
|
| 830 |
-
def export_tflite(
|
| 831 |
-
keras_model, im, file, int8, per_tensor, data, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")
|
| 832 |
-
):
|
| 833 |
-
# YOLOv5 TensorFlow Lite export
|
| 834 |
-
"""
|
| 835 |
-
Export a YOLOv5 model to TensorFlow Lite format with optional INT8 quantization and NMS support.
|
| 836 |
-
|
| 837 |
-
Args:
|
| 838 |
-
keras_model (tf.keras.Model): The Keras model to be exported.
|
| 839 |
-
im (torch.Tensor): An input image tensor for normalization and model tracing.
|
| 840 |
-
file (Path): The file path to save the TensorFlow Lite model.
|
| 841 |
-
int8 (bool): Enables INT8 quantization if True.
|
| 842 |
-
per_tensor (bool): If True, disables per-channel quantization.
|
| 843 |
-
data (str): Path to the dataset for representative dataset generation in INT8 quantization.
|
| 844 |
-
nms (bool): Enables Non-Maximum Suppression (NMS) if True.
|
| 845 |
-
agnostic_nms (bool): Enables class-agnostic NMS if True.
|
| 846 |
-
prefix (str): Prefix for log messages.
|
| 847 |
-
|
| 848 |
-
Returns:
|
| 849 |
-
(str | None, tflite.Model | None): The file path of the exported TFLite model and the TFLite model instance, or None
|
| 850 |
-
if the export failed.
|
| 851 |
-
|
| 852 |
-
Example:
|
| 853 |
-
```python
|
| 854 |
-
from pathlib import Path
|
| 855 |
-
import torch
|
| 856 |
-
import tensorflow as tf
|
| 857 |
-
|
| 858 |
-
# Load a Keras model wrapping a YOLOv5 model
|
| 859 |
-
keras_model = tf.keras.models.load_model('path/to/keras_model.h5')
|
| 860 |
-
|
| 861 |
-
# Example input tensor
|
| 862 |
-
im = torch.zeros(1, 3, 640, 640)
|
| 863 |
-
|
| 864 |
-
# Export the model
|
| 865 |
-
export_tflite(keras_model, im, Path('model.tflite'), int8=True, per_tensor=False, data='data/coco.yaml',
|
| 866 |
-
nms=True, agnostic_nms=False)
|
| 867 |
-
```
|
| 868 |
-
|
| 869 |
-
Notes:
|
| 870 |
-
- Ensure TensorFlow and TensorFlow Lite dependencies are installed.
|
| 871 |
-
- INT8 quantization requires a representative dataset to achieve optimal accuracy.
|
| 872 |
-
- TensorFlow Lite models are suitable for efficient inference on mobile and edge devices.
|
| 873 |
-
"""
|
| 874 |
-
import tensorflow as tf
|
| 875 |
-
|
| 876 |
-
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
|
| 877 |
-
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
| 878 |
-
f = str(file).replace(".pt", "-fp16.tflite")
|
| 879 |
-
|
| 880 |
-
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
| 881 |
-
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
| 882 |
-
converter.target_spec.supported_types = [tf.float16]
|
| 883 |
-
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
| 884 |
-
if int8:
|
| 885 |
-
from models.tf import representative_dataset_gen
|
| 886 |
-
|
| 887 |
-
dataset = LoadImages(check_dataset(check_yaml(data))["train"], img_size=imgsz, auto=False)
|
| 888 |
-
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
|
| 889 |
-
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
| 890 |
-
converter.target_spec.supported_types = []
|
| 891 |
-
converter.inference_input_type = tf.uint8 # or tf.int8
|
| 892 |
-
converter.inference_output_type = tf.uint8 # or tf.int8
|
| 893 |
-
converter.experimental_new_quantizer = True
|
| 894 |
-
if per_tensor:
|
| 895 |
-
converter._experimental_disable_per_channel = True
|
| 896 |
-
f = str(file).replace(".pt", "-int8.tflite")
|
| 897 |
-
if nms or agnostic_nms:
|
| 898 |
-
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
|
| 899 |
-
|
| 900 |
-
tflite_model = converter.convert()
|
| 901 |
-
open(f, "wb").write(tflite_model)
|
| 902 |
-
return f, None
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
@try_export
|
| 906 |
-
def export_edgetpu(file, prefix=colorstr("Edge TPU:")):
|
| 907 |
-
"""
|
| 908 |
-
Exports a YOLOv5 model to Edge TPU compatible TFLite format; requires Linux and Edge TPU compiler.
|
| 909 |
-
|
| 910 |
-
Args:
|
| 911 |
-
file (Path): Path to the YOLOv5 model file to be exported (.pt format).
|
| 912 |
-
prefix (str, optional): Prefix for logging messages. Defaults to colorstr("Edge TPU:").
|
| 913 |
-
|
| 914 |
-
Returns:
|
| 915 |
-
tuple[Path, None]: Path to the exported Edge TPU compatible TFLite model, None.
|
| 916 |
-
|
| 917 |
-
Raises:
|
| 918 |
-
AssertionError: If the system is not Linux.
|
| 919 |
-
subprocess.CalledProcessError: If any subprocess call to install or run the Edge TPU compiler fails.
|
| 920 |
-
|
| 921 |
-
Notes:
|
| 922 |
-
To use this function, ensure you have the Edge TPU compiler installed on your Linux system. You can find
|
| 923 |
-
installation instructions here: https://coral.ai/docs/edgetpu/compiler/.
|
| 924 |
-
|
| 925 |
-
Example:
|
| 926 |
-
```python
|
| 927 |
-
from pathlib import Path
|
| 928 |
-
file = Path('yolov5s.pt')
|
| 929 |
-
export_edgetpu(file)
|
| 930 |
-
```
|
| 931 |
-
"""
|
| 932 |
-
cmd = "edgetpu_compiler --version"
|
| 933 |
-
help_url = "https://coral.ai/docs/edgetpu/compiler/"
|
| 934 |
-
assert platform.system() == "Linux", f"export only supported on Linux. See {help_url}"
|
| 935 |
-
if subprocess.run(f"{cmd} > /dev/null 2>&1", shell=True).returncode != 0:
|
| 936 |
-
LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}")
|
| 937 |
-
sudo = subprocess.run("sudo --version >/dev/null", shell=True).returncode == 0 # sudo installed on system
|
| 938 |
-
for c in (
|
| 939 |
-
"curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -",
|
| 940 |
-
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
| 941 |
-
"sudo apt-get update",
|
| 942 |
-
"sudo apt-get install edgetpu-compiler",
|
| 943 |
-
):
|
| 944 |
-
subprocess.run(c if sudo else c.replace("sudo ", ""), shell=True, check=True)
|
| 945 |
-
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
| 946 |
-
|
| 947 |
-
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
|
| 948 |
-
f = str(file).replace(".pt", "-int8_edgetpu.tflite") # Edge TPU model
|
| 949 |
-
f_tfl = str(file).replace(".pt", "-int8.tflite") # TFLite model
|
| 950 |
-
|
| 951 |
-
subprocess.run(
|
| 952 |
-
[
|
| 953 |
-
"edgetpu_compiler",
|
| 954 |
-
"-s",
|
| 955 |
-
"-d",
|
| 956 |
-
"-k",
|
| 957 |
-
"10",
|
| 958 |
-
"--out_dir",
|
| 959 |
-
str(file.parent),
|
| 960 |
-
f_tfl,
|
| 961 |
-
],
|
| 962 |
-
check=True,
|
| 963 |
-
)
|
| 964 |
-
return f, None
|
| 965 |
-
|
| 966 |
-
|
| 967 |
-
@try_export
|
| 968 |
-
def export_tfjs(file, int8, prefix=colorstr("TensorFlow.js:")):
|
| 969 |
-
"""
|
| 970 |
-
Convert a YOLOv5 model to TensorFlow.js format with optional uint8 quantization.
|
| 971 |
-
|
| 972 |
-
Args:
|
| 973 |
-
file (Path): Path to the YOLOv5 model file to be converted, typically having a ".pt" or ".onnx" extension.
|
| 974 |
-
int8 (bool): If True, applies uint8 quantization during the conversion process.
|
| 975 |
-
prefix (str): Optional prefix for logging messages, default is 'TensorFlow.js:' with color formatting.
|
| 976 |
-
|
| 977 |
-
Returns:
|
| 978 |
-
(str, None): Tuple containing the output directory path as a string and None.
|
| 979 |
-
|
| 980 |
-
Notes:
|
| 981 |
-
- This function requires the `tensorflowjs` package. Install it using:
|
| 982 |
-
```shell
|
| 983 |
-
pip install tensorflowjs
|
| 984 |
-
```
|
| 985 |
-
- The converted TensorFlow.js model will be saved in a directory with the "_web_model" suffix appended to the original file name.
|
| 986 |
-
- The conversion involves running shell commands that invoke the TensorFlow.js converter tool.
|
| 987 |
-
|
| 988 |
-
Example:
|
| 989 |
-
```python
|
| 990 |
-
from pathlib import Path
|
| 991 |
-
file = Path('yolov5.onnx')
|
| 992 |
-
export_tfjs(file, int8=False)
|
| 993 |
-
```
|
| 994 |
-
"""
|
| 995 |
-
check_requirements("tensorflowjs")
|
| 996 |
-
import tensorflowjs as tfjs
|
| 997 |
-
|
| 998 |
-
LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...")
