File size: 25,870 Bytes
c782d0a
 
 
 
 
 
 
c70489f
c782d0a
2232d2f
c782d0a
c70489f
 
c782d0a
c70489f
 
 
 
 
 
c782d0a
c70489f
 
 
 
 
 
c782d0a
c70489f
 
 
 
c782d0a
c70489f
 
 
 
 
c782d0a
c70489f
 
 
 
c782d0a
 
85a3389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232d2f
85a3389
 
 
 
 
 
 
 
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
 
 
 
 
 
 
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
 
 
 
 
 
 
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
 
2232d2f
85a3389
c782d0a
 
2232d2f
c782d0a
2232d2f
c782d0a
 
 
 
 
2232d2f
c782d0a
2232d2f
c782d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232d2f
 
 
c782d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a3389
c782d0a
5c42563
c70489f
 
 
c782d0a
5c42563
 
2232d2f
c782d0a
 
5c42563
c782d0a
2232d2f
 
 
c782d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a3389
 
 
 
 
 
 
 
 
c70489f
 
2232d2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a3389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232d2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a3389
c782d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70489f
85a3389
 
2232d2f
 
 
 
85a3389
c70489f
 
 
 
 
85a3389
 
 
 
 
 
 
 
 
 
 
 
 
c70489f
85a3389
c782d0a
2232d2f
 
 
 
c782d0a
c70489f
 
 
 
 
c782d0a
 
 
85a3389
c782d0a
 
 
 
 
 
 
 
85a3389
 
 
 
 
c70489f
85a3389
c782d0a
85a3389
 
 
 
 
 
 
 
 
c782d0a
 
 
 
 
 
85a3389
c782d0a
85a3389
 
c782d0a
 
 
 
 
85a3389
 
c782d0a
 
 
85a3389
 
c70489f
c782d0a
 
85a3389
c782d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a3389
 
 
c782d0a
 
 
 
85a3389
c782d0a
 
 
 
 
 
 
 
 
85a3389
c782d0a
 
 
 
 
 
85a3389
c782d0a
 
 
 
 
 
85a3389
c782d0a
85a3389
c782d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a3389
c782d0a
 
 
 
 
 
85a3389
c782d0a
 
 
 
 
 
85a3389
 
2232d2f
 
 
 
 
 
 
 
 
 
 
 
 
6de6989
c782d0a
 
 
 
 
 
 
85a3389
c782d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:111468
- loss:MultipleNegativesRankingLoss
base_model: thenlper/gte-small
widget:
- source_sentence: What is something you do (or don’t do), even though you feel conflicted
    about it?
  sentences:
  - What is something you do (or don’t do), even though you feel conflicted about
    it?
  - Is it worth buying the iPhone 7?
  - 'Hypothetical scenarios: King Henry VIII loses his battle with James IV in 1513
    & dies; Pope Julius II doesn''t die in 1513. How''s the world different?'
- source_sentence: Exams for a mechanical engineer?
  sentences:
  - Exams for a mechanical engineer?
  - Can you prefer any website or ideas by which I can understand antenna subject
    practically in b.tech?
  - Mackenzie is a writer-in-residence at the 2B Theatre in Halifax and teaches at
    the National Theatre School of Canada in Montreal .
- source_sentence: What will a Christian wife do if her husband left her for years?
  sentences:
  - How many United States Presidents have there been?
  - What is planning without words?
  - What will a Christian wife do if her husband left her for years?
- source_sentence: How do I research for MUN?
  sentences:
  - How do I research for MUN?
  - What is the best way to be an investment banker?
  - What is the best way to do an MUN research?
- source_sentence: I am poor, ugly, untalented, 20 years old, and have big dreams.
    How can I succeed in life?
  sentences:
  - What app can I use taking notes?
  - Am I too old to succeed in my life at age 32?
  - I am poor, ugly, untalented, 20 years old, and have big dreams. How can I succeed
    in life?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on thenlper/gte-small
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: cosine_accuracy@1
      value: 0.3
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.58
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.68
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.19333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12000000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.068
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.58
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.68
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4950369328373354
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.43527777777777776
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4475531768839056
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: cosine_accuracy@1
      value: 0.26
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.48
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.52
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.64
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.26
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16666666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10800000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.066
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.24
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.45
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.49
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4279054208986469
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3892142857142856
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3750113241088494
      name: Cosine Map@100
  - task:
      type: nano-beir
      name: Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: cosine_accuracy@1
      value: 0.28
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.53
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.56
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.66
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.28
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11400000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.067
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.27
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.515
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5449999999999999
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.64
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.46147117686799116
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4122460317460317
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4112822504963775
      name: Cosine Map@100
---

