Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDemystifying Large Language Models for Medicine: A Primer
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare by generating human-like responses across diverse contexts and adapting to novel tasks following human instructions. Their potential application spans a broad range of medical tasks, such as clinical documentation, matching patients to clinical trials, and answering medical questions. In this primer paper, we propose an actionable guideline to help healthcare professionals more efficiently utilize LLMs in their work, along with a set of best practices. This approach consists of several main phases, including formulating the task, choosing LLMs, prompt engineering, fine-tuning, and deployment. We start with the discussion of critical considerations in identifying healthcare tasks that align with the core capabilities of LLMs and selecting models based on the selected task and data, performance requirements, and model interface. We then review the strategies, such as prompt engineering and fine-tuning, to adapt standard LLMs to specialized medical tasks. Deployment considerations, including regulatory compliance, ethical guidelines, and continuous monitoring for fairness and bias, are also discussed. By providing a structured step-by-step methodology, this tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice, ensuring that these powerful technologies are applied in a safe, reliable, and impactful manner.
Hierarchical Prompting Taxonomy: A Universal Evaluation Framework for Large Language Models
Assessing the effectiveness of large language models (LLMs) in addressing diverse tasks is essential for comprehending their strengths and weaknesses. Conventional evaluation techniques typically apply a single prompting strategy uniformly across datasets, not considering the varying degrees of task complexity. We introduce the Hierarchical Prompting Taxonomy (HPT), a taxonomy that employs a Hierarchical Prompt Framework (HPF) composed of five unique prompting strategies, arranged from the simplest to the most complex, to assess LLMs more precisely and to offer a clearer perspective. This taxonomy assigns a score, called the Hierarchical Prompting Score (HP-Score), to datasets as well as LLMs based on the rules of the taxonomy, providing a nuanced understanding of their ability to solve diverse tasks and offering a universal measure of task complexity. Additionally, we introduce the Adaptive Hierarchical Prompt framework, which automates the selection of appropriate prompting strategies for each task. This study compares manual and adaptive hierarchical prompt frameworks using four instruction-tuned LLMs, namely Llama 3 8B, Phi 3 3.8B, Mistral 7B, and Gemma 7B, across four datasets: BoolQ, CommonSenseQA (CSQA), IWSLT-2017 en-fr (IWSLT), and SamSum. Experiments demonstrate the effectiveness of HPT, providing a reliable way to compare different tasks and LLM capabilities. This paper leads to the development of a universal evaluation metric that can be used to evaluate both the complexity of the datasets and the capabilities of LLMs. The implementation of both manual HPF and adaptive HPF is publicly available.
Mental-LLM: Leveraging Large Language Models for Mental Health Prediction via Online Text Data
Advances in large language models (LLMs) have empowered a variety of applications. However, there is still a significant gap in research when it comes to understanding and enhancing the capabilities of LLMs in the field of mental health. In this work, we present the first comprehensive evaluation of multiple LLMs, including Alpaca, Alpaca-LoRA, FLAN-T5, GPT-3.5, and GPT-4, on various mental health prediction tasks via online text data. We conduct a broad range of experiments, covering zero-shot prompting, few-shot prompting, and instruction fine-tuning. The results indicate a promising yet limited performance of LLMs with zero-shot and few-shot prompt designs for the mental health tasks. More importantly, our experiments show that instruction finetuning can significantly boost the performance of LLMs for all tasks simultaneously. Our best-finetuned models, Mental-Alpaca and Mental-FLAN-T5, outperform the best prompt design of GPT-3.5 (25 and 15 times bigger) by 10.9% on balanced accuracy and the best of GPT-4 (250 and 150 times bigger) by 4.8%. They further perform on par with the state-of-the-art task-specific language model. We also conduct an exploratory case study on LLMs' capability on the mental health reasoning tasks, illustrating the promising capability of certain models such as GPT-4. We summarize our findings into a set of action guidelines for potential methods to enhance LLMs' capability for mental health tasks. Meanwhile, we also emphasize the important limitations before achieving deployability in real-world mental health settings, such as known racial and gender bias. We highlight the important ethical risks accompanying this line of research.
In-BoXBART: Get Instructions into Biomedical Multi-Task Learning
Single-task models have proven pivotal in solving specific tasks; however, they have limitations in real-world applications where multi-tasking is necessary and domain shifts are exhibited. Recently, instructional prompts have shown significant improvement towards multi-task generalization; however, the effect of instructional prompts and Multi-Task Learning (MTL) has not been systematically studied in the biomedical domain. Motivated by this, this paper explores the impact of instructional prompts for biomedical MTL. We introduce the BoX, a collection of 32 instruction tasks for Biomedical NLP across (X) various categories. Using this meta-dataset, we propose a unified model termed In-BoXBART, that can jointly learn all tasks of the BoX without any task-specific modules. To the best of our knowledge, this is the first attempt to propose a unified model in the biomedical domain and use instructions to achieve generalization across several biomedical tasks. Experimental results indicate that the proposed model: 1) outperforms the single-task baseline by ~3% and multi-task (without instruction) baseline by ~18% on an average, and 2) shows ~23% improvement compared to the single-task baseline in few-shot learning (i.e., 32 instances per task) on an average. Our analysis indicates that there is significant room for improvement across tasks in the BoX, implying the scope for future research direction.
Generalist Foundation Models Are Not Clinical Enough for Hospital Operations
Hospitals and healthcare systems rely on operational decisions that determine patient flow, cost, and quality of care. Despite strong performance on medical knowledge and conversational benchmarks, foundation models trained on general text may lack the specialized knowledge required for these operational decisions. We introduce Lang1, a family of models (100M-7B parameters) pretrained on a specialized corpus blending 80B clinical tokens from NYU Langone Health's EHRs and 627B tokens from the internet. To rigorously evaluate Lang1 in real-world settings, we developed the REalistic Medical Evaluation (ReMedE), a benchmark derived from 668,331 EHR notes that evaluates five critical tasks: 30-day readmission prediction, 30-day mortality prediction, length of stay, comorbidity coding, and predicting insurance claims denial. In zero-shot settings, both general-purpose and specialized models underperform on four of five tasks (36.6%-71.7% AUROC), with mortality prediction being an exception. After finetuning, Lang1-1B outperforms finetuned generalist models up to 70x larger and zero-shot models up to 671x larger, improving AUROC by 3.64%-6.75% and 1.66%-23.66% respectively. We also observed cross-task scaling with joint finetuning on multiple tasks leading to improvement on other tasks. Lang1-1B effectively transfers to out-of-distribution settings, including other clinical tasks and an external health system. Our findings suggest that predictive capabilities for hospital operations require explicit supervised finetuning, and that this finetuning process is made more efficient by in-domain pretraining on EHR. Our findings support the emerging view that specialized LLMs can compete with generalist models in specialized tasks, and show that effective healthcare systems AI requires the combination of in-domain pretraining, supervised finetuning, and real-world evaluation beyond proxy benchmarks.
