EYEDOL commited on
Commit
0fb3268
·
verified ·
1 Parent(s): a05f9bb

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +201 -35
src/streamlit_app.py CHANGED
@@ -1,40 +1,206 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
- import streamlit as st
 
 
 
 
 
 
5
 
 
 
 
6
  """
7
- # Welcome to Streamlit!
8
 
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
 
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Refactored Salama Assistant: text-only chatbot (STT and TTS removed)
4
+ Drop this file into your Hugging Face Space (replace existing app.py) or run locally.
5
+ Requirements:
6
+ - transformers
7
+ - peft
8
+ - gradio
9
+ - huggingface_hub
10
+ - torch
11
 
12
+ Notes:
13
+ - Set HF_TOKEN in env for private models or use Spaces secret.
14
+ - This keeps the LLM + PEFT adapter loading and streaming text responses into the Gradio chat UI.
15
  """
 
16
 
17
+ import os
18
+ import threading
19
+ import gradio as gr
20
+ import torch
21
+ from huggingface_hub import login
22
+ from transformers import (
23
+ AutoTokenizer,
24
+ AutoModelForCausalLM,
25
+ pipeline,
26
+ TextIteratorStreamer,
27
+ )
28
+ from peft import PeftModel, PeftConfig
29
+
30
+ # -------------------- Configuration --------------------
31
+ ADAPTER_REPO_ID = "EYEDOL/Llama-3.2-3b_ON_ALPACA5" # adapter-only repo
32
+ BASE_MODEL_ID = "unsloth/Llama-3.2-3B-Instruct" # full base model referenced by adapter
33
+
34
+ HF_TOKEN = os.environ.get("HF_TOKEN") or os.environ.get("hugface")
35
+ if HF_TOKEN:
36
+ try:
37
+ login(token=HF_TOKEN)
38
+ print("Successfully logged into Hugging Face Hub!")
39
+ except Exception as e:
40
+ print("Warning: huggingface_hub.login() failed:", e)
41
+ else:
42
+ print("Warning: HF_TOKEN not found in env. Private repos may fail to load.")
43
+
44
+
45
+ class WeeboAssistant:
46
+ def __init__(self):
47
+ self.SYSTEM_PROMPT = (
48
+ "Wewe ni msaidizi mwenye akili, jibu swali lililoulizwa KWA UFUPI na kwa usahihi. "
49
+ "Jibu kwa lugha ya Kiswahili pekee. Hakuna jibu refu.\n"
50
+ )
51
+ self._init_models()
52
+
53
+ def _init_models(self):
54
+ print("Initializing models...")
55
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
56
+ self.torch_dtype = torch.bfloat16 if self.device == "cuda" else torch.float32
57
+ print(f"Using device: {self.device}")
58
+
59
+ # 1) Tokenizer (prefer base tokenizer)
60
+ try:
61
+ self.llm_tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, use_fast=True)
62
+ except Exception as e:
63
+ print("Warning: could not load base tokenizer, falling back to adapter tokenizer. Error:", e)
64
+ self.llm_tokenizer = AutoTokenizer.from_pretrained(ADAPTER_REPO_ID, use_fast=True)
65
+
66
+ # 2) Load base model
67
+ device_map = "auto" if torch.cuda.is_available() else None
68
+ try:
69
+ self.llm_model = AutoModelForCausalLM.from_pretrained(
70
+ BASE_MODEL_ID,
71
+ torch_dtype=self.torch_dtype,
72
+ low_cpu_mem_usage=True,
73
+ device_map=device_map,
74
+ trust_remote_code=True,
75
+ )
76
+ except Exception as e:
77
+ raise RuntimeError(
78
+ "Failed to load base model. Ensure the base model ID is correct and the HF_TOKEN has access if private. Error: "
79
+ + str(e)
80
+ )
81
+
82
+ # 3) Load and apply PEFT adapter (adapter-only repo)
83
+ try:
84
+ peft_config = PeftConfig.from_pretrained(ADAPTER_REPO_ID)
85
+ self.llm_model = PeftModel.from_pretrained(
86
+ self.llm_model,
87
+ ADAPTER_REPO_ID,
88
+ device_map=device_map,
89
+ torch_dtype=self.torch_dtype,
90
+ low_cpu_mem_usage=True,
91
+ )
92
+ except Exception as e:
93
+ raise RuntimeError(
94
+ "Failed to load/apply PEFT adapter from adapter repo. Make sure adapter files are present and HF_TOKEN has access if private. Error: "
95
+ + str(e)
96
+ )
97
+
98
+ # 4) Optional non-streaming pipeline (useful for small tests)
