Update README.md
Browse files
README.md
CHANGED
|
@@ -3,9 +3,14 @@ language:
|
|
| 3 |
- en
|
| 4 |
license: apache-2.0
|
| 5 |
library_name: transformers
|
|
|
|
|
|
|
|
|
|
| 6 |
datasets:
|
| 7 |
- mozilla-foundation/common_voice_16_1
|
| 8 |
- openslr/librispeech_asr
|
|
|
|
|
|
|
| 9 |
metrics:
|
| 10 |
- wer
|
| 11 |
- accuracy
|
|
@@ -24,7 +29,7 @@ model-index:
|
|
| 24 |
language: en
|
| 25 |
metrics:
|
| 26 |
- type: wer
|
| 27 |
-
value:
|
| 28 |
name: Test WER
|
| 29 |
- task:
|
| 30 |
type: automatic-speech-recognition
|
|
@@ -38,7 +43,7 @@ model-index:
|
|
| 38 |
language: en
|
| 39 |
metrics:
|
| 40 |
- type: wer
|
| 41 |
-
value:
|
| 42 |
name: Test WER
|
| 43 |
- task:
|
| 44 |
type: automatic-speech-recognition
|
|
@@ -51,7 +56,7 @@ model-index:
|
|
| 51 |
language: en
|
| 52 |
metrics:
|
| 53 |
- type: wer
|
| 54 |
-
value:
|
| 55 |
name: Test WER
|
| 56 |
- task:
|
| 57 |
type: audio-classification
|
|
@@ -64,18 +69,18 @@ model-index:
|
|
| 64 |
language: en
|
| 65 |
metrics:
|
| 66 |
- type: accuracy
|
| 67 |
-
value:
|
| 68 |
name: Test Age Accuracy
|
| 69 |
- type: accuracy
|
| 70 |
-
value:
|
| 71 |
name: Test Accent Accuracy
|
| 72 |
---
|
| 73 |
|
| 74 |
# SpeechLLM
|
| 75 |
|
| 76 |
-
[
|
| 77 |
|
| 78 |
-
SpeechLLM is a multi-modal LLM trained to predict the metadata of the speaker's turn in a conversation. speechllm-
|
| 79 |
1. **SpeechActivity** : if the audio signal contains speech (True/False)
|
| 80 |
2. **Transcript** : ASR transcript of the audio
|
| 81 |
3. **Gender** of the speaker (Female/Male)
|
|
@@ -91,6 +96,7 @@ model = AutoModel.from_pretrained("skit-ai/speechllm-1.5B", trust_remote_code=Tr
|
|
| 91 |
|
| 92 |
model.generate_meta(
|
| 93 |
audio_path="path-to-audio.wav", #16k Hz, mono
|
|
|
|
| 94 |
instruction="Give me the following information about the audio [SpeechActivity, Transcript, Gender, Emotion, Age, Accent]",
|
| 95 |
max_new_tokens=500,
|
| 96 |
return_special_tokens=False
|
|
@@ -108,6 +114,7 @@ model.generate_meta(
|
|
| 108 |
}
|
| 109 |
'''
|
| 110 |
```
|
|
|
|
| 111 |
Try the model in [Google Colab Notebook](https://colab.research.google.com/drive/1uqhRl36LJKA4IxnrhplLMv0wQ_f3OuBM?usp=sharing).