EHRMamba: Towards Generalizable and Scalable Foundation Models for Electronic Health Records
Transformers have significantly advanced the modeling of Electronic Health Records (EHR), yet their deployment in real-world healthcare is limited by several key challenges. Firstly, the quadratic computational cost and insufficient context length of these models pose significant obstacles for hospitals in processing the extensive medical histories typical in EHR data. Additionally, existing models employ separate finetuning for each clinical task, complicating maintenance in healthcare environments. Moreover, these models focus exclusively on either clinical prediction or EHR forecasting, lacking the flexibility to perform well across both. To overcome these limitations, we introduce EHRMamba, a robust foundation model built on the Mamba architecture. EHRMamba can process sequences up to four times longer than previous models due to its linear computational cost. We also introduce a novel approach to Multitask Prompted Finetuning (MTF) for EHR data, which enables EHRMamba to simultaneously learn multiple clinical tasks in a single finetuning phase, significantly enhancing deployment and cross-task generalization. Furthermore, our model leverages the HL7 FHIR data standard to simplify integration into existing hospital systems. Alongside EHRMamba, we open-source Odyssey, a toolkit designed to support the development and deployment of EHR foundation models, with an emphasis on data standardization and interpretability. Our evaluations on the MIMIC-IV dataset demonstrate that EHRMamba advances state-of-the-art performance across 6 major clinical tasks and excels in EHR forecasting, marking a significant leap forward in the field.
Using Large Language Models for Hyperparameter Optimization
This paper studies using foundational large language models (LLMs) to make decisions during hyperparameter optimization (HPO). Empirical evaluations demonstrate that in settings with constrained search budgets, LLMs can perform comparably or better than traditional HPO methods like random search and Bayesian optimization on standard benchmarks. Furthermore, we propose to treat the code specifying our model as a hyperparameter, which the LLM outputs, going beyond the capabilities of existing HPO approaches. Our findings suggest that LLMs are a promising tool for improving efficiency in the traditional decision-making problem of hyperparameter optimization.
EHRSHOT: An EHR Benchmark for Few-Shot Evaluation of Foundation Models
While the general machine learning (ML) community has benefited from public datasets, tasks, and models, the progress of ML in healthcare has been hampered by a lack of such shared assets. The success of foundation models creates new challenges for healthcare ML by requiring access to shared pretrained models to validate performance benefits. We help address these challenges through three contributions. First, we publish a new dataset, EHRSHOT, which contains deidentified structured data from the electronic health records (EHRs) of 6,739 patients from Stanford Medicine. Unlike MIMIC-III/IV and other popular EHR datasets, EHRSHOT is longitudinal and not restricted to ICU/ED patients. Second, we publish the weights of CLMBR-T-base, a 141M parameter clinical foundation model pretrained on the structured EHR data of 2.57M patients. We are one of the first to fully release such a model for coded EHR data; in contrast, most prior models released for clinical data (e.g. GatorTron, ClinicalBERT) only work with unstructured text and cannot process the rich, structured data within an EHR. We provide an end-to-end pipeline for the community to validate and build upon its performance. Third, we define 15 few-shot clinical prediction tasks, enabling evaluation of foundation models on benefits such as sample efficiency and task adaptation. Our model and dataset are available via a research data use agreement from the Stanford AIMI Center. Code to reproduce our results are available at our Github repo: https://github.com/som-shahlab/ehrshot-benchmark
A Unified Pairwise Framework for RLHF: Bridging Generative Reward Modeling and Policy Optimization
Reinforcement Learning from Human Feedback (RLHF) has emerged as a important paradigm for aligning large language models (LLMs) with human preferences during post-training. This framework typically involves two stages: first, training a reward model on human preference data, followed by optimizing the language model using reinforcement learning algorithms. However, current RLHF approaches may constrained by two limitations. First, existing RLHF frameworks often rely on Bradley-Terry models to assign scalar rewards based on pairwise comparisons of individual responses. However, this approach imposes significant challenges on reward model (RM), as the inherent variability in prompt-response pairs across different contexts demands robust calibration capabilities from the RM. Second, reward models are typically initialized from generative foundation models, such as pre-trained or supervised fine-tuned models, despite the fact that reward models perform discriminative tasks, creating a mismatch. This paper introduces Pairwise-RL, a RLHF framework that addresses these challenges through a combination of generative reward modeling and a pairwise proximal policy optimization (PPO) algorithm. Pairwise-RL unifies reward model training and its application during reinforcement learning within a consistent pairwise paradigm, leveraging generative modeling techniques to enhance reward model performance and score calibration. Experimental evaluations demonstrate that Pairwise-RL outperforms traditional RLHF frameworks across both internal evaluation datasets and standard public benchmarks, underscoring its effectiveness in improving alignment and model behavior.
RewardBench: Evaluating Reward Models for Language Modeling
Reward models (RMs) are at the crux of successful RLHF to align pretrained models to human preferences, yet there has been relatively little study that focuses on evaluation of those reward models. Evaluating reward models presents an opportunity to understand the opaque technologies used for alignment of language models and which values are embedded in them. To date, very few descriptors of capabilities, training methods, or open-source reward models exist. In this paper, we present RewardBench, a benchmark dataset and code-base for evaluation, to enhance scientific understanding of reward models. The RewardBench dataset is a collection of prompt-win-lose trios spanning chat, reasoning, and safety, to benchmark how reward models perform on challenging, structured and out-of-distribution queries. We created specific comparison datasets for RMs that have subtle, but verifiable reasons (e.g. bugs, incorrect facts) why one answer should be preferred to another. On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods, such as the direct MLE training of classifiers and the implicit reward modeling of Direct Preference Optimization (DPO), and on a spectrum of datasets. We present many findings on propensity for refusals, reasoning limitations, and instruction following shortcomings of various reward models towards a better understanding of the RLHF process.
The Limited Impact of Medical Adaptation of Large Language and Vision-Language Models
Several recent works seek to develop foundation models specifically for medical applications, adapting general-purpose large language models (LLMs) and vision-language models (VLMs) via continued pretraining on publicly available biomedical corpora. These works typically claim that such domain-adaptive pretraining (DAPT) improves performance on downstream medical tasks, such as answering medical licensing exam questions. In this paper, we compare ten public "medical" LLMs and two VLMs against their corresponding base models, arriving at a different conclusion: all medical VLMs and nearly all medical LLMs fail to consistently improve over their base models in the zero-/few-shot prompting and supervised fine-tuning regimes for medical question-answering (QA). For instance, across all tasks and model pairs we consider in the 3-shot setting, medical LLMs only outperform their base models in 22.7% of cases, reach a (statistical) tie in 36.8% of cases, and are significantly worse than their base models in the remaining 40.5% of cases. Our conclusions are based on (i) comparing each medical model head-to-head, directly against the corresponding base model; (ii) optimizing the prompts for each model separately in zero-/few-shot prompting; and (iii) accounting for statistical uncertainty in comparisons. While these basic practices are not consistently adopted in the literature, our ablations show that they substantially impact conclusions. Meanwhile, we find that after fine-tuning on specific QA tasks, medical LLMs can show performance improvements, but the benefits do not carry over to tasks based on clinical notes. Our findings suggest that state-of-the-art general-domain models may already exhibit strong medical knowledge and reasoning capabilities, and offer recommendations to strengthen the conclusions of future studies.
