File size: 7,674 Bytes
188f311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.

import json
import torch
import gdown

from proard.classification.networks import get_net_by_name, ResNet50
from proard.classification.elastic_nn.networks import (
    DYNResNets,DYNMobileNetV3,DYNProxylessNASNets,DYNProxylessNASNets_Cifar,DYNMobileNetV3_Cifar,DYNResNets_Cifar
)
from proard.classification.networks import (WideResNet,ResNet50_Cifar,ResNet50,MobileNetV3_Cifar,MobileNetV3Large_Cifar,MobileNetV3Large,ProxylessNASNets_Cifar,ProxylessNASNets,MobileNetV2_Cifar,MobileNetV2)
__all__ = [
    "DYN_net",
]



def DYN_net(net_id, robust_mode, dataset,train_criterion, pretrained=True,run_config=None,WPS=False,base=False):
    if net_id == "ResNet50":
        if not base:
            if dataset == "cifar10" or dataset == "cifar100":
                net = DYNResNets_Cifar(n_classes=run_config.data_provider.n_classes,
                    dropout_rate=0,
                    depth_list=[0, 1, 2],
                    expand_ratio_list=[0.2, 0.25, 0.35],
                    width_mult_list=[0.65, 0.8, 1.0],
                )
            else:
                net = DYNResNets(n_classes=run_config.data_provider.n_classes,
                    dropout_rate=0,
                    depth_list=[0, 1, 2],
                    expand_ratio_list=[0.2, 0.25, 0.35],
                    width_mult_list=[0.65, 0.8, 1.0],
                ) 
        else:
            if dataset == "cifar10" or dataset == "cifar100":
                net = ResNet50_Cifar(n_classes=run_config.data_provider.n_classes)
            else:
                net = ResNet50(n_classes=run_config.data_provider.n_classes) 

    elif net_id == "MBV3":
        if not base:
            if dataset == "cifar10" or dataset == "cifar100":
                net = DYNMobileNetV3_Cifar(n_classes=run_config.data_provider.n_classes,
                    dropout_rate=0,
                    width_mult=1.0,
                    ks_list=[3, 5, 7],
                    expand_ratio_list=[3, 4, 6],
                    depth_list=[2, 3, 4],
                )
            else:
                net = DYNMobileNetV3(n_classes=run_config.data_provider.n_classes,
                    dropout_rate=0,
                    width_mult=1.0,
                    ks_list=[3, 5, 7],
                    expand_ratio_list=[3, 4, 6],
                    depth_list=[2, 3, 4],
                ) 
        else:
            if dataset == "cifar10" or dataset == "cifar100":
                net = MobileNetV3Large_Cifar(n_classes=run_config.data_provider.n_classes)
            else:
                net = MobileNetV3Large(n_classes=run_config.data_provider.n_classes)         
    elif net_id == "ProxylessNASNet":
        if not base:
            if dataset == "cifar10" or dataset == "cifar100":
                net = DYNProxylessNASNets_Cifar(n_classes=run_config.data_provider.n_classes,
                    dropout_rate=0,
                    width_mult=1.0,
                    ks_list=[3, 5, 7],
                    expand_ratio_list=[3, 4, 6],
                    depth_list=[2, 3, 4],
                )
            else:
                net = DYNProxylessNASNets(n_classes=run_config.data_provider.n_classes,
                    dropout_rate=0,
                    width_mult=1.0,
                    ks_list=[3, 5, 7],
                    expand_ratio_list=[3, 4, 6],
                    depth_list=[2, 3, 4],
                )     
        else:
            if dataset == "cifar10" or dataset == "cifar100":
                net = ProxylessNASNets_Cifar(n_classes=run_config.data_provider.n_classes)
            else:
                net = ProxylessNASNets(n_classes=run_config.data_provider.n_classes)    
    elif net_id == "MBV2":
        if not base:
            if dataset == "cifar10" or dataset == "cifar100":
                net = DYNProxylessNASNets_Cifar(n_classes=run_config.data_provider.n_classes,
                    dropout_rate=0,
                    base_stage_width="google",
                    width_mult=1.0,
                    ks_list=[3, 5, 7],
                    expand_ratio_list=[3, 4, 6],
                    depth_list=[2, 3, 4],
                )
            else:
                net = DYNProxylessNASNets(n_classes=run_config.data_provider.n_classes,
                    dropout_rate=0,
                    base_stage_width="google",
                    width_mult=1.0,
                    ks_list=[3, 5, 7],
                    expand_ratio_list=[3, 4, 6],
                    depth_list=[2, 3, 4],
                )   
        else:
            if dataset == "cifar10" or dataset == "cifar100":
                net = MobileNetV2_Cifar(n_classes=run_config.data_provider.n_classes)
            else:
                net = MobileNetV2(n_classes=run_config.data_provider.n_classes)     
    elif net_id == "WideResNet": 
        if dataset == "cifar10" or dataset == "cifar100":
            net = WideResNet(num_classes=run_config.data_provider.n_classes)
        else:
            raise ValueError("Not supported: %s" % net_id)