99
+ try:
100
+ device_index = 0 if torch.cuda.is_available() else -1
101
+ self.llm_pipeline = pipeline(
102
+ "text-generation",
103
+ model=self.llm_model,
104
+ tokenizer=self.llm_tokenizer,
105
+ device=device_index,
106
+ model_kwargs={"torch_dtype": self.torch_dtype},
107
+ )
108
+ except Exception as e:
109
+ print("Warning: could not create text-generation pipeline. Streaming generate will still work. Error:", e)
110
+ self.llm_pipeline = None
111
+
112
+ print("LLM base + adapter loaded successfully.")
113
+
114
+ def get_llm_response(self, chat_history):
115
+ # Build prompt from system + conversation history
116
+ prompt_lines = [self.SYSTEM_PROMPT]
117
+ for user_msg, assistant_msg in chat_history:
118
+ if user_msg:
119
+ prompt_lines.append("User: " + user_msg)
120
+ if assistant_msg:
121
+ prompt_lines.append("Assistant: " + assistant_msg)
122
+ prompt_lines.append("Assistant: ")
123
+ prompt = "\n".join(prompt_lines)
124
+
125
+ inputs = self.llm_tokenizer(prompt, return_tensors="pt")
126
+ try:
127
+ model_device = next(self.llm_model.parameters()).device
128
+ except StopIteration:
129
+ model_device = torch.device("cpu")
130
+ inputs = {k: v.to(model_device) for k, v in inputs.items()}
131
+
132
+ streamer = TextIteratorStreamer(self.llm_tokenizer, skip_prompt=True, skip_special_tokens=True)
133
+
134
+ generation_kwargs = dict(
135
+ input_ids=inputs["input_ids"],
136
+ attention_mask=inputs.get("attention_mask", None),
137
+ max_new_tokens=512,
138
+ do_sample=True,
139
+ temperature=0.6,
140
+ top_p=0.9,
141
+ streamer=streamer,
142
+ eos_token_id=getattr(self.llm_tokenizer, "eos_token_id", None),
143
+ )
144
+
145
+ gen_thread = threading.Thread(target=self.llm_model.generate, kwargs=generation_kwargs, daemon=True)
146
+ gen_thread.start()
147
+
148
+ return streamer
149
+
150
+
151
+ # -------------------- Create assistant instance --------------------
152
+ assistant = WeeboAssistant()
153
+
154
+
155
+ # -------------------- Gradio pipelines --------------------
156
+ def t2t_pipeline(text_input, chat_history):
157
+ # Append the user's message and stream the assistant reply
158
+ chat_history.append((text_input, ""))
159
+ yield chat_history
160
+
161
+ response_stream = assistant.get_llm_response(chat_history)
162
+ llm_response_text = ""
163
+ for text_chunk in response_stream:
164
+ llm_response_text += text_chunk
165
+ chat_history[-1] = (text_input, llm_response_text)
166
+ yield chat_history
167
+
168
+
169
+ def clear_textbox():
170
+ return gr.Textbox.update(value="")
171
+
172
+
173
+ # -------------------- Gradio UI --------------------
174
+ with gr.Blocks(theme=gr.themes.Soft(), title="Msaidizi wa Kiswahili - Text Chat") as demo:
175
+ gr.Markdown("# 🤖 Msaidizi wa Kiswahili (Text Chat)")
176
+ gr.Markdown("Ongea (aina ya maandishi) na msaidizi kwa Kiswahili. Tumia kisanduku kifuatacho kuandika.")
177
+
178
+ t2t_chatbot = gr.Chatbot(label="Mazungumzo (Conversation)", bubble_full_width=False, height=500)
179
+ with gr.Row():
180
+ t2t_text_in = gr.Textbox(show_label=False, placeholder="Andika hapa...", scale=4, container=False)
181
+ t2t_submit_btn = gr.Button("Tuma (Submit)", variant="primary", scale=1)
182
+
183
+ t2t_submit_btn.click(
184
+ fn=t2t_pipeline,
185
+ inputs=[t2t_text_in, t2t_chatbot],
186
+ outputs=[t2t_chatbot],
187
+ queue=True,
188
+ ).then(
189
+ fn=clear_textbox,
190
+ inputs=None,
191
+ outputs=t2t_text_in,
192
+ )
193
+
194
+ t2t_text_in.submit(
195
+ fn=t2t_pipeline,
196
+ inputs=[t2t_text_in, t2t_chatbot],
197
+ outputs=[t2t_chatbot],
198
+ queue=True,
199
+ ).then(
200
+ fn=clear_textbox,
201
+ inputs=None,
202
+ outputs=t2t_text_in,
203
+ )
204
 
 
 
205
 
206
+ demo.queue().launch(debug=True)