GenHPF: General Healthcare Predictive Framework with Multi-task Multi-source Learning
Despite the remarkable progress in the development of predictive models for healthcare, applying these algorithms on a large scale has been challenging. Algorithms trained on a particular task, based on specific data formats available in a set of medical records, tend to not generalize well to other tasks or databases in which the data fields may differ. To address this challenge, we propose General Healthcare Predictive Framework (GenHPF), which is applicable to any EHR with minimal preprocessing for multiple prediction tasks. GenHPF resolves heterogeneity in medical codes and schemas by converting EHRs into a hierarchical textual representation while incorporating as many features as possible. To evaluate the efficacy of GenHPF, we conduct multi-task learning experiments with single-source and multi-source settings, on three publicly available EHR datasets with different schemas for 12 clinically meaningful prediction tasks. Our framework significantly outperforms baseline models that utilize domain knowledge in multi-source learning, improving average AUROC by 1.2%P in pooled learning and 2.6%P in transfer learning while also showing comparable results when trained on a single EHR dataset. Furthermore, we demonstrate that self-supervised pretraining using multi-source datasets is effective when combined with GenHPF, resulting in a 0.6%P AUROC improvement compared to models without pretraining. By eliminating the need for preprocessing and feature engineering, we believe that this work offers a solid framework for multi-task and multi-source learning that can be leveraged to speed up the scaling and usage of predictive algorithms in healthcare.
RewardBench 2: Advancing Reward Model Evaluation
Reward models are used throughout the post-training of language models to capture nuanced signals from preference data and provide a training target for optimization across instruction following, reasoning, safety, and more domains. The community has begun establishing best practices for evaluating reward models, from the development of benchmarks that test capabilities in specific skill areas to others that test agreement with human preferences. At the same time, progress in evaluation has not been mirrored by the effectiveness of reward models in downstream tasks -- simpler direct alignment algorithms are reported to work better in many cases. This paper introduces RewardBench 2, a new multi-skill reward modeling benchmark designed to bring new, challenging data for accuracy-based reward model evaluation -- models score about 20 points on average lower on RewardBench 2 compared to the first RewardBench -- while being highly correlated with downstream performance. Compared to most other benchmarks, RewardBench 2 sources new human prompts instead of existing prompts from downstream evaluations, facilitating more rigorous evaluation practices. In this paper, we describe our benchmark construction process and report how existing models perform on it, while quantifying how performance on the benchmark correlates with downstream use of the models in both inference-time scaling algorithms, like best-of-N sampling, and RLHF training algorithms like proximal policy optimization.
Multidimensional Rubric-oriented Reward Model Learning via Geometric Projection Reference Constraints
The integration of large language models (LLMs) into medical practice holds transformative potential, yet their real-world clinical utility remains limited by critical alignment challenges: (1) a disconnect between static evaluation benchmarks and dynamic clinical cognitive needs, (2) difficulties in adapting to evolving, multi-source medical standards, and (3) the inability of conventional reward models to capture nuanced, multi-dimensional medical quality criteria. To address these gaps, we propose MR-RML (Multidimensional Rubric-oriented Reward Model Learning) via GPRC (Geometric Projection Reference Constraints), a novel alignment framework that integrates medical standards into a structured "Dimensions-Scenarios-Disciplines" matrix to guide data generation and model optimization. MR-RML introduces three core innovations: (1) a "Dimensions-Scenarios-Disciplines" medical standard system that embeds domain standards into the full training pipeline; (2) an independent multi-dimensional reward model that decomposes evaluation criteria, shifting from real-time rubric-based scoring to internalized reward modeling for improved consistency and cost-efficiency; (3) geometric projection reference constraints that transform medical cognitive logic into mathematical regularization, aligning scoring gradients with clinical reasoning and enabling synthetic data-driven training. Through extensive evaluations on the authoritative medical benchmark Healthbench, our method yields substantial performance gains over the base LLM Qwen-32B (45% on the full subset and 85% on Hard subset, respectively). It achieves a SOTA among open-source LLMs with scores of 62.7 (full subset) and 44.7 (hard subset), while also outperforming the majority of closed-source models.
Streamlining the Collaborative Chain of Models into A Single Forward Pass in Generation-Based Tasks
In Retrieval-Augmented Generation (RAG) and agent-based frameworks, the "Chain of Models" approach is widely used, where multiple specialized models work sequentially on distinct sub-tasks. This approach is effective but increases resource demands as each model must be deployed separately. Recent advancements attempt to address this by applying prompt tuning, which allows a shared base model to adapt to multiple tasks with minimal parameter changes. However, a key challenge remains: intermediate outputs, passed between models as plain text, require recomputation of hidden states (i.e., Key and Value (KV) states in Transformers) during inference. In this paper, we introduce FTHSS, a novel prompt-tuning method that enables models to share KV hidden states, eliminating redundant forward passes and reducing KV cache storage. By modifying input and attention masks during training, FTHSS allows models to effectively utilize KV hidden states from prior models in both single- and multi-round scenarios. Empirical results on four tasks show that FTHSS matches the performance of traditional model chains while improving inference efficiency.
MING-MOE: Enhancing Medical Multi-Task Learning in Large Language Models with Sparse Mixture of Low-Rank Adapter Experts
Large language models like ChatGPT have shown substantial progress in natural language understanding and generation, proving valuable across various disciplines, including the medical field. Despite advancements, challenges persist due to the complexity and diversity inherent in medical tasks which often require multi-task learning capabilities. Previous approaches, although beneficial, fall short in real-world applications because they necessitate task-specific annotations at inference time, limiting broader generalization. This paper introduces MING-MOE, a novel Mixture-of-Expert~(MOE)-based medical large language model designed to manage diverse and complex medical tasks without requiring task-specific annotations, thus enhancing its usability across extensive datasets. MING-MOE employs a Mixture of Low-Rank Adaptation (MoLoRA) technique, allowing for efficient parameter usage by maintaining base model parameters static while adapting through a minimal set of trainable parameters. We demonstrate that MING-MOE achieves state-of-the-art (SOTA) performance on over 20 medical tasks, illustrating a significant improvement over existing models. This approach not only extends the capabilities of medical language models but also improves inference efficiency.
In-situ Value-aligned Human-Robot Interactions with Physical Constraints
Equipped with Large Language Models (LLMs), human-centered robots are now capable of performing a wide range of tasks that were previously deemed challenging or unattainable. However, merely completing tasks is insufficient for cognitive robots, who should learn and apply human preferences to future scenarios. In this work, we propose a framework that combines human preferences with physical constraints, requiring robots to complete tasks while considering both. Firstly, we developed a benchmark of everyday household activities, which are often evaluated based on specific preferences. We then introduced In-Context Learning from Human Feedback (ICLHF), where human feedback comes from direct instructions and adjustments made intentionally or unintentionally in daily life. Extensive sets of experiments, testing the ICLHF to generate task plans and balance physical constraints with preferences, have demonstrated the efficiency of our approach.