|
| 999 |
-
f = str(file).replace(".pt", "_web_model") # js dir
|
| 1000 |
-
f_pb = file.with_suffix(".pb") # *.pb path
|
| 1001 |
-
f_json = f"{f}/model.json" # *.json path
|
| 1002 |
-
|
| 1003 |
-
args = [
|
| 1004 |
-
"tensorflowjs_converter",
|
| 1005 |
-
"--input_format=tf_frozen_model",
|
| 1006 |
-
"--quantize_uint8" if int8 else "",
|
| 1007 |
-
"--output_node_names=Identity,Identity_1,Identity_2,Identity_3",
|
| 1008 |
-
str(f_pb),
|
| 1009 |
-
f,
|
| 1010 |
-
]
|
| 1011 |
-
subprocess.run([arg for arg in args if arg], check=True)
|
| 1012 |
-
|
| 1013 |
-
json = Path(f_json).read_text()
|
| 1014 |
-
with open(f_json, "w") as j: # sort JSON Identity_* in ascending order
|
| 1015 |
-
subst = re.sub(
|
| 1016 |
-
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
| 1017 |
-
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
| 1018 |
-
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
| 1019 |
-
r'"Identity.?.?": {"name": "Identity.?.?"}}}',
|
| 1020 |
-
r'{"outputs": {"Identity": {"name": "Identity"}, '
|
| 1021 |
-
r'"Identity_1": {"name": "Identity_1"}, '
|
| 1022 |
-
r'"Identity_2": {"name": "Identity_2"}, '
|
| 1023 |
-
r'"Identity_3": {"name": "Identity_3"}}}',
|
| 1024 |
-
json,
|
| 1025 |
-
)
|
| 1026 |
-
j.write(subst)
|
| 1027 |
-
return f, None
|
| 1028 |
-
|
| 1029 |
-
|
| 1030 |
-
def add_tflite_metadata(file, metadata, num_outputs):
|
| 1031 |
-
"""
|
| 1032 |
-
Adds metadata to a TensorFlow Lite (TFLite) model file, supporting multiple outputs according to TensorFlow
|
| 1033 |
-
guidelines.
|
| 1034 |
-
|
| 1035 |
-
Args:
|
| 1036 |
-
file (str): Path to the TFLite model file to which metadata will be added.
|
| 1037 |
-
metadata (dict): Metadata information to be added to the model, structured as required by the TFLite metadata schema.
|
| 1038 |
-
Common keys include "name", "description", "version", "author", and "license".
|
| 1039 |
-
num_outputs (int): Number of output tensors the model has, used to configure the metadata properly.
|
| 1040 |
-
|
| 1041 |
-
Returns:
|
| 1042 |
-
None
|
| 1043 |
-
|
| 1044 |
-
Example:
|
| 1045 |
-
```python
|
| 1046 |
-
metadata = {
|
| 1047 |
-
"name": "yolov5",
|
| 1048 |
-
"description": "YOLOv5 object detection model",
|
| 1049 |
-
"version": "1.0",
|
| 1050 |
-
"author": "Ultralytics",
|
| 1051 |
-
"license": "Apache License 2.0"
|
| 1052 |
-
}
|
| 1053 |
-
add_tflite_metadata("model.tflite", metadata, num_outputs=4)
|
| 1054 |
-
```
|
| 1055 |
-
|
| 1056 |
-
Note:
|
| 1057 |
-
TFLite metadata can include information such as model name, version, author, and other relevant details.
|
| 1058 |
-
For more details on the structure of the metadata, refer to TensorFlow Lite
|
| 1059 |
-
[metadata guidelines](https://www.tensorflow.org/lite/models/convert/metadata).
|
| 1060 |
-
"""
|
| 1061 |
-
with contextlib.suppress(ImportError):
|
| 1062 |
-
# check_requirements('tflite_support')
|
| 1063 |
-
from tflite_support import flatbuffers
|
| 1064 |
-
from tflite_support import metadata as _metadata
|
| 1065 |
-
from tflite_support import metadata_schema_py_generated as _metadata_fb
|
| 1066 |
-
|
| 1067 |
-
tmp_file = Path("/tmp/meta.txt")
|
| 1068 |
-
with open(tmp_file, "w") as meta_f:
|
| 1069 |
-
meta_f.write(str(metadata))
|
| 1070 |
-
|
| 1071 |
-
model_meta = _metadata_fb.ModelMetadataT()
|
| 1072 |
-
label_file = _metadata_fb.AssociatedFileT()
|
| 1073 |
-
label_file.name = tmp_file.name
|
| 1074 |
-
model_meta.associatedFiles = [label_file]
|
| 1075 |
-
|
| 1076 |
-
subgraph = _metadata_fb.SubGraphMetadataT()
|
| 1077 |
-
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
|
| 1078 |
-
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
|
| 1079 |
-
model_meta.subgraphMetadata = [subgraph]
|
| 1080 |
-
|
| 1081 |
-
b = flatbuffers.Builder(0)
|
| 1082 |
-
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
|
| 1083 |
-
metadata_buf = b.Output()
|
| 1084 |
-
|
| 1085 |
-
populator = _metadata.MetadataPopulator.with_model_file(file)
|
| 1086 |
-
populator.load_metadata_buffer(metadata_buf)
|
| 1087 |
-
populator.load_associated_files([str(tmp_file)])
|
| 1088 |
-
populator.populate()
|
| 1089 |
-
tmp_file.unlink()
|
| 1090 |
-
|
| 1091 |
-
|
| 1092 |
-
def pipeline_coreml(model, im, file, names, y, mlmodel, prefix=colorstr("CoreML Pipeline:")):
|
| 1093 |
-
"""
|
| 1094 |
-
Convert a PyTorch YOLOv5 model to CoreML format with Non-Maximum Suppression (NMS), handling different input/output
|
| 1095 |
-
shapes, and saving the model.
|
| 1096 |
-
|
| 1097 |
-
Args:
|
| 1098 |
-
model (torch.nn.Module): The YOLOv5 PyTorch model to be converted.
|
| 1099 |
-
im (torch.Tensor): Example input tensor with shape (N, C, H, W), where N is the batch size, C is the number of channels,
|
| 1100 |
-
H is the height, and W is the width.
|
| 1101 |
-
file (Path): Path to save the converted CoreML model.
|
| 1102 |
-
names (dict[int, str]): Dictionary mapping class indices to class names.
|
| 1103 |
-
y (torch.Tensor): Output tensor from the PyTorch model's forward pass.
|
| 1104 |
-
mlmodel (bool): Flag indicating whether to export as older *.mlmodel format (default is False).
|
| 1105 |
-
prefix (str): Custom prefix for logging messages.
|
| 1106 |
-
|
| 1107 |
-
Returns:
|
| 1108 |
-
(Path): Path to the saved CoreML model (.mlmodel).
|
| 1109 |
-
|
| 1110 |
-
Raises:
|
| 1111 |
-
AssertionError: If the number of class names does not match the number of classes in the model.
|
| 1112 |
-
|
| 1113 |
-
Notes:
|
| 1114 |
-
- This function requires `coremltools` to be installed.
|
| 1115 |
-
- Running this function on a non-macOS environment might not support some features.
|
| 1116 |
-
- Flexible input shapes and additional NMS options can be customized within the function.
|
| 1117 |
-
|
| 1118 |
-
Examples:
|
| 1119 |
-
```python
|
| 1120 |
-
from pathlib import Path
|
| 1121 |
-
import torch
|
| 1122 |
-
|
| 1123 |
-
model = torch.load('yolov5s.pt') # Load YOLOv5 model
|
| 1124 |
-
im = torch.zeros((1, 3, 640, 640)) # Example input tensor
|
| 1125 |
-
|
| 1126 |
-
names = {0: "person", 1: "bicycle", 2: "car", ...} # Define class names
|
| 1127 |
-
|
| 1128 |
-
y = model(im) # Perform forward pass to get model output
|
| 1129 |
-
|
| 1130 |
-
output_file = Path('yolov5s.mlmodel') # Convert to CoreML
|
| 1131 |
-
pipeline_coreml(model, im, output_file, names, y)
|
| 1132 |
-
```
|
| 1133 |
-
"""
|
| 1134 |
-
import coremltools as ct
|
| 1135 |
-
from PIL import Image
|
| 1136 |
-
|
| 1137 |
-
if mlmodel:
|
| 1138 |
-
f = file.with_suffix(".mlmodel") # filename
|
| 1139 |
-
else:
|
| 1140 |
-
f = file.with_suffix(".mlpackage") # filename
|
| 1141 |
-
|
| 1142 |
-
print(f"{prefix} starting pipeline with coremltools {ct.__version__}...")
