Spaces:
Sleeping
Sleeping
Jagrut Thakare
commited on
Commit
·
66167c6
1
Parent(s):
83c3ff4
v1
Browse files- app.py +96 -0
- requirements.txt +2 -0
app.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
def find_bounding_box(mask):
|
| 6 |
+
"""Find the bounding box around the largest contour in the mask."""
|
| 7 |
+
mask = mask.astype(np.uint8)
|
| 8 |
+
_, binary_mask = cv2.threshold(mask, 1, 255, cv2.THRESH_BINARY)
|
| 9 |
+
|
| 10 |
+
contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 11 |
+
if contours:
|
| 12 |
+
x, y, w, h = cv2.boundingRect(np.vstack(contours))
|
| 13 |
+
return x, y, w, h
|
| 14 |
+
return None
|
| 15 |
+
|
| 16 |
+
def overlay_logo_on_image(original_img, mask, logo):
|
| 17 |
+
"""Overlay a scaled logo while maintaining aspect ratio and centering it in the bounding box."""
|
| 18 |
+
bbox = find_bounding_box(mask)
|
| 19 |
+
if bbox is None:
|
| 20 |
+
print("No bounding box found. Returning original image.")
|
| 21 |
+
return original_img
|
| 22 |
+
|
| 23 |
+
x, y, w, h = bbox
|
| 24 |
+
print(f"Bounding box found at: x={x}, y={y}, w={w}, h={h}")
|
| 25 |
+
|
| 26 |
+
# Get original logo dimensions
|
| 27 |
+
logo_h, logo_w = logo.shape[:2]
|
| 28 |
+
|
| 29 |
+
# Compute the scaling factor while maintaining aspect ratio
|
| 30 |
+
scale = min(w / logo_w, h / logo_h)
|
| 31 |
+
new_w, new_h = int(logo_w * scale), int(logo_h * scale)
|
| 32 |
+
|
| 33 |
+
# Resize the logo while maintaining aspect ratio
|
| 34 |
+
logo_resized = cv2.resize(logo, (new_w, new_h), interpolation=cv2.INTER_AREA)
|
| 35 |
+
|
| 36 |
+
# Ensure logo_resized has 4 channels (RGBA)
|
| 37 |
+
if logo_resized.shape[2] == 3:
|
| 38 |
+
logo_resized = cv2.cvtColor(logo_resized, cv2.COLOR_RGB2RGBA)
|
| 39 |
+
|
| 40 |
+
# Create a blank transparent canvas (RGBA)
|
| 41 |
+
logo_canvas = np.zeros((h, w, 4), dtype=np.uint8)
|
| 42 |
+
|
| 43 |
+
# Compute centering offsets
|
| 44 |
+
x_offset = (w - new_w) // 2
|
| 45 |
+
y_offset = (h - new_h) // 2
|
| 46 |
+
|
| 47 |
+
# Place the resized logo at the center of the bounding box
|
| 48 |
+
logo_canvas[y_offset:y_offset + new_h, x_offset:x_offset + new_w] = logo_resized
|
| 49 |
+
|
| 50 |
+
# Convert original image to 4-channel if necessary
|
| 51 |
+
if original_img.shape[2] == 3:
|
| 52 |
+
original_img = cv2.cvtColor(original_img, cv2.COLOR_RGB2RGBA)
|
| 53 |
+
|
| 54 |
+
# Blend the logo into the image using alpha blending
|
| 55 |
+
alpha = logo_canvas[:, :, 3] / 255.0
|
| 56 |
+
for c in range(3):
|
| 57 |
+
original_img[y:y+h, x:x+w, c] = (
|
| 58 |
+
(1 - alpha) * original_img[y:y+h, x:x+w, c] + alpha * logo_canvas[:, :, c]
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
return original_img
|
| 62 |
+
|
| 63 |
+
def process_images(original_img, mask, logo, progress=gr.Progress()):
|
| 64 |
+
"""Process images: overlay logo using uploaded mask."""
|
| 65 |
+
original_img = cv2.cvtColor(np.array(original_img), cv2.COLOR_RGB2BGR)
|
| 66 |
+
mask = np.array(mask)
|
| 67 |
+
logo = cv2.cvtColor(np.array(logo), cv2.COLOR_RGB2BGR)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
if len(mask.shape) == 3:
|
| 71 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
|
| 72 |
+
|
| 73 |
+
mask = (mask > 0).astype(np.uint8) * 255 # Ensure binary mask
|
| 74 |
+
|
| 75 |
+
print(f"Mask shape: {mask.shape}, unique values: {np.unique(mask)}")
|
| 76 |
+
|
| 77 |
+
result_img = overlay_logo_on_image(original_img, mask, logo)
|
| 78 |
+
result_img = cv2.cvtColor(result_img, cv2.COLOR_BGRA2RGBA) if result_img.shape[2] == 4 else cv2.cvtColor(result_img, cv2.COLOR_BGR2RGB)
|
| 79 |
+
|
| 80 |
+
return result_img
|
| 81 |
+
|
| 82 |
+
with gr.Blocks() as demo :
|
| 83 |
+
gr.Markdown("## Inpaint Logo on Uploaded Mask")
|
| 84 |
+
with gr.Row() :
|
| 85 |
+
with gr.Column() :
|
| 86 |
+
with gr.Row():
|
| 87 |
+
original_img = gr.Image(label="Upload Original Image", type="numpy")
|
| 88 |
+
with gr.Row():
|
| 89 |
+
mask = gr.Image(label="Upload Mask (Binary)", type="numpy")
|
| 90 |
+
logo = gr.Image(label="Upload Logo", type="numpy")
|
| 91 |
+
btn = gr.Button("Submit")
|
| 92 |
+
with gr.Column() :
|
| 93 |
+
output = gr.Image(label="Output Image", format="png")
|
| 94 |
+
btn.click(fn=process_images, inputs=[original_img, mask, logo], outputs=output)
|
| 95 |
+
|
| 96 |
+
demo.launch(share=True, debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
opencv-python
|
| 2 |
+
numpy
|