Tool-Augmented Reward Modeling
Reward modeling (a.k.a., preference modeling) is instrumental for aligning large language models with human preferences, particularly within the context of reinforcement learning from human feedback (RLHF). While conventional reward models (RMs) have exhibited remarkable scalability, they oft struggle with fundamental functionality such as arithmetic computation, code execution, and factual lookup. In this paper, we propose a tool-augmented preference modeling approach, named Themis, to address these limitations by empowering RMs with access to external environments, including calculators and search engines. This approach not only fosters synergy between tool utilization and reward grading but also enhances interpretive capacity and scoring reliability. Our study delves into the integration of external tools into RMs, enabling them to interact with diverse external sources and construct task-specific tool engagement and reasoning traces in an autoregressive manner. We validate our approach across a wide range of domains, incorporating seven distinct external tools. Our experimental results demonstrate a noteworthy overall improvement of 17.7% across eight tasks in preference ranking. Furthermore, our approach outperforms Gopher 280B by 7.3% on TruthfulQA task in zero-shot evaluation. In human evaluations, RLHF trained with Themis attains an average win rate of 32% when compared to baselines across four distinct tasks. Additionally, we provide a comprehensive collection of tool-related RM datasets, incorporating data from seven distinct tool APIs, totaling 15,000 instances. We have made the code, data, and model checkpoints publicly available to facilitate and inspire further research advancements\url{https://github.com/ernie-research/Tool-Augmented-Reward-Model}.
The History and Risks of Reinforcement Learning and Human Feedback
Reinforcement learning from human feedback (RLHF) has emerged as a powerful technique to make large language models (LLMs) easier to use and more effective. A core piece of the RLHF process is the training and utilization of a model of human preferences that acts as a reward function for optimization. This approach, which operates at the intersection of many stakeholders and academic disciplines, remains poorly understood. RLHF reward models are often cited as being central to achieving performance, yet very few descriptors of capabilities, evaluations, training methods, or open-source models exist. Given this lack of information, further study and transparency is needed for learned RLHF reward models. In this paper, we illustrate the complex history of optimizing preferences, and articulate lines of inquiry to understand the sociotechnical context of reward models. In particular, we highlight the ontological differences between costs, rewards, and preferences at stake in RLHF's foundations, related methodological tensions, and possible research directions to improve general understanding of how reward models function.
Medical Adaptation of Large Language and Vision-Language Models: Are We Making Progress?
Several recent works seek to develop foundation models specifically for medical applications, adapting general-purpose large language models (LLMs) and vision-language models (VLMs) via continued pretraining on publicly available biomedical corpora. These works typically claim that such domain-adaptive pretraining (DAPT) improves performance on downstream medical tasks, such as answering medical licensing exam questions. In this paper, we compare seven public "medical" LLMs and two VLMs against their corresponding base models, arriving at a different conclusion: all medical VLMs and nearly all medical LLMs fail to consistently improve over their base models in the zero-/few-shot prompting regime for medical question-answering (QA) tasks. For instance, across the tasks and model pairs we consider in the 3-shot setting, medical LLMs only outperform their base models in 12.1% of cases, reach a (statistical) tie in 49.8% of cases, and are significantly worse than their base models in the remaining 38.2% of cases. Our conclusions are based on (i) comparing each medical model head-to-head, directly against the corresponding base model; (ii) optimizing the prompts for each model separately; and (iii) accounting for statistical uncertainty in comparisons. While these basic practices are not consistently adopted in the literature, our ablations show that they substantially impact conclusions. Our findings suggest that state-of-the-art general-domain models may already exhibit strong medical knowledge and reasoning capabilities, and offer recommendations to strengthen the conclusions of future studies.
PERL: Parameter Efficient Reinforcement Learning from Human Feedback
Reinforcement Learning from Human Feedback (RLHF) has proven to be a strong method to align Pretrained Large Language Models (LLMs) with human preferences. But training models with RLHF is computationally expensive, and an overall complex process. In this work, we study RLHF where the underlying models are trained using the parameter efficient method of Low-Rank Adaptation (LoRA) introduced by Hu et al. [2021]. We investigate the setup of "Parameter Efficient Reinforcement Learning" (PERL), in which we perform reward model training and reinforcement learning using LoRA. We compare PERL to conventional fine-tuning (full-tuning) across various configurations for 7 benchmarks, including 2 novel datasets, of reward modeling and reinforcement learning. We find that PERL performs on par with the conventional RLHF setting, while training faster, and with less memory. This enables the high performance of RLHF, while reducing the computational burden that limits its adoption as an alignment technique for Large Language Models. We also release 2 novel thumbs up/down preference datasets: "Taskmaster Coffee", and "Taskmaster Ticketing" to promote research around RLHF.
Multi-Level Aware Preference Learning: Enhancing RLHF for Complex Multi-Instruction Tasks
RLHF has emerged as a predominant approach for aligning artificial intelligence systems with human preferences, demonstrating exceptional and measurable efficacy in instruction following tasks; however, it exhibits insufficient compliance capabilities when confronted with complex multi-instruction tasks. Conventional approaches rely heavily on human annotation or more sophisticated large language models, thereby introducing substantial resource expenditure or potential bias concerns. Meanwhile, alternative synthetic methods that augment standard preference datasets often compromise the model's semantic quality. Our research identifies a critical oversight in existing techniques, which predominantly focus on comparing responses while neglecting valuable latent signals embedded within prompt inputs, and which only focus on preference disparities at the intra-sample level, while neglecting to account for the inter-sample level preference differentials that exist among preference data. To leverage these previously neglected indicators, we propose a novel Multi-level Aware Preference Learning (MAPL) framework, capable of enhancing multi-instruction capabilities. Specifically, for any given response in original preference data pairs, we construct varied prompts with a preference relation under different conditions, in order to learn intra-sample level preference disparities. Furthermore, for any given original preference pair, we synthesize multi-instruction preference pairs to capture preference discrepancies at the inter-sample level. Building on the two datasets constructed above, we consequently devise two sophisticated training objective functions. Subsequently, our framework integrates seamlessly into both Reward Modeling and Direct Preference Optimization paradigms. Through rigorous evaluation across multiple benchmarks, we empirically validate the efficacy of our framework.
HHH: An Online Medical Chatbot System based on Knowledge Graph and Hierarchical Bi-Directional Attention
This paper proposes a chatbot framework that adopts a hybrid model which consists of a knowledge graph and a text similarity model. Based on this chatbot framework, we build HHH, an online question-and-answer (QA) Healthcare Helper system for answering complex medical questions. HHH maintains a knowledge graph constructed from medical data collected from the Internet. HHH also implements a novel text representation and similarity deep learning model, Hierarchical BiLSTM Attention Model (HBAM), to find the most similar question from a large QA dataset. We compare HBAM with other state-of-the-art language models such as bidirectional encoder representation from transformers (BERT) and Manhattan LSTM Model (MaLSTM). We train and test the models with a subset of the Quora duplicate questions dataset in the medical area. The experimental results show that our model is able to achieve a superior performance than these existing methods.