|
| 1143 |
-
batch_size, ch, h, w = list(im.shape) # BCHW
|
| 1144 |
-
t = time.time()
|
| 1145 |
-
|
| 1146 |
-
# YOLOv5 Output shapes
|
| 1147 |
-
spec = model.get_spec()
|
| 1148 |
-
out0, out1 = iter(spec.description.output)
|
| 1149 |
-
if platform.system() == "Darwin":
|
| 1150 |
-
img = Image.new("RGB", (w, h)) # img(192 width, 320 height)
|
| 1151 |
-
# img = torch.zeros((*opt.img_size, 3)).numpy() # img size(320,192,3) iDetection
|
| 1152 |
-
out = model.predict({"image": img})
|
| 1153 |
-
out0_shape, out1_shape = out[out0.name].shape, out[out1.name].shape
|
| 1154 |
-
else: # linux and windows can not run model.predict(), get sizes from pytorch output y
|
| 1155 |
-
s = tuple(y[0].shape)
|
| 1156 |
-
out0_shape, out1_shape = (s[1], s[2] - 5), (s[1], 4) # (3780, 80), (3780, 4)
|
| 1157 |
-
|
| 1158 |
-
# Checks
|
| 1159 |
-
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
|
| 1160 |
-
na, nc = out0_shape
|
| 1161 |
-
# na, nc = out0.type.multiArrayType.shape # number anchors, classes
|
| 1162 |
-
assert len(names) == nc, f"{len(names)} names found for nc={nc}" # check
|
| 1163 |
-
|
| 1164 |
-
# Define output shapes (missing)
|
| 1165 |
-
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80)
|
| 1166 |
-
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4)
|
| 1167 |
-
# spec.neuralNetwork.preprocessing[0].featureName = '0'
|
| 1168 |
-
|
| 1169 |
-
# Flexible input shapes
|
| 1170 |
-
# from coremltools.models.neural_network import flexible_shape_utils
|
| 1171 |
-
# s = [] # shapes
|
| 1172 |
-
# s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
|
| 1173 |
-
# s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width)
|
| 1174 |
-
# flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
|
| 1175 |
-
# r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges
|
| 1176 |
-
# r.add_height_range((192, 640))
|
| 1177 |
-
# r.add_width_range((192, 640))
|
| 1178 |
-
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)
|
| 1179 |
-
|
| 1180 |
-
# Print
|
| 1181 |
-
print(spec.description)
|
| 1182 |
-
|
| 1183 |
-
# Model from spec
|
| 1184 |
-
weights_dir = None
|
| 1185 |
-
if mlmodel:
|
| 1186 |
-
weights_dir = None
|
| 1187 |
-
else:
|
| 1188 |
-
weights_dir = str(f / "Data/com.apple.CoreML/weights")
|
| 1189 |
-
model = ct.models.MLModel(spec, weights_dir=weights_dir)
|
| 1190 |
-
|
| 1191 |
-
# 3. Create NMS protobuf
|
| 1192 |
-
nms_spec = ct.proto.Model_pb2.Model()
|
| 1193 |
-
nms_spec.specificationVersion = 5
|
| 1194 |
-
for i in range(2):
|
| 1195 |
-
decoder_output = model._spec.description.output[i].SerializeToString()
|
| 1196 |
-
nms_spec.description.input.add()
|
| 1197 |
-
nms_spec.description.input[i].ParseFromString(decoder_output)
|
| 1198 |
-
nms_spec.description.output.add()
|
| 1199 |
-
nms_spec.description.output[i].ParseFromString(decoder_output)
|
| 1200 |
-
|
| 1201 |
-
nms_spec.description.output[0].name = "confidence"
|
| 1202 |
-
nms_spec.description.output[1].name = "coordinates"
|
| 1203 |
-
|
| 1204 |
-
output_sizes = [nc, 4]
|
| 1205 |
-
for i in range(2):
|
| 1206 |
-
ma_type = nms_spec.description.output[i].type.multiArrayType
|
| 1207 |
-
ma_type.shapeRange.sizeRanges.add()
|
| 1208 |
-
ma_type.shapeRange.sizeRanges[0].lowerBound = 0
|
| 1209 |
-
ma_type.shapeRange.sizeRanges[0].upperBound = -1
|
| 1210 |
-
ma_type.shapeRange.sizeRanges.add()
|
| 1211 |
-
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
|
| 1212 |
-
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
|
| 1213 |
-
del ma_type.shape[:]
|
| 1214 |
-
|
| 1215 |
-
nms = nms_spec.nonMaximumSuppression
|
| 1216 |
-
nms.confidenceInputFeatureName = out0.name # 1x507x80
|
| 1217 |
-
nms.coordinatesInputFeatureName = out1.name # 1x507x4
|
| 1218 |
-
nms.confidenceOutputFeatureName = "confidence"
|
| 1219 |
-
nms.coordinatesOutputFeatureName = "coordinates"
|
| 1220 |
-
nms.iouThresholdInputFeatureName = "iouThreshold"
|
| 1221 |
-
nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
|
| 1222 |
-
nms.iouThreshold = 0.45
|
| 1223 |
-
nms.confidenceThreshold = 0.25
|
| 1224 |
-
nms.pickTop.perClass = True
|
| 1225 |
-
nms.stringClassLabels.vector.extend(names.values())
|
| 1226 |
-
nms_model = ct.models.MLModel(nms_spec)
|
| 1227 |
-
|
| 1228 |
-
# 4. Pipeline models together
|
| 1229 |
-
pipeline = ct.models.pipeline.Pipeline(
|
| 1230 |
-
input_features=[
|
| 1231 |
-
("image", ct.models.datatypes.Array(3, ny, nx)),
|
| 1232 |
-
("iouThreshold", ct.models.datatypes.Double()),
|
| 1233 |
-
("confidenceThreshold", ct.models.datatypes.Double()),
|
| 1234 |
-
],
|
| 1235 |
-
output_features=["confidence", "coordinates"],
|
| 1236 |
-
)
|
| 1237 |
-
pipeline.add_model(model)
|
| 1238 |
-
pipeline.add_model(nms_model)
|
| 1239 |
-
|
| 1240 |
-
# Correct datatypes
|
| 1241 |
-
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
|
| 1242 |
-
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
|
| 1243 |
-
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
|
| 1244 |
-
|
| 1245 |
-
# Update metadata
|
| 1246 |
-
pipeline.spec.specificationVersion = 5
|
| 1247 |
-
pipeline.spec.description.metadata.versionString = "https://github.com/ultralytics/yolov5"
|
| 1248 |
-
pipeline.spec.description.metadata.shortDescription = "https://github.com/ultralytics/yolov5"
|
| 1249 |
-
pipeline.spec.description.metadata.author = "[email protected]"
|
| 1250 |
-
pipeline.spec.description.metadata.license = "https://github.com/ultralytics/yolov5/blob/master/LICENSE"
|
| 1251 |
-
pipeline.spec.description.metadata.userDefined.update(
|
| 1252 |
-
{
|
| 1253 |
-
"classes": ",".join(names.values()),
|
| 1254 |
-
"iou_threshold": str(nms.iouThreshold),
|
| 1255 |
-
"confidence_threshold": str(nms.confidenceThreshold),
|
| 1256 |
-
}
|
| 1257 |
-
)
|
| 1258 |
-
|
| 1259 |
-
# Save the model
|
| 1260 |
-
model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir)
|
| 1261 |
-
model.input_description["image"] = "Input image"
|
| 1262 |
-
model.input_description["iouThreshold"] = f"(optional) IOU Threshold override (default: {nms.iouThreshold})"
|
| 1263 |
-
model.input_description["confidenceThreshold"] = (
|
| 1264 |
-
f"(optional) Confidence Threshold override (default: {nms.confidenceThreshold})"
|
| 1265 |
-
)
|
| 1266 |
-
model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")'
|
| 1267 |
-
model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)"
|
| 1268 |
-
model.save(f) # pipelined
|
| 1269 |
-
print(f"{prefix} pipeline success ({time.time() - t:.2f}s), saved as {f} ({file_size(f):.1f} MB)")
|
| 1270 |
-
|
| 1271 |
-
|
| 1272 |
-
@smart_inference_mode()
|
| 1273 |
-
def run(
|
| 1274 |
-
data=ROOT / "data/coco128.yaml", # 'dataset.yaml path'
|
| 1275 |
-
weights=ROOT / "yolov5s.pt", # weights path
|
| 1276 |
-
imgsz=(640, 640), # image (height, width)
|
| 1277 |
-
batch_size=1, # batch size
|
| 1278 |
-
device="cpu", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
| 1279 |
-
include=("torchscript", "onnx"), # include formats
|
| 1280 |
-
half=False, # FP16 half-precision export
|
| 1281 |
-
inplace=False, # set YOLOv5 Detect() inplace=True
|
| 1282 |
-
keras=False, # use Keras
|
| 1283 |
-
optimize=False, # TorchScript: optimize for mobile
|
| 1284 |
-
int8=False, # CoreML/TF INT8 quantization
|
| 1285 |
-
per_tensor=False, # TF per tensor quantization
|
| 1286 |
-
dynamic=False, # ONNX/TF/TensorRT: dynamic axes
|
| 1287 |
-
simplify=False, # ONNX: simplify model
|
| 1288 |
-
mlmodel=False, # CoreML: Export in *.mlmodel format
|
| 1289 |
-
opset=12, # ONNX: opset version
|
| 1290 |
-
verbose=False, # TensorRT: verbose log
|
| 1291 |
-
workspace=4, # TensorRT: workspace size (GB)
|
| 1292 |
-
nms=False, # TF: add NMS to model
|
| 1293 |
-
agnostic_nms=False, # TF: add agnostic NMS to model
|
| 1294 |
-
topk_per_class=100, # TF.js NMS: topk per class to keep
|
| 1295 |
-
topk_all=100, # TF.js NMS: topk for all classes to keep
|
| 1296 |
-
iou_thres=0.45, # TF.js NMS: IoU threshold
|
| 1297 |
-
conf_thres=0.25, # TF.js NMS: confidence threshold
|
| 1298 |
-
):
|
| 1299 |
-
"""
|
| 1300 |
-
Exports a YOLOv5 model to specified formats including ONNX, TensorRT, CoreML, and TensorFlow.
|
| 1301 |
-
|
| 1302 |
-
Args:
|
| 1303 |
-
data (str | Path): Path to the dataset YAML configuration file. Default is 'data/coco128.yaml'.
|
| 1304 |
-
weights (str | Path): Path to the pretrained model weights file. Default is 'yolov5s.pt'.
|
| 1305 |
-
imgsz (tuple): Image size as (height, width). Default is (640, 640).
|
| 1306 |
-
batch_size (int): Batch size for exporting the model. Default is 1.
|
| 1307 |
-
device (str): Device to run the export on, e.g., '0' for GPU, 'cpu' for CPU. Default is 'cpu'.
|
| 1308 |
-
include (tuple): Formats to include in the export. Default is ('torchscript', 'onnx').
|
| 1309 |
-
half (bool): Flag to export model with FP16 half-precision. Default is False.
|
| 1310 |
-
inplace (bool): Set the YOLOv5 Detect() module inplace=True. Default is False.
|
| 1311 |
-
keras (bool): Flag to use Keras for TensorFlow SavedModel export. Default is False.
|
| 1312 |
-
optimize (bool): Optimize TorchScript model for mobile deployment. Default is False.
|
| 1313 |
-
int8 (bool): Apply INT8 quantization for CoreML or TensorFlow models. Default is False.
|
| 1314 |
-
per_tensor (bool): Apply per tensor quantization for TensorFlow models. Default is False.
|
| 1315 |
-
dynamic (bool): Enable dynamic axes for ONNX, TensorFlow, or TensorRT exports. Default is False.
|
| 1316 |
-
simplify (bool): Simplify the ONNX model during export. Default is False.
|
| 1317 |
-
opset (int): ONNX opset version. Default is 12.
|
| 1318 |
-
verbose (bool): Enable verbose logging for TensorRT export. Default is False.
|
| 1319 |
-
workspace (int): TensorRT workspace size in GB. Default is 4.
|
| 1320 |
-
nms (bool): Add non-maximum suppression (NMS) to the TensorFlow model. Default is False.
|
| 1321 |
-
agnostic_nms (bool): Add class-agnostic NMS to the TensorFlow model. Default is False.
|
| 1322 |
-
topk_per_class (int): Top-K boxes per class to keep for TensorFlow.js NMS. Default is 100.
|
| 1323 |
-
topk_all (int): Top-K boxes for all classes to keep for TensorFlow.js NMS. Default is 100.
|
| 1324 |
-
iou_thres (float): IoU threshold for NMS. Default is 0.45.
|
| 1325 |
-
conf_thres (float): Confidence threshold for NMS. Default is 0.25.
|
| 1326 |
-
mlmodel (bool): Flag to use *.mlmodel for CoreML export. Default is False.
|
| 1327 |
-
|
| 1328 |
-
Returns:
|
| 1329 |
-
None
|
| 1330 |
-
|
| 1331 |
-
Notes:
|
| 1332 |
-
- Model export is based on the specified formats in the 'include' argument.
