- Fancy123: One Image to High-Quality 3D Mesh Generation via Plug-and-Play Deformation Generating 3D meshes from a single image is an important but ill-posed task. Existing methods mainly adopt 2D multiview diffusion models to generate intermediate multiview images, and use the Large Reconstruction Model (LRM) to create the final meshes. However, the multiview images exhibit local inconsistencies, and the meshes often lack fidelity to the input image or look blurry. We propose Fancy123, featuring two enhancement modules and an unprojection operation to address the above three issues, respectively. The appearance enhancement module deforms the 2D multiview images to realign misaligned pixels for better multiview consistency. The fidelity enhancement module deforms the 3D mesh to match the input image. The unprojection of the input image and deformed multiview images onto LRM's generated mesh ensures high clarity, discarding LRM's predicted blurry-looking mesh colors. Extensive qualitative and quantitative experiments verify Fancy123's SoTA performance with significant improvement. Also, the two enhancement modules are plug-and-play and work at inference time, allowing seamless integration into various existing single-image-to-3D methods. Code at: https://github.com/YuQiao0303/Fancy123 7 authors · Nov 25, 2024
1 PointDreamer: Zero-shot 3D Textured Mesh Reconstruction from Colored Point Cloud Faithfully reconstructing textured meshes is crucial for many applications. Compared to text or image modalities, leveraging 3D colored point clouds as input (colored-PC-to-mesh) offers inherent advantages in comprehensively and precisely replicating the target object's 360{\deg} characteristics. While most existing colored-PC-to-mesh methods suffer from blurry textures or require hard-to-acquire 3D training data, we propose PointDreamer, a novel framework that harnesses 2D diffusion prior for superior texture quality. Crucially, unlike prior 2D-diffusion-for-3D works driven by text or image inputs, PointDreamer successfully adapts 2D diffusion models to 3D point cloud data by a novel project-inpaint-unproject pipeline. Specifically, it first projects the point cloud into sparse 2D images and then performs diffusion-based inpainting. After that, diverging from most existing 3D reconstruction or generation approaches that predict texture in 3D/UV space thus often yielding blurry texture, PointDreamer achieves high-quality texture by directly unprojecting the inpainted 2D images to the 3D mesh. Furthermore, we identify for the first time a typical kind of unprojection artifact appearing in occlusion borders, which is common in other multiview-image-to-3D pipelines but less-explored. To address this, we propose a novel solution named the Non-Border-First (NBF) unprojection strategy. Extensive qualitative and quantitative experiments on various synthetic and real-scanned datasets demonstrate that PointDreamer, though zero-shot, exhibits SoTA performance (30% improvement on LPIPS score from 0.118 to 0.068), and is robust to noisy, sparse, or even incomplete input data. Code at: https://github.com/YuQiao0303/PointDreamer. 7 authors · Jun 22, 2024
- Toward Real-world BEV Perception: Depth Uncertainty Estimation via Gaussian Splatting Bird's-eye view (BEV) perception has gained significant attention because it provides a unified representation to fuse multiple view images and enables a wide range of down-stream autonomous driving tasks, such as forecasting and planning. Recent state-of-the-art models utilize projection-based methods which formulate BEV perception as query learning to bypass explicit depth estimation. While we observe promising advancements in this paradigm, they still fall short of real-world applications because of the lack of uncertainty modeling and expensive computational requirement. In this work, we introduce GaussianLSS, a novel uncertainty-aware BEV perception framework that revisits unprojection-based methods, specifically the Lift-Splat-Shoot (LSS) paradigm, and enhances them with depth un-certainty modeling. GaussianLSS represents spatial dispersion by learning a soft depth mean and computing the variance of the depth distribution, which implicitly captures object extents. We then transform the depth distribution into 3D Gaussians and rasterize them to construct uncertainty-aware BEV features. We evaluate GaussianLSS on the nuScenes dataset, achieving state-of-the-art performance compared to unprojection-based methods. In particular, it provides significant advantages in speed, running 2.5x faster, and in memory efficiency, using 0.3x less memory compared to projection-based methods, while achieving competitive performance with only a 0.4% IoU difference. 3 authors · Apr 2, 2025