SuperHF: Supervised Iterative Learning from Human Feedback
While large language models demonstrate remarkable capabilities, they often present challenges in terms of safety, alignment with human values, and stability during training. Here, we focus on two prevalent methods used to align these models, Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). SFT is simple and robust, powering a host of open-source models, while RLHF is a more sophisticated method used in top-tier models like ChatGPT but also suffers from instability and susceptibility to reward hacking. We propose a novel approach, Supervised Iterative Learning from Human Feedback (SuperHF), which seeks to leverage the strengths of both methods. Our hypothesis is two-fold: that the reward model used in RLHF is critical for efficient data use and model generalization and that the use of Proximal Policy Optimization (PPO) in RLHF may not be necessary and could contribute to instability issues. SuperHF replaces PPO with a simple supervised loss and a Kullback-Leibler (KL) divergence prior. It creates its own training data by repeatedly sampling a batch of model outputs and filtering them through the reward model in an online learning regime. We then break down the reward optimization problem into three components: robustly optimizing the training rewards themselves, preventing reward hacking-exploitation of the reward model that degrades model performance-as measured by a novel METEOR similarity metric, and maintaining good performance on downstream evaluations. Our experimental results show SuperHF exceeds PPO-based RLHF on the training objective, easily and favorably trades off high reward with low reward hacking, improves downstream calibration, and performs the same on our GPT-4 based qualitative evaluation scheme all the while being significantly simpler to implement, highlighting SuperHF's potential as a competitive language model alignment technique.
The Alignment Ceiling: Objective Mismatch in Reinforcement Learning from Human Feedback
Reinforcement learning from human feedback (RLHF) has emerged as a powerful technique to make large language models (LLMs) more capable in complex settings. RLHF proceeds as collecting human preference data, training a reward model on said data, and optimizing a base ML model with respect to said reward for extrinsic evaluation metrics (e.g. MMLU, GSM8k). RLHF relies on many assumptions about how the various pieces fit together, such as a reward model capturing human preferences and an RL optimizer extracting the right signal from a reward model. As the RLHF process involves many distinct design decisions, it is easy to assume that multiple processes are correlated and therefore numerically linked. This apparent correlation is often not true, where reward models are easily overoptimized or RL optimizers can reduce performance on tasks not modeled in the data. Notable manifestations of models trained with imperfect RLHF systems are those that are prone to refusing basic requests for safety reasons or appearing lazy in generations. As chat model evaluation becomes increasingly nuanced, the reliance on a perceived link between reward model training, RL scores, and downstream performance drives these issues, which we describe as an objective mismatch. In this paper, we illustrate the causes of this issue, reviewing relevant literature from model-based reinforcement learning, and argue for solutions. By solving objective mismatch in RLHF, the ML models of the future will be more precisely aligned to user instructions for both safety and helpfulness.
MC-CoT: A Modular Collaborative CoT Framework for Zero-shot Medical-VQA with LLM and MLLM Integration
In recent advancements, multimodal large language models (MLLMs) have been fine-tuned on specific medical image datasets to address medical visual question answering (Med-VQA) tasks. However, this common approach of task-specific fine-tuning is costly and necessitates separate models for each downstream task, limiting the exploration of zero-shot capabilities. In this paper, we introduce MC-CoT, a modular cross-modal collaboration Chain-of-Thought (CoT) framework designed to enhance the zero-shot performance of MLLMs in Med-VQA by leveraging large language models (LLMs). MC-CoT improves reasoning and information extraction by integrating medical knowledge and task-specific guidance, where LLM provides various complex medical reasoning chains and MLLM provides various observations of medical images based on instructions of the LLM. Our experiments on datasets such as SLAKE, VQA-RAD, and PATH-VQA show that MC-CoT surpasses standalone MLLMs and various multimodality CoT frameworks in recall rate and accuracy. These findings highlight the importance of incorporating background information and detailed guidance in addressing complex zero-shot Med-VQA tasks.
SLiC-HF: Sequence Likelihood Calibration with Human Feedback
Learning from human feedback has been shown to be effective at aligning language models with human preferences. Past work has often relied on Reinforcement Learning from Human Feedback (RLHF), which optimizes the language model using reward scores assigned from a reward model trained on human preference data. In this work we show how the recently introduced Sequence Likelihood Calibration (SLiC), can also be used to effectively learn from human preferences (SLiC-HF). Furthermore, we demonstrate this can be done with human feedback data collected for a different model, similar to off-policy, offline RL data. Automatic and human evaluation experiments on the TL;DR summarization task show that SLiC-HF significantly improves supervised fine-tuning baselines. Furthermore, SLiC-HF presents a competitive alternative to the PPO RLHF implementation used in past work while being much simpler to implement, easier to tune and more computationally efficient in practice.
A Benchmark of Domain-Adapted Large Language Models for Generating Brief Hospital Course Summaries
Brief hospital course (BHC) summaries are common clinical documents generated by summarizing clinical notes. While large language models (LLMs) depict remarkable capabilities in automating real-world tasks, their capabilities for healthcare applications such as BHC synthesis have not been shown. To enable the adaptation of LLMs for BHC synthesis, we introduce a novel benchmark consisting of a pre-processed dataset extracted from MIMIC-IV notes, encapsulating clinical note, and brief hospital course (BHC) pairs. We assess the performance of two general-purpose LLMs and three healthcare-adapted LLMs to improve BHC synthesis from clinical notes. Using clinical notes as input for generating BHCs, we apply prompting-based (using in-context learning) and fine-tuning-based adaptation strategies to three open-source LLMs (Clinical-T5-Large, Llama2-13B, FLAN-UL2) and two proprietary LLMs (GPT-3.5, GPT-4). We quantitatively evaluate the performance of these LLMs across varying context-length inputs using conventional natural language similarity metrics. We further perform a qualitative study where five diverse clinicians blindly compare clinician-written BHCs and two LLM-generated BHCs for 30 samples across metrics of comprehensiveness, conciseness, factual correctness, and fluency. Overall, we present a new benchmark and pre-processed dataset for using LLMs in BHC synthesis from clinical notes. We observe high-quality summarization performance for both in-context proprietary and fine-tuned open-source LLMs using both quantitative metrics and a qualitative clinical reader study. We propose our work as a benchmark to motivate future works to adapt and assess the performance of LLMs in BHC synthesis.
Learning Task Representations from In-Context Learning
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning (ICL), where models adapt to new tasks through example-based prompts without requiring parameter updates. However, understanding how tasks are internally encoded and generalized remains a challenge. To address some of the empirical and technical gaps in the literature, we introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads within the transformer architecture. This approach computes a single task vector as a weighted sum of attention heads, with the weights optimized causally via gradient descent. Our findings show that existing methods fail to generalize effectively to modalities beyond text. In response, we also design a benchmark to evaluate whether a task vector can preserve task fidelity in functional regression tasks. The proposed method successfully extracts task-specific information from in-context demonstrations and excels in both text and regression tasks, demonstrating its generalizability across modalities. Moreover, ablation studies show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.