|
| 1333 |
-
- Be cautious of combinations where certain flags are mutually exclusive, such as `--half` and `--dynamic`.
|
| 1334 |
-
|
| 1335 |
-
Example:
|
| 1336 |
-
```python
|
| 1337 |
-
run(
|
| 1338 |
-
data="data/coco128.yaml",
|
| 1339 |
-
weights="yolov5s.pt",
|
| 1340 |
-
imgsz=(640, 640),
|
| 1341 |
-
batch_size=1,
|
| 1342 |
-
device="cpu",
|
| 1343 |
-
include=("torchscript", "onnx"),
|
| 1344 |
-
half=False,
|
| 1345 |
-
inplace=False,
|
| 1346 |
-
keras=False,
|
| 1347 |
-
optimize=False,
|
| 1348 |
-
int8=False,
|
| 1349 |
-
per_tensor=False,
|
| 1350 |
-
dynamic=False,
|
| 1351 |
-
simplify=False,
|
| 1352 |
-
opset=12,
|
| 1353 |
-
verbose=False,
|
| 1354 |
-
mlmodel=False,
|
| 1355 |
-
workspace=4,
|
| 1356 |
-
nms=False,
|
| 1357 |
-
agnostic_nms=False,
|
| 1358 |
-
topk_per_class=100,
|
| 1359 |
-
topk_all=100,
|
| 1360 |
-
iou_thres=0.45,
|
| 1361 |
-
conf_thres=0.25,
|
| 1362 |
-
)
|
| 1363 |
-
```
|
| 1364 |
-
"""
|
| 1365 |
-
t = time.time()
|
| 1366 |
-
include = [x.lower() for x in include] # to lowercase
|
| 1367 |
-
fmts = tuple(export_formats()["Argument"][1:]) # --include arguments
|
| 1368 |
-
flags = [x in include for x in fmts]
|
| 1369 |
-
assert sum(flags) == len(include), f"ERROR: Invalid --include {include}, valid --include arguments are {fmts}"
|
| 1370 |
-
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
|
| 1371 |
-
file = Path(url2file(weights) if str(weights).startswith(("http:/", "https:/")) else weights) # PyTorch weights
|
| 1372 |
-
|
| 1373 |
-
# Load PyTorch model
|
| 1374 |
-
device = select_device(device)
|
| 1375 |
-
if half:
|
| 1376 |
-
assert device.type != "cpu" or coreml, "--half only compatible with GPU export, i.e. use --device 0"
|
| 1377 |
-
assert not dynamic, "--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both"
|
| 1378 |
-
model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
|
| 1379 |
-
|
| 1380 |
-
# Checks
|
| 1381 |
-
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
| 1382 |
-
if optimize:
|
| 1383 |
-
assert device.type == "cpu", "--optimize not compatible with cuda devices, i.e. use --device cpu"
|
| 1384 |
-
|
| 1385 |
-
# Input
|
| 1386 |
-
gs = int(max(model.stride)) # grid size (max stride)
|
| 1387 |
-
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
|
| 1388 |
-
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
| 1389 |
-
|
| 1390 |
-
# Update model
|
| 1391 |
-
model.eval()
|
| 1392 |
-
for k, m in model.named_modules():
|
| 1393 |
-
if isinstance(m, Detect):
|
| 1394 |
-
m.inplace = inplace
|
| 1395 |
-
m.dynamic = dynamic
|
| 1396 |
-
m.export = True
|
| 1397 |
-
|
| 1398 |
-
for _ in range(2):
|
| 1399 |
-
y = model(im) # dry runs
|
| 1400 |
-
if half and not coreml:
|
| 1401 |
-
im, model = im.half(), model.half() # to FP16
|
| 1402 |
-
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
|
| 1403 |
-
metadata = {"stride": int(max(model.stride)), "names": model.names} # model metadata
|
| 1404 |
-
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
|
| 1405 |
-
|
| 1406 |
-
# Exports
|
| 1407 |
-
f = [""] * len(fmts) # exported filenames
|
| 1408 |
-
warnings.filterwarnings(action="ignore", category=torch.jit.TracerWarning) # suppress TracerWarning
|
| 1409 |
-
if jit: # TorchScript
|
| 1410 |
-
f[0], _ = export_torchscript(model, im, file, optimize)
|
| 1411 |
-
if engine: # TensorRT required before ONNX
|
| 1412 |
-
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
|
| 1413 |
-
if onnx or xml: # OpenVINO requires ONNX
|
| 1414 |
-
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
|
| 1415 |
-
if xml: # OpenVINO
|
| 1416 |
-
f[3], _ = export_openvino(file, metadata, half, int8, data)
|
| 1417 |
-
if coreml: # CoreML
|
| 1418 |
-
f[4], ct_model = export_coreml(model, im, file, int8, half, nms, mlmodel)
|
| 1419 |
-
if nms:
|
| 1420 |
-
pipeline_coreml(ct_model, im, file, model.names, y, mlmodel)
|
| 1421 |
-
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
|
| 1422 |
-
assert not tflite or not tfjs, "TFLite and TF.js models must be exported separately, please pass only one type."
|
| 1423 |
-
assert not isinstance(model, ClassificationModel), "ClassificationModel export to TF formats not yet supported."
|
| 1424 |
-
f[5], s_model = export_saved_model(
|
| 1425 |
-
model.cpu(),
|
| 1426 |
-
im,
|
| 1427 |
-
file,
|
| 1428 |
-
dynamic,
|
| 1429 |
-
tf_nms=nms or agnostic_nms or tfjs,
|
| 1430 |
-
agnostic_nms=agnostic_nms or tfjs,
|
| 1431 |
-
topk_per_class=topk_per_class,
|
| 1432 |
-
topk_all=topk_all,
|
| 1433 |
-
iou_thres=iou_thres,
|
| 1434 |
-
conf_thres=conf_thres,
|
| 1435 |
-
keras=keras,
|
| 1436 |
-
)
|
| 1437 |
-
if pb or tfjs: # pb prerequisite to tfjs
|
| 1438 |
-
f[6], _ = export_pb(s_model, file)
|
| 1439 |
-
if tflite or edgetpu:
|
| 1440 |
-
f[7], _ = export_tflite(
|
| 1441 |
-
s_model, im, file, int8 or edgetpu, per_tensor, data=data, nms=nms, agnostic_nms=agnostic_nms
|
| 1442 |
-
)
|
| 1443 |
-
if edgetpu:
|
| 1444 |
-
f[8], _ = export_edgetpu(file)
|
| 1445 |
-
add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
|
| 1446 |
-
if tfjs:
|
| 1447 |
-
f[9], _ = export_tfjs(file, int8)
|
| 1448 |
-
if paddle: # PaddlePaddle
|
| 1449 |
-
f[10], _ = export_paddle(model, im, file, metadata)
|
| 1450 |
-
|
| 1451 |
-
# Finish
|
| 1452 |
-
f = [str(x) for x in f if x] # filter out '' and None
|
| 1453 |
-
if any(f):
|
| 1454 |
-
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
|
| 1455 |
-
det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel)
|
| 1456 |
-
dir = Path("segment" if seg else "classify" if cls else "")
|
| 1457 |
-
h = "--half" if half else "" # --half FP16 inference arg
|
| 1458 |
-
s = (
|
| 1459 |
-
"# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference"
|
| 1460 |
-
if cls
|
| 1461 |
-
else "# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference"
|
| 1462 |
-
if seg
|
| 1463 |
-
else ""
|
| 1464 |
-
)
|
| 1465 |
-
LOGGER.info(
|
| 1466 |
-
f'\nExport complete ({time.time() - t:.1f}s)'
|
| 1467 |
-
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
| 1468 |
-
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
|
| 1469 |
-
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
|
| 1470 |
-
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
|
| 1471 |
-
f'\nVisualize: https://netron.app'
|
| 1472 |
-
)
|
| 1473 |
-
return f # return list of exported files/dirs
|
| 1474 |
-
|
| 1475 |
-
|
| 1476 |
-
def parse_opt(known=False):
|
| 1477 |
-
"""
|
| 1478 |
-
Parse command-line options for YOLOv5 model export configurations.
|
| 1479 |
-
|
| 1480 |
-
Args:
|
| 1481 |
-
known (bool): If True, uses `argparse.ArgumentParser.parse_known_args`; otherwise, uses `argparse.ArgumentParser.parse_args`.
|
| 1482 |
-
Default is False.
|
| 1483 |
-
|
| 1484 |
-
Returns:
|
| 1485 |
-
argparse.Namespace: Object containing parsed command-line arguments.
|
| 1486 |
-
|
| 1487 |
-
Example:
|
| 1488 |
-
```python
|
| 1489 |
-
opts = parse_opt()
|
| 1490 |
-
print(opts.data)
|
| 1491 |
-
print(opts.weights)
|
| 1492 |
-
```
|
| 1493 |
-
"""
|
| 1494 |
-
parser = argparse.ArgumentParser()
|
| 1495 |
-
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
|
| 1496 |
-
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model.pt path(s)")
|
| 1497 |
-
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640, 640], help="image (h, w)")
|
| 1498 |
-
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
|
| 1499 |
-
parser.add_argument("--device", default="cpu", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
| 1500 |
-
parser.add_argument("--half", action="store_true", help="FP16 half-precision export")
|
| 1501 |
-
parser.add_argument("--inplace", action="store_true", help="set YOLOv5 Detect() inplace=True")
|
| 1502 |
-
parser.add_argument("--keras", action="store_true", help="TF: use Keras")
|
| 1503 |
-
parser.add_argument("--optimize", action="store_true", help="TorchScript: optimize for mobile")
|
| 1504 |
-
parser.add_argument("--int8", action="store_true", help="CoreML/TF/OpenVINO INT8 quantization")
|
| 1505 |
-
parser.add_argument("--per-tensor", action="store_true", help="TF per-tensor quantization")
|
| 1506 |
-
parser.add_argument("--dynamic", action="store_true", help="ONNX/TF/TensorRT: dynamic axes")
|
| 1507 |
-
parser.add_argument("--simplify", action="store_true", help="ONNX: simplify model")
|
| 1508 |
-
parser.add_argument("--mlmodel", action="store_true", help="CoreML: Export in *.mlmodel format")
|
| 1509 |
-
parser.add_argument("--opset", type=int, default=17, help="ONNX: opset version")
|
| 1510 |
-
parser.add_argument("--verbose", action="store_true", help="TensorRT: verbose log")
|
| 1511 |
-
parser.add_argument("--workspace", type=int, default=4, help="TensorRT: workspace size (GB)")
|
| 1512 |
-
parser.add_argument("--nms", action="store_true", help="TF: add NMS to model")
|
| 1513 |
-
parser.add_argument("--agnostic-nms", action="store_true", help="TF: add agnostic NMS to model")
|
| 1514 |
-
parser.add_argument("--topk-per-class", type=int, default=100, help="TF.js NMS: topk per class to keep")
|
| 1515 |
-
parser.add_argument("--topk-all", type=int, default=100, help="TF.js NMS: topk for all classes to keep")
|
| 1516 |
-
parser.add_argument("--iou-thres", type=float, default=0.45, help="TF.js NMS: IoU threshold")
|
| 1517 |
-
parser.add_argument("--conf-thres", type=float, default=0.25, help="TF.js NMS: confidence threshold")
|
| 1518 |
-
parser.add_argument(
|
| 1519 |
-
"--include",
|
| 1520 |
-
nargs="+",
|
| 1521 |
-
default=["torchscript"],
|
| 1522 |
-
help="torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle",
|
| 1523 |
-
)
|
| 1524 |
-
opt = parser.parse_known_args()[0] if known else parser.parse_args()
|
| 1525 |
-
print_args(vars(opt))
|
| 1526 |
-
return opt
|
| 1527 |
-
|
| 1528 |
-
|
| 1529 |
-
def main(opt):
|
| 1530 |
-
"""Run(**vars(opt)) # Execute the run function with parsed options."""
