--- license: mit base_model: stabilityai/stable-diffusion-3.5-medium library_name: diffusers tags: - sd3.5 - adapter - higgsfield inference: false --- # phenomenalai/sd3-token-mod-1024 Adapter for `stabilityai/stable-diffusion-3.5-medium` trained with Higgsfield. ## Usage ```python import torch from diffusers import StableDiffusion3Pipeline from higgsfield.adapters.token_mod import GlobalTokenModulator from huggingface_hub import hf_hub_download base_model = "stabilityai/stable-diffusion-3.5-medium" repo_id = "phenomenalai/sd3-token-mod-1024" pipe = StableDiffusion3Pipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16).to("cuda") # download adapter adapter_path = hf_hub_download(repo_id, filename="token_mod.pt") # load adapter mod = GlobalTokenModulator(num_tokens=333, embed_dim=4096, out_channels=pipe.transformer.config.in_channels) mod.load_state_dict(torch.load(adapter_path, map_location="cpu")) mod.to("cuda").eval() # Now use your own inference loop adding bias from `mod` like in your codebase. ``` ## Files - `token_mod.pt` adapter weights - `run.json` metadata - `manifest.md` human summary