Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ import pandas as pd
|
|
| 6 |
from classifier import classify
|
| 7 |
from statistics import mean
|
| 8 |
from genra_incremental import GenraPipeline
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
HFTOKEN = os.environ["HF_TOKEN"]
|
|
@@ -133,6 +134,15 @@ def qa_process(selected_queries, qa_llm_model, aggregator,
|
|
| 133 |
|
| 134 |
return q_a_df, answers_df, summary
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
with gr.Blocks() as demo:
|
| 138 |
event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier"]
|
|
@@ -244,13 +254,16 @@ with gr.Blocks() as demo:
|
|
| 244 |
qa_button = gr.Button("Start QA")
|
| 245 |
hsummary = gr.Textbox(label="Historical Summary")
|
| 246 |
|
| 247 |
-
qa_df = gr.DataFrame()
|
| 248 |
-
answers_df = gr.DataFrame()
|
| 249 |
|
| 250 |
addqry_button.click(add_query, inputs=[query_inp, queries_state], outputs=[selected_queries, queries_state])
|
|
|
|
|
|
|
|
|
|
| 251 |
qa_button.click(qa_process,
|
| 252 |
-
inputs=[selected_queries, qa_llm_model,
|
| 253 |
-
outputs=
|
| 254 |
|
| 255 |
|
| 256 |
demo.launch()
|
|
|
|
| 6 |
from classifier import classify
|
| 7 |
from statistics import mean
|
| 8 |
from genra_incremental import GenraPipeline
|
| 9 |
+
from qa_process import generate_answer
|
| 10 |
|
| 11 |
|
| 12 |
HFTOKEN = os.environ["HF_TOKEN"]
|
|
|
|
| 134 |
|
| 135 |
return q_a_df, answers_df, summary
|
| 136 |
|
| 137 |
+
def qa_summarise(selected_queries, qa_llm_model, text_field, data_df):
|
| 138 |
+
|
| 139 |
+
qa_input_df = data_df[data_df["model_label"] != "none"].reset_index()
|
| 140 |
+
texts = qa_input_df[text_field].to_list()
|
| 141 |
+
|
| 142 |
+
summary = generate_answer(qa_llm_model, texts, selected_queries[0], mode="summarize")
|
| 143 |
+
|
| 144 |
+
return summary
|
| 145 |
+
|
| 146 |
|
| 147 |
with gr.Blocks() as demo:
|
| 148 |
event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier"]
|
|
|
|
| 254 |
qa_button = gr.Button("Start QA")
|
| 255 |
hsummary = gr.Textbox(label="Historical Summary")
|
| 256 |
|
| 257 |
+
# qa_df = gr.DataFrame()
|
| 258 |
+
# answers_df = gr.DataFrame()
|
| 259 |
|
| 260 |
addqry_button.click(add_query, inputs=[query_inp, queries_state], outputs=[selected_queries, queries_state])
|
| 261 |
+
# qa_button.click(qa_process,
|
| 262 |
+
# inputs=[selected_queries, qa_llm_model, aggregator, batch_size, topk, text_field, data],
|
| 263 |
+
# outputs=[qa_df, answers_df, hsummary])
|
| 264 |
qa_button.click(qa_process,
|
| 265 |
+
inputs=[selected_queries, qa_llm_model, text_field, data],
|
| 266 |
+
outputs=hsummary)
|
| 267 |
|
| 268 |
|
| 269 |
demo.launch()
|