|
| 1531 |
-
for opt.weights in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
|
| 1532 |
-
run(**vars(opt))
|
| 1533 |
-
|
| 1534 |
-
|
| 1535 |
-
if __name__ == "__main__":
|
| 1536 |
-
opt = parse_opt()
|
| 1537 |
-
main(opt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
iteach_toolkit/DHYOLO/hubconf.py
DELETED
|
@@ -1,510 +0,0 @@
|
|
| 1 |
-
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
| 2 |
-
"""
|
| 3 |
-
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5
|
| 4 |
-
|
| 5 |
-
Usage:
|
| 6 |
-
import torch
|
| 7 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
|
| 8 |
-
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
|
| 9 |
-
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
|
| 10 |
-
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
|
| 11 |
-
"""
|
| 12 |
-
|
| 13 |
-
import torch
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
| 17 |
-
"""
|
| 18 |
-
Creates or loads a YOLOv5 model, with options for pretrained weights and model customization.
|
| 19 |
-
|
| 20 |
-
Args:
|
| 21 |
-
name (str): Model name (e.g., 'yolov5s') or path to the model checkpoint (e.g., 'path/to/best.pt').
|
| 22 |
-
pretrained (bool, optional): If True, loads pretrained weights into the model. Defaults to True.
|
| 23 |
-
channels (int, optional): Number of input channels the model expects. Defaults to 3.
|
| 24 |
-
classes (int, optional): Number of classes the model is expected to detect. Defaults to 80.
|
| 25 |
-
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper for various input formats. Defaults to True.
|
| 26 |
-
verbose (bool, optional): If True, prints detailed information during the model creation/loading process. Defaults to True.
|
| 27 |
-
device (str | torch.device | None, optional): Device to use for model parameters (e.g., 'cpu', 'cuda'). If None, selects
|
| 28 |
-
the best available device. Defaults to None.
|
| 29 |
-
|
| 30 |
-
Returns:
|
| 31 |
-
(DetectMultiBackend | AutoShape): The loaded YOLOv5 model, potentially wrapped with AutoShape if specified.
|
| 32 |
-
|
| 33 |
-
Examples:
|
| 34 |
-
```python
|
| 35 |
-
import torch
|
| 36 |
-
from ultralytics import _create
|
| 37 |
-
|
| 38 |
-
# Load an official YOLOv5s model with pretrained weights
|
| 39 |
-
model = _create('yolov5s')
|
| 40 |
-
|
| 41 |
-
# Load a custom model from a local checkpoint
|
| 42 |
-
model = _create('path/to/custom_model.pt', pretrained=False)
|
| 43 |
-
|
| 44 |
-
# Load a model with specific input channels and classes
|
| 45 |
-
model = _create('yolov5s', channels=1, classes=10)
|
| 46 |
-
```
|
| 47 |
-
|
| 48 |
-
Notes:
|
| 49 |
-
For more information on model loading and customization, visit the
|
| 50 |
-
[YOLOv5 PyTorch Hub Documentation](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading).
|
| 51 |
-
"""
|
| 52 |
-
from pathlib import Path
|
| 53 |
-
|
| 54 |
-
from models.common import AutoShape, DetectMultiBackend
|
| 55 |
-
from models.experimental import attempt_load
|
| 56 |
-
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
|
| 57 |
-
from utils.downloads import attempt_download
|
| 58 |
-
from utils.general import LOGGER, ROOT, check_requirements, intersect_dicts, logging
|
| 59 |
-
from utils.torch_utils import select_device
|
| 60 |
-
|
| 61 |
-
if not verbose:
|
| 62 |
-
LOGGER.setLevel(logging.WARNING)
|
| 63 |
-
check_requirements(ROOT / "requirements.txt", exclude=("opencv-python", "tensorboard", "thop"))
|
| 64 |
-
name = Path(name)
|
| 65 |
-
path = name.with_suffix(".pt") if name.suffix == "" and not name.is_dir() else name # checkpoint path
|
| 66 |
-
try:
|
| 67 |
-
device = select_device(device)
|
| 68 |
-
if pretrained and channels == 3 and classes == 80:
|
| 69 |
-
try:
|
| 70 |
-
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
|
| 71 |
-
if autoshape:
|
| 72 |
-
if model.pt and isinstance(model.model, ClassificationModel):
|
| 73 |
-
LOGGER.warning(
|
| 74 |
-
"WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. "
|
| 75 |
-
"You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224)."
|
| 76 |
-
)
|
| 77 |
-
elif model.pt and isinstance(model.model, SegmentationModel):
|
| 78 |
-
LOGGER.warning(
|
| 79 |
-
"WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. "
|
| 80 |
-
"You will not be able to run inference with this model."
|
| 81 |
-
)
|
| 82 |
-
else:
|
| 83 |
-
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
|
| 84 |
-
except Exception:
|
| 85 |
-
model = attempt_load(path, device=device, fuse=False) # arbitrary model
|
| 86 |
-
else:
|
| 87 |
-
cfg = list((Path(__file__).parent / "models").rglob(f"{path.stem}.yaml"))[0] # model.yaml path
|
| 88 |
-
model = DetectionModel(cfg, channels, classes) # create model
|
| 89 |
-
if pretrained:
|
| 90 |
-
ckpt = torch.load(attempt_download(path), map_location=device) # load
|
| 91 |
-
csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32
|
| 92 |
-
csd = intersect_dicts(csd, model.state_dict(), exclude=["anchors"]) # intersect
|
| 93 |
-
model.load_state_dict(csd, strict=False) # load
|
| 94 |
-
if len(ckpt["model"].names) == classes:
|
| 95 |
-
model.names = ckpt["model"].names # set class names attribute
|
| 96 |
-
if not verbose:
|
| 97 |
-
LOGGER.setLevel(logging.INFO) # reset to default
|
| 98 |
-
return model.to(device)
|
| 99 |
-
|
| 100 |
-
except Exception as e:
|
| 101 |
-
help_url = "https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading"
|
| 102 |
-
s = f"{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help."
|
| 103 |
-
raise Exception(s) from e
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
def custom(path="path/to/model.pt", autoshape=True, _verbose=True, device=None):
|
| 107 |
-
"""
|
| 108 |
-
Loads a custom or local YOLOv5 model from a given path with optional autoshaping and device specification.
|
| 109 |
-
|
| 110 |
-
Args:
|
| 111 |
-
path (str): Path to the custom model file (e.g., 'path/to/model.pt').
|
| 112 |
-
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model if True, enabling compatibility with various input
|
| 113 |
-
types (default is True).
|
| 114 |
-
_verbose (bool): If True, prints all informational messages to the screen; otherwise, operates silently
|
| 115 |
-
(default is True).
|
| 116 |
-
device (str | torch.device | None): Device to load the model on, e.g., 'cpu', 'cuda', torch.device('cuda:0'), etc.
|
| 117 |
-
(default is None, which automatically selects the best available device).
|
| 118 |
-
|
| 119 |
-
Returns:
|
| 120 |
-
torch.nn.Module: A YOLOv5 model loaded with the specified parameters.
|
| 121 |
-
|
| 122 |
-
Notes:
|
| 123 |
-
For more details on loading models from PyTorch Hub:
|
| 124 |
-
https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading
|
| 125 |
-
|
| 126 |
-
Examples:
|
| 127 |
-
```python
|
| 128 |
-
# Load model from a given path with autoshape enabled on the best available device
|
| 129 |
-
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')
|
| 130 |
-
|
| 131 |
-
# Load model from a local path without autoshape on the CPU device
|
| 132 |
-
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local', autoshape=False, device='cpu')
|
| 133 |
-
```
|
| 134 |
-
"""
|
| 135 |
-
return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
| 139 |
-
"""
|
| 140 |
-
Instantiates the YOLOv5-nano model with options for pretraining, input channels, class count, autoshaping,
|
| 141 |
-
verbosity, and device.
|
| 142 |
-
|
| 143 |
-
Args:
|
| 144 |
-
pretrained (bool): If True, loads pretrained weights into the model. Defaults to True.
|
| 145 |
-
channels (int): Number of input channels for the model. Defaults to 3.
|
| 146 |
-
classes (int): Number of classes for object detection. Defaults to 80.
|
| 147 |
-
autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper to the model for various formats (file/URI/PIL/
|
| 148 |
-
cv2/np) and non-maximum suppression (NMS) during inference. Defaults to True.
|
| 149 |
-
_verbose (bool): If True, prints detailed information to the screen. Defaults to True.
|
| 150 |
-
device (str | torch.device | None): Specifies the device to use for model computation. If None, uses the best device
|
| 151 |
-
available (i.e., GPU if available, otherwise CPU). Defaults to None.
|
| 152 |
-
|
| 153 |
-
Returns:
|
| 154 |
-
DetectionModel | ClassificationModel | SegmentationModel: The instantiated YOLOv5-nano model, potentially with
|
| 155 |
-
pretrained weights and autoshaping applied.
