Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| model_name = "sarvamai/sarvam-m" | |
| # Load tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, torch_dtype="auto", device_map="auto" | |
| ) | |
| def generate_response(prompt): | |
| messages = [{"role": "user", "content": prompt}] | |
| text = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| enable_thinking=True, | |
| ) | |
| model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
| # Generate output with temperature=0.2 | |
| generated_ids = model.generate( | |
| **model_inputs, | |
| max_new_tokens=8192, | |
| temperature=0.2 | |
| ) | |
| output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() | |
| output_text = tokenizer.decode(output_ids) | |
| if "</think>" in output_text: | |
| reasoning_content = output_text.split("</think>")[0].rstrip("\n") | |
| content = output_text.split("</think>")[-1].lstrip("\n").rstrip("</s>") | |
| else: | |
| reasoning_content = "" | |
| content = output_text.rstrip("</s>") | |
| return reasoning_content, content | |
| # Gradio UI | |
| iface = gr.Interface( | |
| fn=generate_response, | |
| inputs=gr.Textbox(lines=5, label="Enter your prompt"), | |
| outputs=[ | |
| gr.Textbox(label="Reasoning"), | |
| gr.Textbox(label="Response") | |
| ], | |
| title="Sarvam-M Chat Interface", | |
| description="Enter a prompt and receive both the internal reasoning and the final answer from the Sarvam-M model." | |
| ) | |
| iface.launch() | |