    else:
        raise ValueError("Not supported: %s" % net_id)

    if pretrained and not WPS and not base:
        if net_id == "ResNet50":
            if robust_mode:
                pt_path = "exp/robust/"+ dataset + "/" + net_id + '/' + train_criterion +"/width_depth2width_depth_width/phase2" + "/checkpoint/model_best.pth.tar"
            else:
                pt_path = "exp/"+ dataset + "/" + net_id + '/' + train_criterion + "/width_depth2width_depth_width/phase2" + "/checkpoint/model_best.pth.tar"      
        else:
            if robust_mode:
                pt_path = "exp/robust/"+ dataset + '/' + net_id + '/' + train_criterion +"/kernel_depth2kernel_depth_width/phase2" +  "/checkpoint/model_best.pth.tar" 
                
            else:
                pt_path = "exp/"+ dataset + '/' + net_id + '/' + train_criterion +"/kernel_depth2kernel_depth_width/phase2" +  "/checkpoint/model_best.pth.tar"    
    elif  pretrained and WPS and not base:  
        if net_id == "ResNet50":
            if robust_mode:
                pt_path = "exp/robust/WPS/"+ dataset + "/" + net_id + '/' + train_criterion +"/width_depth2width_depth_width/phase2" + "/checkpoint/model_best.pth.tar"
            else:
                pt_path = "exp/WPS/"+ dataset + "/" + net_id + '/' + train_criterion + "/width_depth2width_depth_width/phase2" + "/checkpoint/model_best.pth.tar"      
        else:
            if robust_mode:
                pt_path = "exp/robust/WPS/"+ dataset + '/' + net_id + '/' + train_criterion +"/kernel_depth2kernel_depth_width/phase2" +  "/checkpoint/model_best.pth.tar" 
                
            else:
                pt_path = "exp/WPS/"+ dataset + '/' + net_id + '/' + train_criterion +"/kernel_depth2kernel_depth_width/phase2" +  "/checkpoint/model_best.pth.tar"           
    else:
        if not base:
            pt_path = "exp/robust/teacher/"+ dataset + '/' + net_id + '/' + train_criterion +  "/checkpoint/model_best.pth.tar"     
        else:
            pt_path = "exp/robust/base/"+ dataset + '/' + net_id + '/' + train_criterion +  "/checkpoint/model_best.pth.tar"    
    print(pt_path)                 
    init = torch.load(pt_path, map_location="cuda")["state_dict"]
    # from collections import OrderedDict
    # new_state_dict = OrderedDict()
    # for k, v in init.items():
    #     name = k[7:] # remove `module.`
    #     new_state_dict[name] = v
    net.load_state_dict(init)
    return net