|
| 156 |
-
|
| 157 |
-
Notes:
|
| 158 |
-
For further details on loading models from PyTorch Hub, refer to [PyTorch Hub models](https://pytorch.org/hub/
|
| 159 |
-
ultralytics_yolov5).
|
| 160 |
-
|
| 161 |
-
Examples:
|
| 162 |
-
```python
|
| 163 |
-
import torch
|
| 164 |
-
from ultralytics import yolov5n
|
| 165 |
-
|
| 166 |
-
# Load the YOLOv5-nano model with defaults
|
| 167 |
-
model = yolov5n()
|
| 168 |
-
|
| 169 |
-
# Load the YOLOv5-nano model with a specific device
|
| 170 |
-
model = yolov5n(device='cuda')
|
| 171 |
-
```
|
| 172 |
-
"""
|
| 173 |
-
return _create("yolov5n", pretrained, channels, classes, autoshape, _verbose, device)
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
| 177 |
-
"""
|
| 178 |
-
Create a YOLOv5-small (yolov5s) model with options for pretraining, input channels, class count, autoshaping,
|
| 179 |
-
verbosity, and device configuration.
|
| 180 |
-
|
| 181 |
-
Args:
|
| 182 |
-
pretrained (bool, optional): Flag to load pretrained weights into the model. Defaults to True.
|
| 183 |
-
channels (int, optional): Number of input channels. Defaults to 3.
|
| 184 |
-
classes (int, optional): Number of model classes. Defaults to 80.
|
| 185 |
-
autoshape (bool, optional): Whether to wrap the model with YOLOv5's .autoshape() for handling various input formats.
|
| 186 |
-
Defaults to True.
|
| 187 |
-
_verbose (bool, optional): Flag to print detailed information regarding model loading. Defaults to True.
|
| 188 |
-
device (str | torch.device | None, optional): Device to use for model computation, can be 'cpu', 'cuda', or
|
| 189 |
-
torch.device instances. If None, automatically selects the best available device. Defaults to None.
|
| 190 |
-
|
| 191 |
-
Returns:
|
| 192 |
-
torch.nn.Module: The YOLOv5-small model configured and loaded according to the specified parameters.
|
| 193 |
-
|
| 194 |
-
Example:
|
| 195 |
-
```python
|
| 196 |
-
import torch
|
| 197 |
-
|
| 198 |
-
# Load the official YOLOv5-small model with pretrained weights
|
| 199 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
|
| 200 |
-
|
| 201 |
-
# Load the YOLOv5-small model from a specific branch
|
| 202 |
-
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s')
|
| 203 |
-
|
| 204 |
-
# Load a custom YOLOv5-small model from a local checkpoint
|
| 205 |
-
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')
|
| 206 |
-
|
| 207 |
-
# Load a local YOLOv5-small model specifying source as local repository
|
| 208 |
-
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local')
|
| 209 |
-
```
|
| 210 |
-
|
| 211 |
-
Notes:
|
| 212 |
-
For more details on model loading and customization, visit
|
| 213 |
-
the [YOLOv5 PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5).
|
| 214 |
-
"""
|
| 215 |
-
return _create("yolov5s", pretrained, channels, classes, autoshape, _verbose, device)
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
| 219 |
-
"""
|
| 220 |
-
Instantiates the YOLOv5-medium model with customizable pretraining, channel count, class count, autoshaping,
|
| 221 |
-
verbosity, and device.
|
| 222 |
-
|
| 223 |
-
Args:
|
| 224 |
-
pretrained (bool, optional): Whether to load pretrained weights into the model. Default is True.
|
| 225 |
-
channels (int, optional): Number of input channels. Default is 3.
|
| 226 |
-
classes (int, optional): Number of model classes. Default is 80.
|
| 227 |
-
autoshape (bool, optional): Apply YOLOv5 .autoshape() wrapper to the model for handling various input formats.
|
| 228 |
-
Default is True.
|
| 229 |
-
_verbose (bool, optional): Whether to print detailed information to the screen. Default is True.
|
| 230 |
-
device (str | torch.device | None, optional): Device specification to use for model parameters (e.g., 'cpu', 'cuda').
|
| 231 |
-
Default is None.
|
| 232 |
-
|
| 233 |
-
Returns:
|
| 234 |
-
torch.nn.Module: The instantiated YOLOv5-medium model.
|
| 235 |
-
|
| 236 |
-
Usage Example:
|
| 237 |
-
```python
|
| 238 |
-
import torch
|
| 239 |
-
|
| 240 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5m') # Load YOLOv5-medium from Ultralytics repository
|
| 241 |
-
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5m') # Load from the master branch
|
| 242 |
-
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5m.pt') # Load a custom/local YOLOv5-medium model
|
| 243 |
-
model = torch.hub.load('.', 'custom', 'yolov5m.pt', source='local') # Load from a local repository
|
| 244 |
-
```
|
| 245 |
-
|
| 246 |
-
For more information, visit https://pytorch.org/hub/ultralytics_yolov5.
|
| 247 |
-
"""
|
| 248 |
-
return _create("yolov5m", pretrained, channels, classes, autoshape, _verbose, device)
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
| 252 |
-
"""
|
| 253 |
-
Creates YOLOv5-large model with options for pretraining, channels, classes, autoshaping, verbosity, and device
|
| 254 |
-
selection.
|
| 255 |
-
|
| 256 |
-
Args:
|
| 257 |
-
pretrained (bool): Load pretrained weights into the model. Default is True.
|
| 258 |
-
channels (int): Number of input channels. Default is 3.
|
| 259 |
-
classes (int): Number of model classes. Default is 80.
|
| 260 |
-
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model. Default is True.
|
| 261 |
-
_verbose (bool): Print all information to screen. Default is True.
|
| 262 |
-
device (str | torch.device | None): Device to use for model parameters, e.g., 'cpu', 'cuda', or a torch.device instance.
|
| 263 |
-
Default is None.
|
| 264 |
-
|
| 265 |
-
Returns:
|
| 266 |
-
YOLOv5 model (torch.nn.Module): The YOLOv5-large model instantiated with specified configurations and possibly
|
| 267 |
-
pretrained weights.
|
| 268 |
-
|
| 269 |
-
Examples:
|
| 270 |
-
```python
|
| 271 |
-
import torch
|
| 272 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5l')
|
| 273 |
-
```
|
| 274 |
-
|
| 275 |
-
Notes:
|
| 276 |
-
For additional details, refer to the PyTorch Hub models documentation:
|
| 277 |
-
https://pytorch.org/hub/ultralytics_yolov5
|
| 278 |
-
"""
|
| 279 |
-
return _create("yolov5l", pretrained, channels, classes, autoshape, _verbose, device)
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
| 283 |
-
"""
|
| 284 |
-
Perform object detection using the YOLOv5-xlarge model with options for pretraining, input channels, class count,
|
| 285 |
-
autoshaping, verbosity, and device specification.
|
| 286 |
-
|
| 287 |
-
Args:
|
| 288 |
-
pretrained (bool): If True, loads pretrained weights into the model. Defaults to True.
|
| 289 |
-
channels (int): Number of input channels for the model. Defaults to 3.
|
| 290 |
-
classes (int): Number of model classes for object detection. Defaults to 80.
|
| 291 |
-
autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper for handling different input formats. Defaults to
|
| 292 |
-
True.
|
| 293 |
-
_verbose (bool): If True, prints detailed information during model loading. Defaults to True.
|
| 294 |
-
device (str | torch.device | None): Device specification for computing the model, e.g., 'cpu', 'cuda:0', torch.device('cuda').
|
| 295 |
-
Defaults to None.
|
| 296 |
-
|
| 297 |
-
Returns:
|
| 298 |
-
torch.nn.Module: The YOLOv5-xlarge model loaded with the specified parameters, optionally with pretrained weights and
|
| 299 |
-
autoshaping applied.
|
| 300 |
-
|
| 301 |
-
Example:
|
| 302 |
-
```python
|
| 303 |
-
import torch
|
| 304 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5x')
|
| 305 |
-
```
|
| 306 |
-
|
| 307 |
-
For additional details, refer to the official YOLOv5 PyTorch Hub models documentation:
|
| 308 |
-
https://pytorch.org/hub/ultralytics_yolov5
|
| 309 |
-
"""
|
| 310 |
-
return _create("yolov5x", pretrained, channels, classes, autoshape, _verbose, device)
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
| 314 |
-
"""
|
| 315 |
-
Creates YOLOv5-nano-P6 model with options for pretraining, channels, classes, autoshaping, verbosity, and device.
|
| 316 |
-
|
| 317 |
-
Args:
|
| 318 |
-
pretrained (bool, optional): If True, loads pretrained weights into the model. Default is True.
|
| 319 |
-
channels (int, optional): Number of input channels. Default is 3.
|
| 320 |
-
classes (int, optional): Number of model classes. Default is 80.
|
| 321 |
-
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper to the model. Default is True.
|
| 322 |
-
_verbose (bool, optional): If True, prints all information to screen. Default is True.
|
| 323 |
-
device (str | torch.device | None, optional): Device to use for model parameters. Can be 'cpu', 'cuda', or None.
|
| 324 |
-
Default is None.
|
| 325 |
-
|
| 326 |
-
Returns:
|
| 327 |
-
torch.nn.Module: YOLOv5-nano-P6 model loaded with the specified configurations.
|
| 328 |
-
|
| 329 |
-
Example:
|
| 330 |
-
```python
|
| 331 |
-
import torch
|
| 332 |
-
model = yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device='cuda')
|
| 333 |
-
```
|
| 334 |
-
|
| 335 |
-
Notes:
|
| 336 |
-
For more information on PyTorch Hub models, visit: https://pytorch.org/hub/ultralytics_yolov5
|
| 337 |
-
"""
|
| 338 |
-
return _create("yolov5n6", pretrained, channels, classes, autoshape, _verbose, device)
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
| 342 |
-
"""
|
| 343 |
-
Instantiate the YOLOv5-small-P6 model with options for pretraining, input channels, number of classes, autoshaping,
|
| 344 |
-
verbosity, and device selection.
|
| 345 |
-
|
| 346 |
-
Args:
|
| 347 |
-
pretrained (bool): If True, loads pretrained weights. Default is True.
|
| 348 |
-
channels (int): Number of input channels. Default is 3.
|
| 349 |
-
classes (int): Number of object detection classes. Default is 80.