MedAgentBench: A Realistic Virtual EHR Environment to Benchmark Medical LLM Agents
Recent large language models (LLMs) have demonstrated significant advancements, particularly in their ability to serve as agents thereby surpassing their traditional role as chatbots. These agents can leverage their planning and tool utilization capabilities to address tasks specified at a high level. However, a standardized dataset to benchmark the agent capabilities of LLMs in medical applications is currently lacking, making the evaluation of LLMs on complex tasks in interactive healthcare environments challenging. To address this gap, we introduce MedAgentBench, a broad evaluation suite designed to assess the agent capabilities of large language models within medical records contexts. MedAgentBench encompasses 300 patient-specific clinically-derived tasks from 10 categories written by human physicians, realistic profiles of 100 patients with over 700,000 data elements, a FHIR-compliant interactive environment, and an accompanying codebase. The environment uses the standard APIs and communication infrastructure used in modern EMR systems, so it can be easily migrated into live EMR systems. MedAgentBench presents an unsaturated agent-oriented benchmark that current state-of-the-art LLMs exhibit some ability to succeed at. The best model (Claude 3.5 Sonnet v2) achieves a success rate of 69.67%. However, there is still substantial space for improvement which gives the community a next direction to optimize. Furthermore, there is significant variation in performance across task categories. MedAgentBench establishes this and is publicly available at https://github.com/stanfordmlgroup/MedAgentBench , offering a valuable framework for model developers to track progress and drive continuous improvements in the agent capabilities of large language models within the medical domain.
PIPA: A Unified Evaluation Protocol for Diagnosing Interactive Planning Agents
The growing capabilities of large language models (LLMs) in instruction-following and context-understanding lead to the era of agents with numerous applications. Among these, task planning agents have become especially prominent in realistic scenarios involving complex internal pipelines, such as context understanding, tool management, and response generation. However, existing benchmarks predominantly evaluate agent performance based on task completion as a proxy for overall effectiveness. We hypothesize that merely improving task completion is misaligned with maximizing user satisfaction, as users interact with the entire agentic process and not only the end result. To address this gap, we propose PIPA, a unified evaluation protocol that conceptualizes the behavioral process of interactive task planning agents within a partially observable Markov Decision Process (POMDP) paradigm. The proposed protocol offers a comprehensive assessment of agent performance through a set of atomic evaluation criteria, allowing researchers and practitioners to diagnose specific strengths and weaknesses within the agent's decision-making pipeline. Our analyses show that agents excel in different behavioral stages, with user satisfaction shaped by both outcomes and intermediate behaviors. We also highlight future directions, including systems that leverage multiple agents and the limitations of user simulators in task planning.
Towards Robust and Efficient Continual Language Learning
As the application space of language models continues to evolve, a natural question to ask is how we can quickly adapt models to new tasks. We approach this classic question from a continual learning perspective, in which we aim to continue fine-tuning models trained on past tasks on new tasks, with the goal of "transferring" relevant knowledge. However, this strategy also runs the risk of doing more harm than good, i.e., negative transfer. In this paper, we construct a new benchmark of task sequences that target different possible transfer scenarios one might face, such as a sequence of tasks with high potential of positive transfer, high potential for negative transfer, no expected effect, or a mixture of each. An ideal learner should be able to maximally exploit information from all tasks that have any potential for positive transfer, while also avoiding the negative effects of any distracting tasks that may confuse it. We then propose a simple, yet effective, learner that satisfies many of our desiderata simply by leveraging a selective strategy for initializing new models from past task checkpoints. Still, limitations remain, and we hope this benchmark can help the community to further build and analyze such learners.
Reasoning LLMs in the Medical Domain: A Literature Survey
The emergence of advanced reasoning capabilities in Large Language Models (LLMs) marks a transformative development in healthcare applications. Beyond merely expanding functional capabilities, these reasoning mechanisms enhance decision transparency and explainability-critical requirements in medical contexts. This survey examines the transformation of medical LLMs from basic information retrieval tools to sophisticated clinical reasoning systems capable of supporting complex healthcare decisions. We provide a thorough analysis of the enabling technological foundations, with a particular focus on specialized prompting techniques like Chain-of-Thought and recent breakthroughs in Reinforcement Learning exemplified by DeepSeek-R1. Our investigation evaluates purpose-built medical frameworks while also examining emerging paradigms such as multi-agent collaborative systems and innovative prompting architectures. The survey critically assesses current evaluation methodologies for medical validation and addresses persistent challenges in field interpretation limitations, bias mitigation strategies, patient safety frameworks, and integration of multimodal clinical data. Through this survey, we seek to establish a roadmap for developing reliable LLMs that can serve as effective partners in clinical practice and medical research.
Toward Better EHR Reasoning in LLMs: Reinforcement Learning with Expert Attention Guidance
Improving large language models (LLMs) for electronic health record (EHR) reasoning is essential for enabling accurate and generalizable clinical predictions. While LLMs excel at medical text understanding, they underperform on EHR-based prediction tasks due to challenges in modeling temporally structured, high-dimensional data. Existing approaches often rely on hybrid paradigms, where LLMs serve merely as frozen prior retrievers while downstream deep learning (DL) models handle prediction, failing to improve the LLM's intrinsic reasoning capacity and inheriting the generalization limitations of DL models. To this end, we propose EAG-RL, a novel two-stage training framework designed to intrinsically enhance LLMs' EHR reasoning ability through expert attention guidance, where expert EHR models refer to task-specific DL models trained on EHR data. Concretely, EAG-RL first constructs high-quality, stepwise reasoning trajectories using expert-guided Monte Carlo Tree Search to effectively initialize the LLM's policy. Then, EAG-RL further optimizes the policy via reinforcement learning by aligning the LLM's attention with clinically salient features identified by expert EHR models. Extensive experiments on two real-world EHR datasets show that EAG-RL improves the intrinsic EHR reasoning ability of LLMs by an average of 14.62%, while also enhancing robustness to feature perturbations and generalization to unseen clinical domains. These results demonstrate the practical potential of EAG-RL for real-world deployment in clinical prediction tasks. Our code have been available at https://github.com/devilran6/EAG-RL.