|
| 112 |
|
| 113 |
## Model Details
|
|
@@ -118,18 +125,15 @@ Try the model in [Google Colab Notebook](https://colab.research.google.com/drive
|
|
| 118 |
- **Finetuned from model:** [WavLM](https://huggingface.co/microsoft/wavlm-large), [TinyLlama](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
|
| 119 |
- **Model Size:** 1.5 B
|
| 120 |
- **Checkpoint:** 2000 k steps (bs=1)
|
| 121 |
-
- **Adapters:** r=
|
| 122 |
- **lr** : 1e-4
|
| 123 |
- **gradient accumulation steps:** 8
|
| 124 |
|
| 125 |
|
| 126 |
## Checkpoint Result
|
| 127 |
|
| 128 |
-
|
|
| 129 |
-
|
| 130 |
-
| librispeech-test-clean |
|
| 131 |
-
| librispeech-test-other |
|
| 132 |
-
| CommonVoice test |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
| 3 |
- en
|
| 4 |
license: apache-2.0
|
| 5 |
library_name: transformers
|
| 6 |
+
tags:
|
| 7 |
+
- multi-modal
|
| 8 |
+
- speech-language
|
| 9 |
datasets:
|
| 10 |
- mozilla-foundation/common_voice_16_1
|
| 11 |
- openslr/librispeech_asr
|
| 12 |
+
- MLCommons/ml_spoken_words
|
| 13 |
+
- Ar4ikov/iemocap_audio_text_splitted
|
| 14 |
metrics:
|
| 15 |
- wer
|
| 16 |
- accuracy
|
|
|
|
| 29 |
language: en
|
| 30 |
metrics:
|
| 31 |
- type: wer
|
| 32 |
+
value: 11.51
|
| 33 |
name: Test WER
|
| 34 |
- task:
|
| 35 |
type: automatic-speech-recognition
|
|
|
|
| 43 |
language: en
|
| 44 |
metrics:
|
| 45 |
- type: wer
|
| 46 |
+
value: 16.68
|
| 47 |
name: Test WER
|
| 48 |
- task:
|
| 49 |
type: automatic-speech-recognition
|
|
|
|
| 56 |
language: en
|
| 57 |
metrics:
|
| 58 |
- type: wer
|
| 59 |
+
value: 25.66
|
| 60 |
name: Test WER
|
| 61 |
- task:
|
| 62 |
type: audio-classification
|
|
|
|
| 69 |
language: en
|
| 70 |
metrics:
|
| 71 |
- type: accuracy
|
| 72 |
+
value: 64.98
|
| 73 |
name: Test Age Accuracy
|
| 74 |
- type: accuracy
|
| 75 |
+
value: 81.21
|
| 76 |
name: Test Accent Accuracy
|
| 77 |
---
|
| 78 |
|
| 79 |
# SpeechLLM
|
| 80 |
|
| 81 |
+

|
| 82 |
|
| 83 |
+
SpeechLLM is a multi-modal LLM trained to predict the metadata of the speaker's turn in a conversation. speechllm-2B model is based on HubertX audio encoder and TinyLlama LLM. The model predicts the following:
|
| 84 |
1. **SpeechActivity** : if the audio signal contains speech (True/False)
|
| 85 |
2. **Transcript** : ASR transcript of the audio
|
| 86 |
3. **Gender** of the speaker (Female/Male)
|
|
|
|
| 96 |
|
| 97 |
model.generate_meta(
|
| 98 |
audio_path="path-to-audio.wav", #16k Hz, mono
|
| 99 |
+
audio_tensor=torchaudio.load("path-to-audio.wav")[1], # [Optional] either audio_path or audio_tensor directly
|
| 100 |
instruction="Give me the following information about the audio [SpeechActivity, Transcript, Gender, Emotion, Age, Accent]",
|
| 101 |
max_new_tokens=500,
|
| 102 |
return_special_tokens=False
|
|
|
|
| 114 |
}
|
| 115 |
'''
|
| 116 |
```
|
| 117 |
+
|
| 118 |
Try the model in [Google Colab Notebook](https://colab.research.google.com/drive/1uqhRl36LJKA4IxnrhplLMv0wQ_f3OuBM?usp=sharing).
|
| 119 |
|
| 120 |
## Model Details
|
|
|
|
| 125 |
- **Finetuned from model:** [WavLM](https://huggingface.co/microsoft/wavlm-large), [TinyLlama](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
|
| 126 |
- **Model Size:** 1.5 B
|
| 127 |
- **Checkpoint:** 2000 k steps (bs=1)
|
| 128 |
+
- **Adapters:** r=4, alpha=8
|
| 129 |
- **lr** : 1e-4
|
| 130 |
- **gradient accumulation steps:** 8
|
| 131 |
|
| 132 |
|
| 133 |
## Checkpoint Result
|
| 134 |
|
| 135 |
+
| **Dataset** | **Type** | **Word Error Rate** | **Gender Acc** | **Age Acc** | **Accent Acc** |
|
| 136 |
+
|:--------------------------:|:-------------------:|:-------------------:|:--------------:|:-----------:|:--------------:|
|
| 137 |
+
| **librispeech-test-clean** | Read Speech | 11.51 | 0.9594 | | |
|
| 138 |
+
| **librispeech-test-other** | Read Speech | 16.68 | 0.9297 | | |
|
| 139 |
+
| **CommonVoice test** | Diverse Accent, Age | 25.66 | 0.9476 | 0.6498 | 0.8121 |
|
|
|
|
|
|
|
|
|