# SentenceTransformer based on thenlper/gte-small

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-small](https://huggingface.co/thenlper/gte-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [thenlper/gte-small](https://huggingface.co/thenlper/gte-small) <!-- at revision 17e1f347d17fe144873b1201da91788898c639cd -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("redis/model-b-structured")
# Run inference
sentences = [
    'I am poor, ugly, untalented, 20 years old, and have big dreams. How can I succeed in life?',
    'I am poor, ugly, untalented, 20 years old, and have big dreams. How can I succeed in life?',
    'Am I too old to succeed in my life at age 32?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 1.0000, 0.3917],
#         [1.0000, 1.0000, 0.3917],
#         [0.3917, 0.3917, 1.0000]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `NanoMSMARCO` and `NanoNQ`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | NanoMSMARCO | NanoNQ     |
|:--------------------|:------------|:-----------|
| cosine_accuracy@1   | 0.3         | 0.26       |
| cosine_accuracy@3   | 0.58        | 0.48       |
| cosine_accuracy@5   | 0.6         | 0.52       |
| cosine_accuracy@10  | 0.68        | 0.64       |
| cosine_precision@1  | 0.3         | 0.26       |
| cosine_precision@3  | 0.1933      | 0.1667     |
| cosine_precision@5  | 0.12        | 0.108      |
| cosine_precision@10 | 0.068       | 0.066      |
| cosine_recall@1     | 0.3         | 0.24       |
| cosine_recall@3     | 0.58        | 0.45       |
| cosine_recall@5     | 0.6         | 0.49       |
| cosine_recall@10    | 0.68        | 0.6        |
| **cosine_ndcg@10**  | **0.495**   | **0.4279** |
| cosine_mrr@10       | 0.4353      | 0.3892     |
| cosine_map@100      | 0.4476      | 0.375      |

#### Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nq"
      ],
      "dataset_id": "lightonai/NanoBEIR-en"
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.28       |
| cosine_accuracy@3   | 0.53       |
| cosine_accuracy@5   | 0.56       |
| cosine_accuracy@10  | 0.66       |
| cosine_precision@1  | 0.28       |
| cosine_precision@3  | 0.18       |
| cosine_precision@5  | 0.114      |
| cosine_precision@10 | 0.067      |
| cosine_recall@1     | 0.27       |
| cosine_recall@3     | 0.515      |
| cosine_recall@5     | 0.545      |
| cosine_recall@10    | 0.64       |
| **cosine_ndcg@10**  | **0.4615** |
| cosine_mrr@10       | 0.4122     |
| cosine_map@100      | 0.4113     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 111,468 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 6 tokens</li><li>mean: 16.11 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.16 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.35 tokens</li><li>max: 76 tokens</li></ul> |
* Samples:
  | anchor                                                                                | positive                                                                              | negative                                                                                 |
  |:--------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|
  | <code>How many grams of protein should I eat a day?</code>                            | <code>How much protein should I eat per day?</code>                                   | <code>How does hypokalemia lead to polyuria in primary aldosteronism?</code>             |
  | <code>Who said to get out of economic crisis we need to buy more?</code>              | <code>Who said to get out of economic crisis we need to buy more?</code>              | <code>What are some good IT certifications that don't require programming skills?</code> |
  | <code>What is the difference between Chinese and western culture within China?</code> | <code>What is the difference between Chinese and western culture within China?</code> | <code>What is the difference between Chinese and western culture outside China?</code>   |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 7.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset

* Size: 12,386 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 6 tokens</li><li>mean: 16.22 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.28 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.39 tokens</li><li>max: 66 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                              | positive                                                                                                                            | negative                                                                     |
  |:------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|
  | <code>What is it about novels that allow them to deal with deep themes that short stories, drama, and poetry cannot achieve?</code> | <code>What is it about novels that allow them to deal with deep themes that short stories, drama, and poetry cannot achieve?</code> | <code>What are films that deal with themes like death and letting go?</code> |
  | <code>If alien civilizations are thought to be much more advanced than us, why haven't they made contact with us yet?</code>        | <code>If there are super intelligent alien beings somewhere in the Galaxy why haven't they tried to contact us yet?</code>          | <code>What's not so good about Aston Martin cars?</code>                     |
  | <code>How can you determine the Lewis dot structure for sulfur trioxide?</code>                                                     | <code>How can you determine the Lewis dot structure for sulfur trioxide?</code>                                                     | <code>How can you determine the Lewis dot structure for sulfur?</code>       |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 7.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `weight_decay`: 0.0001
- `max_steps`: 3000
- `warmup_ratio`: 0.1
- `fp16`: True
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: 1
- `load_best_model_at_end`: True
- `optim`: adamw_torch
- `ddp_find_unused_parameters`: False
- `push_to_hub`: True
- `hub_model_id`: redis/model-b-structured
- `eval_on_start`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: 3000
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: 1
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `project`: huggingface
- `trackio_space_id`: trackio
- `ddp_find_unused_parameters`: False
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: redis/model-b-structured
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: no
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: True
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | NanoMSMARCO_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:--------------------------:|:---------------------:|:----------------------------:|
| 0      | 0    | -             | 3.6560          | 0.6259                     | 0.6583                | 0.6421                       |
| 0.2874 | 250  | 2.1436        | 0.4823          | 0.5264                     | 0.5634                | 0.5449                       |
| 0.5747 | 500  | 0.5891        | 0.4299          | 0.5280                     | 0.5051                | 0.5165                       |
| 0.8621 | 750  | 0.5393        | 0.4123          | 0.5246                     | 0.4755                | 0.5001                       |
| 1.1494 | 1000 | 0.5173        | 0.4027          | 0.5068                     | 0.4549                | 0.4809                       |
| 1.4368 | 1250 | 0.5022        | 0.3954          | 0.5055                     | 0.4513                | 0.4784                       |
| 1.7241 | 1500 | 0.4958        | 0.3909          | 0.5033                     | 0.4466                | 0.4749                       |
| 2.0115 | 1750 | 0.4908        | 0.3890          | 0.4897                     | 0.4416                | 0.4656                       |
| 2.2989 | 2000 | 0.4824        | 0.3859          | 0.4912                     | 0.4359                | 0.4636                       |
| 2.5862 | 2250 | 0.4797        | 0.3847          | 0.4987                     | 0.4387                | 0.4687                       |
| 2.8736 | 2500 | 0.4728        | 0.3834          | 0.4969                     | 0.4256                | 0.4613                       |
| 3.1609 | 2750 | 0.4721        | 0.3824          | 0.4863                     | 0.4279                | 0.4571                       |
| 3.4483 | 3000 | 0.4694        | 0.3822          | 0.4950                     | 0.4279                | 0.4615                       |


### Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.2.0
- Transformers: 4.57.3
- PyTorch: 2.9.1+cu128
- Accelerate: 1.12.0
- Datasets: 2.21.0
- Tokenizers: 0.22.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->