A Scalable Framework for Evaluating Health Language Models
Large language models (LLMs) have emerged as powerful tools for analyzing complex datasets. Recent studies demonstrate their potential to generate useful, personalized responses when provided with patient-specific health information that encompasses lifestyle, biomarkers, and context. As LLM-driven health applications are increasingly adopted, rigorous and efficient one-sided evaluation methodologies are crucial to ensure response quality across multiple dimensions, including accuracy, personalization and safety. Current evaluation practices for open-ended text responses heavily rely on human experts. This approach introduces human factors and is often cost-prohibitive, labor-intensive, and hinders scalability, especially in complex domains like healthcare where response assessment necessitates domain expertise and considers multifaceted patient data. In this work, we introduce Adaptive Precise Boolean rubrics: an evaluation framework that streamlines human and automated evaluation of open-ended questions by identifying gaps in model responses using a minimal set of targeted rubrics questions. Our approach is based on recent work in more general evaluation settings that contrasts a smaller set of complex evaluation targets with a larger set of more precise, granular targets answerable with simple boolean responses. We validate this approach in metabolic health, a domain encompassing diabetes, cardiovascular disease, and obesity. Our results demonstrate that Adaptive Precise Boolean rubrics yield higher inter-rater agreement among expert and non-expert human evaluators, and in automated assessments, compared to traditional Likert scales, while requiring approximately half the evaluation time of Likert-based methods. This enhanced efficiency, particularly in automated evaluation and non-expert contributions, paves the way for more extensive and cost-effective evaluation of LLMs in health.
The Shifted and The Overlooked: A Task-oriented Investigation of User-GPT Interactions
Recent progress in Large Language Models (LLMs) has produced models that exhibit remarkable performance across a variety of NLP tasks. However, it remains unclear whether the existing focus of NLP research accurately captures the genuine requirements of human users. This paper provides a comprehensive analysis of the divergence between current NLP research and the needs of real-world NLP applications via a large-scale collection of user-GPT conversations. We analyze a large-scale collection of real user queries to GPT. We compare these queries against existing NLP benchmark tasks and identify a significant gap between the tasks that users frequently request from LLMs and the tasks that are commonly studied in academic research. For example, we find that tasks such as ``design'' and ``planning'' are prevalent in user interactions but are largely neglected or different from traditional NLP benchmarks. We investigate these overlooked tasks, dissect the practical challenges they pose, and provide insights toward a roadmap to make LLMs better aligned with user needs.
ZeroPrompt: Scaling Prompt-Based Pretraining to 1,000 Tasks Improves Zero-Shot Generalization
We propose a multitask pretraining approach ZeroPrompt for zero-shot generalization, focusing on task scaling and zero-shot prompting. While previous models are trained on only a few dozen tasks, we scale to 1,000 tasks for the first time using real-world data. This leads to a crucial discovery that task scaling can be an efficient alternative to model scaling; i.e., the model size has little impact on performance with an extremely large number of tasks. Our results show that task scaling can substantially improve training efficiency by 30 times in FLOPs. Moreover, we present a prompting method that incorporates a genetic algorithm to automatically search for the best prompt for unseen tasks, along with a few other improvements. Empirically, ZeroPrompt substantially improves both the efficiency and the performance of zero-shot learning across a variety of academic and production datasets.
u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model
Recent advances such as LLaVA and Mini-GPT4 have successfully integrated visual information into LLMs, yielding inspiring outcomes and giving rise to a new generation of multi-modal LLMs, or MLLMs. Nevertheless, these methods struggle with hallucinations and the mutual interference between tasks. To tackle these problems, we propose an efficient and accurate approach to adapt to downstream tasks by utilizing LLM as a bridge to connect multiple expert models, namely u-LLaVA. Firstly, we incorporate the modality alignment module and multi-task modules into LLM. Then, we reorganize or rebuild multi-type public datasets to enable efficient modality alignment and instruction following. Finally, task-specific information is extracted from the trained LLM and provided to different modules for solving downstream tasks. The overall framework is simple, effective, and achieves state-of-the-art performance across multiple benchmarks. We also release our model, the generated data, and the code base publicly available.
BenTo: Benchmark Task Reduction with In-Context Transferability
Evaluating large language models (LLMs) is costly: it requires the generation and examination of LLM outputs on a large-scale benchmark of various tasks. This paper investigates how to efficiently reduce the tasks used to benchmark LLMs without affecting the evaluation quality. Our study reveals that task transferability and relevance provide critical information to identify the most representative subset of tasks via optimizing a facility location function. We propose a practically efficient metric for estimating the transferability between two tasks via in-context learning (ICL). By analyzing the pairwise transferability, we can reduce tasks in a modern LLM benchmark (e.g., MMLU or FLAN) to 5% while inducing only a <4% difference to the evaluation on the original benchmark. Compared to prior works, our method is training-free, gradient-free, and highly efficient requiring ICL only.
HealthGPT: A Medical Large Vision-Language Model for Unifying Comprehension and Generation via Heterogeneous Knowledge Adaptation
We present HealthGPT, a powerful Medical Large Vision-Language Model (Med-LVLM) that integrates medical visual comprehension and generation capabilities within a unified autoregressive paradigm. Our bootstrapping philosophy is to progressively adapt heterogeneous comprehension and generation knowledge to pre-trained large language models (LLMs). This is achieved through a novel heterogeneous low-rank adaptation (H-LoRA) technique, which is complemented by a tailored hierarchical visual perception approach and a three-stage learning strategy. To effectively learn the HealthGPT, we devise a comprehensive medical domain-specific comprehension and generation dataset called VL-Health. Experimental results demonstrate exceptional performance and scalability of HealthGPT in medical visual unified tasks. Our project can be accessed at https://github.com/DCDmllm/HealthGPT.
HELMET: How to Evaluate Long-Context Language Models Effectively and Thoroughly
There have been many benchmarks for evaluating long-context language models (LCLMs), but developers often rely on synthetic tasks like needle-in-a-haystack (NIAH) or arbitrary subsets of tasks. It remains unclear whether they translate to the diverse downstream applications of LCLMs, and the inconsistency further complicates model comparison. We investigate the underlying reasons behind current practices and find that existing benchmarks often provide noisy signals due to low coverage of applications, insufficient lengths, unreliable metrics, and incompatibility with base models. In this work, we present HELMET (How to Evaluate Long-context Models Effectively and Thoroughly), a comprehensive benchmark encompassing seven diverse, application-centric categories. We also address many issues in previous benchmarks by adding controllable lengths up to 128k tokens, model-based evaluation for reliable metrics, and few-shot prompting for robustly evaluating base models. Consequently, we demonstrate that HELMET offers more reliable and consistent rankings of frontier LCLMs. Through a comprehensive study of 51 LCLMs, we find that (1) synthetic tasks like NIAH are not good predictors of downstream performance; (2) the diverse categories in HELMET exhibit distinct trends and low correlation with each other; and (3) while most LCLMs achieve perfect NIAH scores, open-source models significantly lag behind closed ones when the task requires full-context reasoning or following complex instructions -- the gap widens with increased lengths. Finally, we recommend using our RAG tasks for fast model development, as they are easy to run and more predictive of other downstream performance; ultimately, we advocate for a holistic evaluation across diverse tasks.