|
| 350 |
-
autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model, allowing for varied input formats.
|
| 351 |
-
Default is True.
|
| 352 |
-
_verbose (bool): If True, prints detailed information during model loading. Default is True.
|
| 353 |
-
device (str | torch.device | None): Device specification for model parameters (e.g., 'cpu', 'cuda', or torch.device).
|
| 354 |
-
Default is None, which selects an available device automatically.
|
| 355 |
-
|
| 356 |
-
Returns:
|
| 357 |
-
torch.nn.Module: The YOLOv5-small-P6 model instance.
|
| 358 |
-
|
| 359 |
-
Usage:
|
| 360 |
-
```python
|
| 361 |
-
import torch
|
| 362 |
-
|
| 363 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s6')
|
| 364 |
-
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s6') # load from a specific branch
|
| 365 |
-
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5s6.pt') # custom/local model
|
| 366 |
-
model = torch.hub.load('.', 'custom', 'path/to/yolov5s6.pt', source='local') # local repo model
|
| 367 |
-
```
|
| 368 |
-
|
| 369 |
-
Notes:
|
| 370 |
-
- For more information, refer to the PyTorch Hub models documentation at https://pytorch.org/hub/ultralytics_yolov5
|
| 371 |
-
|
| 372 |
-
Raises:
|
| 373 |
-
Exception: If there is an error during model creation or loading, with a suggestion to visit the YOLOv5
|
| 374 |
-
tutorials for help.
|
| 375 |
-
"""
|
| 376 |
-
return _create("yolov5s6", pretrained, channels, classes, autoshape, _verbose, device)
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
| 380 |
-
"""
|
| 381 |
-
Create YOLOv5-medium-P6 model with options for pretraining, channel count, class count, autoshaping, verbosity, and
|
| 382 |
-
device.
|
| 383 |
-
|
| 384 |
-
Args:
|
| 385 |
-
pretrained (bool): If True, loads pretrained weights. Default is True.
|
| 386 |
-
channels (int): Number of input channels. Default is 3.
|
| 387 |
-
classes (int): Number of model classes. Default is 80.
|
| 388 |
-
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to the model for file/URI/PIL/cv2/np inputs and NMS.
|
| 389 |
-
Default is True.
|
| 390 |
-
_verbose (bool): If True, prints detailed information to the screen. Default is True.
|
| 391 |
-
device (str | torch.device | None): Device to use for model parameters. Default is None, which uses the
|
| 392 |
-
best available device.
|
| 393 |
-
|
| 394 |
-
Returns:
|
| 395 |
-
torch.nn.Module: The YOLOv5-medium-P6 model.
|
| 396 |
-
|
| 397 |
-
Refer to the PyTorch Hub models documentation: https://pytorch.org/hub/ultralytics_yolov5 for additional details.
|
| 398 |
-
|
| 399 |
-
Example:
|
| 400 |
-
```python
|
| 401 |
-
import torch
|
| 402 |
-
|
| 403 |
-
# Load YOLOv5-medium-P6 model
|
| 404 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5m6')
|
| 405 |
-
```
|
| 406 |
-
|
| 407 |
-
Notes:
|
| 408 |
-
- The model can be loaded with pre-trained weights for better performance on specific tasks.
|
| 409 |
-
- The autoshape feature simplifies input handling by allowing various popular data formats.
|
| 410 |
-
"""
|
| 411 |
-
return _create("yolov5m6", pretrained, channels, classes, autoshape, _verbose, device)
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
| 415 |
-
"""
|
| 416 |
-
Instantiate the YOLOv5-large-P6 model with options for pretraining, channel and class counts, autoshaping,
|
| 417 |
-
verbosity, and device selection.
|
| 418 |
-
|
| 419 |
-
Args:
|
| 420 |
-
pretrained (bool, optional): If True, load pretrained weights into the model. Default is True.
|
| 421 |
-
channels (int, optional): Number of input channels. Default is 3.
|
| 422 |
-
classes (int, optional): Number of model classes. Default is 80.
|
| 423 |
-
autoshape (bool, optional): If True, apply YOLOv5 .autoshape() wrapper to the model for input flexibility. Default is True.
|
| 424 |
-
_verbose (bool, optional): If True, print all information to the screen. Default is True.
|
| 425 |
-
device (str | torch.device | None, optional): Device to use for model parameters, e.g., 'cpu', 'cuda', or torch.device.
|
| 426 |
-
If None, automatically selects the best available device. Default is None.
|
| 427 |
-
|
| 428 |
-
Returns:
|
| 429 |
-
torch.nn.Module: The instantiated YOLOv5-large-P6 model.
|
| 430 |
-
|
| 431 |
-
Example:
|
| 432 |
-
```python
|
| 433 |
-
import torch
|
| 434 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5l6') # official model
|
| 435 |
-
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5l6') # from specific branch
|
| 436 |
-
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5l6.pt') # custom/local model
|
| 437 |
-
model = torch.hub.load('.', 'custom', 'path/to/yolov5l6.pt', source='local') # local repository
|
| 438 |
-
```
|
| 439 |
-
|
| 440 |
-
Note:
|
| 441 |
-
Refer to [PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5) for additional usage instructions.
|
| 442 |
-
"""
|
| 443 |
-
return _create("yolov5l6", pretrained, channels, classes, autoshape, _verbose, device)
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
| 447 |
-
"""
|
| 448 |
-
Creates the YOLOv5-xlarge-P6 model with options for pretraining, number of input channels, class count, autoshaping,
|
| 449 |
-
verbosity, and device selection.
|
| 450 |
-
|
| 451 |
-
Args:
|
| 452 |
-
pretrained (bool): If True, loads pretrained weights into the model. Default is True.
|
| 453 |
-
channels (int): Number of input channels. Default is 3.
|
| 454 |
-
classes (int): Number of model classes. Default is 80.
|
| 455 |
-
autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model. Default is True.
|
| 456 |
-
_verbose (bool): If True, prints all information to the screen. Default is True.
|
| 457 |
-
device (str | torch.device | None): Device to use for model parameters, can be a string, torch.device object, or
|
| 458 |
-
None for default device selection. Default is None.
|
| 459 |
-
|
| 460 |
-
Returns:
|
| 461 |
-
torch.nn.Module: The instantiated YOLOv5-xlarge-P6 model.
|
| 462 |
-
|
| 463 |
-
Example:
|
| 464 |
-
```python
|
| 465 |
-
import torch
|
| 466 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5x6') # load the YOLOv5-xlarge-P6 model
|
| 467 |
-
```
|
| 468 |
-
|
| 469 |
-
Note:
|
| 470 |
-
For more information on YOLOv5 models, visit the official documentation:
|
| 471 |
-
https://docs.ultralytics.com/yolov5
|
| 472 |
-
"""
|
| 473 |
-
return _create("yolov5x6", pretrained, channels, classes, autoshape, _verbose, device)
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
if __name__ == "__main__":
|
| 477 |
-
import argparse
|
| 478 |
-
from pathlib import Path
|
| 479 |
-
|
| 480 |
-
import numpy as np
|
| 481 |
-
from PIL import Image
|
| 482 |
-
|
| 483 |
-
from utils.general import cv2, print_args
|
| 484 |
-
|
| 485 |
-
# Argparser
|
| 486 |
-
parser = argparse.ArgumentParser()
|
| 487 |
-
parser.add_argument("--model", type=str, default="yolov5s", help="model name")
|
| 488 |
-
opt = parser.parse_args()
|
| 489 |
-
print_args(vars(opt))
|
| 490 |
-
|
| 491 |
-
# Model
|
| 492 |
-
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
|
| 493 |
-
# model = custom(path='path/to/model.pt') # custom
|
| 494 |
-
|
| 495 |
-
# Images
|
| 496 |
-
imgs = [
|
| 497 |
-
"data/images/zidane.jpg", # filename
|
| 498 |
-
Path("data/images/zidane.jpg"), # Path
|
| 499 |
-
"https://ultralytics.com/images/zidane.jpg", # URI
|
| 500 |
-
cv2.imread("data/images/bus.jpg")[:, :, ::-1], # OpenCV
|
| 501 |
-
Image.open("data/images/bus.jpg"), # PIL
|
| 502 |
-
np.zeros((320, 640, 3)),
|
| 503 |
-
] # numpy
|
| 504 |
-
|
| 505 |
-
# Inference
|
| 506 |
-
results = model(imgs, size=320) # batched inference
|
| 507 |
-
|
| 508 |
-
# Results
|
| 509 |
-
results.print()
|
| 510 |
-
results.save()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
iteach_toolkit/DHYOLO/model.py
DELETED
|
@@ -1,174 +0,0 @@
|
|
| 1 |
-
from .detect import run as run_detection
|
| 2 |
-
import torch
|
| 3 |
-
import cv2
|
| 4 |
-
import logging
|
| 5 |
-
|
| 6 |
-
# Configure logging
|
| 7 |
-
logging.basicConfig(level=logging.INFO)
|
| 8 |
-
logger = logging.getLogger(__name__)
|
| 9 |
-
|
| 10 |
-
class DHYOLODetector:
|
| 11 |
-
"""
|
| 12 |
-
A class to encapsulate the YOLO model prediction for object detection.
|
| 13 |
-
|
| 14 |
-
Attributes:
|
| 15 |
-
model_path (str): Path to the trained YOLO model weights.
|
| 16 |
-
|
| 17 |
-
Methods:
|
| 18 |
-
predict(image_path, conf_thres, iou_thres, max_det):
|
| 19 |
-
Runs object detection on the given image using the YOLO model.
|
| 20 |
-
Logs errors in case of failure and handles exceptions.
|
| 21 |
-
plot_bboxes():
|
| 22 |
-
Plots bounding boxes on the input image based on YOLO predictions and returns the modified image.
|
| 23 |
-
"""
|
| 24 |
-
|
| 25 |
-
def __init__(self, model_path):
|
| 26 |
-
"""
|
| 27 |
-
Initializes DHYOLODetector with the path to the YOLO model weights.
|
| 28 |
-
|
| 29 |
-
Args:
|
| 30 |
-
model_path (str): Path to the YOLO model weights.
|
| 31 |
-
"""
|
| 32 |
-
self.model_path = model_path
|
| 33 |
-
self.image = None
|
| 34 |
-
self.preds = None
|
| 35 |
-
|
| 36 |
-
def predict(self, image_path, conf_thres=0.25, iou_thres=0.45, max_det=1000):
|
| 37 |
-
"""
|
| 38 |
-
Runs object detection on the provided image using the YOLO model.
|
| 39 |
-
|
| 40 |
-
Args:
|
| 41 |
-
image_path (str): Path to the image file (file path or a web URL).
|
| 42 |
-
conf_thres (float): Confidence threshold for YOLO detections (default is 0.25).
|
| 43 |
-
iou_thres (float): IOU threshold for non-max suppression (default is 0.45).
|
| 44 |
-
max_det (int): Maximum number of detections per image (default is 1000).
|
| 45 |
-
|
| 46 |
-
Returns:
|
| 47 |
-
tuple: A tuple containing:
|
| 48 |
-
- numpy.ndarray: The image read as a NumPy array.
|
| 49 |
-
- dict: A dictionary with the bounding boxes in xyxy format, confidence scores, and class labels:
|
| 50 |
-
- 'boxes': List of bounding boxes in xyxy format.
|
| 51 |
-
- 'confidences': List of confidence scores for each detection.
|
| 52 |
-
- 'class_labels': List of class labels corresponding to each detection.
|
| 53 |
-
|
| 54 |
-
Raises:
|
| 55 |
-
FileNotFoundError: If the image file does not exist or cannot be opened.
|
| 56 |
-
Exception: For any general errors during prediction.
|
| 57 |
-
"""
|
| 58 |
-
try:
|
| 59 |
-
logger.info(f"Starting prediction for image: {image_path} with model: {self.model_path}")
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
self.image = cv2.imread(image_path) # Read the image as a NumPy array
|
| 63 |
-
self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
|
| 64 |
-
|
| 65 |
-
if self.image is None:
|
| 66 |
-
raise FileNotFoundError(f"Image file not found or cannot be opened: {image_path}")
|
| 67 |
-
|
| 68 |
-
# Run YOLO detection with custom parameters
|
| 69 |
-
result = run_detection(
|
| 70 |
-
weights=self.model_path,
|
| 71 |
-
source=image_path,
|
| 72 |
-
conf_thres=conf_thres, # Confidence threshold
|
| 73 |
-
iou_thres=iou_thres, # IOU threshold
|
| 74 |
-
max_det=max_det # Maximum detections
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
-
self.preds = result[0] # We are only running for one image
|
| 78 |
-
|
| 79 |
-
# Prepare predictions as a dictionary
|
| 80 |
-
detections_dict = {
|
| 81 |
-
'boxes': [], # List of bounding boxes in xyxy format
|
| 82 |
-
'confidences': [], # List of confidence scores
|
| 83 |
-
'class_labels': [] # List of class labels
|
| 84 |
-
}
|
| 85 |
-
|
| 86 |
-
for detection in self.preds:
|
| 87 |
-
if isinstance(detection, torch.Tensor):
|
| 88 |
-
detection = detection.cpu().numpy()
|
| 89 |
-
|
| 90 |
-
# Extract details
|
| 91 |
-
x1, y1, x2, y2, conf, cls = detection[:6]
|
| 92 |
-
detections_dict['boxes'].append([float(x1), float(y1), float(x2), float(y2)]) # xyxy format
|
| 93 |
-
detections_dict['confidences'].append(float(conf))
|
| 94 |
-
detections_dict['class_labels'].append(int(cls))
|
| 95 |
-
|
| 96 |
-
logger.info(f"Prediction completed successfully for image: {image_path}")
|
| 97 |
-
return self.image, detections_dict # Return image and detections as a tuple
|
| 98 |
-
|
| 99 |
-
except FileNotFoundError as e:
|
| 100 |
-
logger.error(f"Image file not found: {image_path}. Exception: {e}")
|
| 101 |
-
raise
|
| 102 |
-
|
| 103 |
-
except Exception as e:
|
| 104 |
-
logger.error(f"An error occurred during prediction. Exception: {e}")
|
| 105 |
-
raise
|
| 106 |
-
|
| 107 |
-
def plot_bboxes(self, attach_watermark=False):
|
| 108 |
-
"""
|
| 109 |
-
Plots bounding boxes on the input image based on YOLO predictions and returns the modified image.
|
| 110 |
-
|
| 111 |
-
Args:
|
| 112 |
-
attach_watermark (bool): Whether to attach a watermark text to the image (default is False).
|
| 113 |
-
|
| 114 |
-
Returns:
|
| 115 |
-
tuple: The original image and the image with bounding boxes plotted.
|
| 116 |
-
"""
|
| 117 |
-
class_labels = {0: "door", 1: "handle"}
|
| 118 |
-
class_colors = {
|
| 119 |
-
0: (255, 0, 0), # Red in RGB format for doors
|
| 120 |
-
1: (255, 255, 0) # Yellow in RGB format for handles
|
| 121 |
-
}
|
| 122 |
-
|
| 123 |
-
bbox_img = self.image.copy() # Create a copy of the original image
|
| 124 |
-
|
| 125 |
-
# Check if there are predictions
|
| 126 |
-
if self.preds is None or len(self.preds) == 0:
|
| 127 |
-
logger.warning("No predictions to display.")
|
| 128 |
-
return bbox_img, bbox_img # Return the original image if no predictions
|
| 129 |
-
|
| 130 |
-
# Iterate through detections and plot each bounding box
|
| 131 |
-
for detection in self.preds:
|
| 132 |
-
if isinstance(detection, torch.Tensor):
|
| 133 |
-
detection = detection.cpu().numpy()
|
| 134 |
-
|
| 135 |
-
conf = detection[4]
|
| 136 |
-
x1, y1, x2, y2, _, cls = detection[:6].astype(float) # Ensure float for bounding box coordinates
|
| 137 |
-
label = class_labels[int(cls)]
|
| 138 |
-
|
| 139 |
-
# Draw the rectangle on the bbox_img
|
| 140 |
-
cv2.rectangle(bbox_img, (int(x1), int(y1)), (int(x2), int(y2)), class_colors[int(cls)], 2)
|
| 141 |
-
|
| 142 |
-
# Prepare text with confidence score
|
| 143 |
-
text = f'{label} ({conf:.2f})' # Include confidence score in the text
|
| 144 |
-
text_size = cv2.getTextSize(text, cv2.FONT_HERSHEY_DUPLEX, 0.5, 1)[0]
|
| 145 |
-
|
| 146 |
-
# Set text position directly above the bounding box
|
| 147 |
-
text_x = int(x1)
|
| 148 |
-
text_y = int(y1) - 2 # Adjust for a slight overlap with the bounding box
|
| 149 |
-
|
| 150 |
-
# Set text color based on class
|
| 151 |
-
text_color = (0, 0, 0) if cls == 1 else (255, 255, 255) # Black for handle, white for door
|
| 152 |
-
|
| 153 |
-
# Draw a background rectangle for the text
|
| 154 |
-
cv2.rectangle(bbox_img, (text_x, text_y - text_size[1] - 2), (text_x + text_size[0], text_y), class_colors[int(cls)], cv2.FILLED)
|
| 155 |
-
|
| 156 |
-
# Put the label text on the bbox_img
|
| 157 |
-
cv2.putText(bbox_img, text, (text_x, text_y - 2), cv2.FONT_HERSHEY_DUPLEX, 0.5, text_color, 1, cv2.LINE_AA)
|
| 158 |
-
|
| 159 |
-
# Attach watermark if specified
|
| 160 |
-
if attach_watermark:
|
| 161 |
-
watermark_text = "Predictions by DH-YOLO"
|
| 162 |
-
watermark_color = (200, 200, 200) # Greyish color for watermark
|
| 163 |
-
watermark_scale = 0.4 # Reduced scale for the watermark text
|
| 164 |
-
watermark_thickness = 1 # Decreased thickness for the watermark text
|
| 165 |
-
|
| 166 |
-
# Get the text size for positioning
|
| 167 |
-
text_size = cv2.getTextSize(watermark_text, cv2.FONT_HERSHEY_DUPLEX, watermark_scale, watermark_thickness)[0]
|
| 168 |
-
text_x = bbox_img.shape[1] - text_size[0] - 10 # 10 pixels from right
|
| 169 |
-
text_y = bbox_img.shape[0] - 10 # 10 pixels from bottom
|
| 170 |
-
|
| 171 |
-
# Put the watermark text on the bbox_img
|
| 172 |
-
cv2.putText(bbox_img, watermark_text, (text_x, text_y), cv2.FONT_HERSHEY_DUPLEX, watermark_scale, watermark_color, watermark_thickness, cv2.LINE_AA)
|
| 173 |
-
|
| 174 |
-
return self.image, bbox_img # Return the original image and modified image with bounding boxes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
iteach_toolkit/DHYOLO/models/__init__.py
DELETED
|
File without changes
|
iteach_toolkit/DHYOLO/models/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (154 Bytes)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/__init__.cpython-311.pyc
DELETED
|
Binary file (162 Bytes)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/__init__.cpython-312.pyc
DELETED
|
Binary file (161 Bytes)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/__init__.cpython-38.pyc
DELETED
|
Binary file (198 Bytes)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/__init__.cpython-39.pyc
DELETED
|
Binary file (148 Bytes)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/common.cpython-310.pyc
DELETED
|
Binary file (37.2 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/common.cpython-311.pyc
DELETED
|
Binary file (79.5 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/common.cpython-312.pyc
DELETED
|
Binary file (66.3 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/common.cpython-38.pyc
DELETED
|
Binary file (37.8 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/common.cpython-39.pyc
DELETED
|
Binary file (37.8 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/experimental.cpython-310.pyc
DELETED
|
Binary file (4.85 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/experimental.cpython-311.pyc
DELETED
|
Binary file (9.72 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/experimental.cpython-312.pyc
DELETED
|
Binary file (7.82 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/experimental.cpython-38.pyc
DELETED
|
Binary file (4.91 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/experimental.cpython-39.pyc
DELETED
|
Binary file (4.82 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/yolo.cpython-310.pyc
DELETED
|
Binary file (16.1 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/yolo.cpython-311.pyc
DELETED
|
Binary file (34.1 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/yolo.cpython-312.pyc
DELETED
|
Binary file (29.7 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/yolo.cpython-38.pyc
DELETED
|
Binary file (16.2 kB)
|
|
|
iteach_toolkit/DHYOLO/models/__pycache__/yolo.cpython-39.pyc
DELETED
|
Binary file (16.1 kB)
|
|
|