RRHF: Rank Responses to Align Language Models with Human Feedback without tears
Reinforcement Learning from Human Feedback (RLHF) facilitates the alignment of large language models with human preferences, significantly enhancing the quality of interactions between humans and these models. InstructGPT implements RLHF through several stages, including Supervised Fine-Tuning (SFT), reward model training, and Proximal Policy Optimization (PPO). PPO, however, is sensitive to hyperparameters and requires a minimum of four models in its standard implementation, which makes it hard to train. In contrast, we propose a novel learning paradigm called RRHF, which scores responses generated by different sampling policies and learns to align them with human preferences through ranking loss. RRHF can efficiently align language model output probabilities with human preferences as robust as fine-tuning and it only needs 1 to 2 models during tuning. In addition, RRHF can be considered an extension of SFT and reward models while being simpler than PPO in terms of coding, model counts, and hyperparameters. The entire alignment process can be accomplished within a single RRHF training session. We evaluate RRHF using LLaMA and Alpaca on Helpful and Harmless data, demonstrating performance comparable to PPO.
IIMedGPT: Promoting Large Language Model Capabilities of Medical Tasks by Efficient Human Preference Alignment
Recent researches of large language models(LLM), which is pre-trained on massive general-purpose corpora, have achieved breakthroughs in responding human queries. However, these methods face challenges including limited data insufficiency to support extensive pre-training and can not align responses with users' instructions. To address these issues, we introduce a medical instruction dataset, CMedINS, containing six medical instructions derived from actual medical tasks, which effectively fine-tunes LLM in conjunction with other data. Subsequently, We launch our medical model, IIMedGPT, employing an efficient preference alignment method, Direct preference Optimization(DPO). The results show that our final model outperforms existing medical models in medical dialogue.Datsets, Code and model checkpoints will be released upon acceptance.
Towards Hierarchical Multi-Step Reward Models for Enhanced Reasoning in Large Language Models
Recent studies show that Large Language Models (LLMs) achieve strong reasoning capabilities through supervised fine-tuning or reinforcement learning. However, a key approach, the Process Reward Model (PRM), suffers from reward hacking, making it unreliable in identifying the best intermediate steps. In this paper, we propose a novel reward model approach, Hierarchical Reward Model (HRM), which evaluates both individual and consecutive reasoning steps from fine-grained and coarse-grained level. HRM performs better in assessing reasoning coherence and self-reflection, particularly when the previous reasoning step is incorrect. Furthermore, to address the inefficiency of autonomous generating PRM training data via Monte Carlo Tree Search (MCTS), we introduce a lightweight and effective data augmentation strategy called Hierarchical Node Compression (HNC) based on node merging (combining two consecutive reasoning steps into one step) in the tree structure. This approach diversifies MCTS results for HRM with negligible computational overhead, enhancing label robustness by introducing noise. Empirical results on the PRM800K dataset demonstrate that HRM, in conjunction with HNC, achieves superior stability and reliability in evaluation compared to PRM. Furthermore, cross-domain evaluations on MATH500 and GSM8K confirm HRM's superior generalization and robustness across diverse reasoning tasks. The code for all experiments will be released at https: //github.com/tengwang0318/hierarchial_reward_model.
Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning
Reinforcement Learning from Human Feedback (RLHF) is a powerful paradigm for aligning foundation models to human values and preferences. However, current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population. When these differences arise, traditional RLHF frameworks simply average over them, leading to inaccurate rewards and poor performance for individual subgroups. To address the need for pluralistic alignment, we develop a class of multimodal RLHF methods. Our proposed techniques are based on a latent variable formulation - inferring a novel user-specific latent and learning reward models and policies conditioned on this latent without additional user-specific data. While conceptually simple, we show that in practice, this reward modeling requires careful algorithmic considerations around model architecture and reward scaling. To empirically validate our proposed technique, we first show that it can provide a way to combat underspecification in simulated control problems, inferring and optimizing user-specific reward functions. Next, we conduct experiments on pluralistic language datasets representing diverse user preferences and demonstrate improved reward function accuracy. We additionally show the benefits of this probabilistic framework in terms of measuring uncertainty, and actively learning user preferences. This work enables learning from diverse populations of users with divergent preferences, an important challenge that naturally occurs in problems from robot learning to foundation model alignment.
RLHF Workflow: From Reward Modeling to Online RLHF
We present the workflow of Online Iterative Reinforcement Learning from Human Feedback (RLHF) in this technical report, which is widely reported to outperform its offline counterpart by a large margin in the recent large language model (LLM) literature. However, existing open-source RLHF projects are still largely confined to the offline learning setting. In this technical report, we aim to fill in this gap and provide a detailed recipe that is easy to reproduce for online iterative RLHF. In particular, since online human feedback is usually infeasible for open-source communities with limited resources, we start by constructing preference models using a diverse set of open-source datasets and use the constructed proxy preference model to approximate human feedback. Then, we discuss the theoretical insights and algorithmic principles behind online iterative RLHF, followed by a detailed practical implementation. Our trained LLM, SFR-Iterative-DPO-LLaMA-3-8B-R, achieves impressive performance on LLM chatbot benchmarks, including AlpacaEval-2, Arena-Hard, and MT-Bench, as well as other academic benchmarks such as HumanEval and TruthfulQA. We have shown that supervised fine-tuning (SFT) and iterative RLHF can obtain state-of-the-art performance with fully open-source datasets. Further, we have made our models, curated datasets, and comprehensive step-by-step code guidebooks publicly available. Please refer to https://github.com/RLHFlow/RLHF-Reward-Modeling and https://github.com/RLHFlow/Online-RLHF for more detailed information.
How to Evaluate Reward Models for RLHF
We introduce a new benchmark for reward models that quantifies their ability to produce strong language models through RLHF (Reinforcement Learning from Human Feedback). The gold-standard approach is to run a full RLHF training pipeline and directly probe downstream LLM performance. However, this process is prohibitively expensive. To address this, we build a predictive model of downstream LLM performance by evaluating the reward model on proxy tasks. These proxy tasks consist of a large-scale human preference and a verifiable correctness preference dataset, in which we measure 12 metrics across 12 domains. To investigate which reward model metrics are most correlated to gold-standard RLHF outcomes, we launch an end-to-end RLHF experiment on a large-scale crowdsourced human preference platform to view real reward model downstream performance as ground truth. Ultimately, we compile our data and findings into Preference Proxy Evaluations (PPE), the first reward model benchmark explicitly linked to post-RLHF real-world human preference performance, which we open-source for public use and further development. Our code and evaluations can be found at https://github.com/lmarena/PPE .
Med-RewardBench: Benchmarking Reward Models and Judges for Medical Multimodal Large Language Models
Multimodal large language models (MLLMs) hold significant potential in medical applications, including disease diagnosis and clinical decision-making. However, these tasks require highly accurate, context-sensitive, and professionally aligned responses, making reliable reward models and judges critical. Despite their importance, medical reward models (MRMs) and judges remain underexplored, with no dedicated benchmarks addressing clinical requirements. Existing benchmarks focus on general MLLM capabilities or evaluate models as solvers, neglecting essential evaluation dimensions like diagnostic accuracy and clinical relevance. To address this, we introduce Med-RewardBench, the first benchmark specifically designed to evaluate MRMs and judges in medical scenarios. Med-RewardBench features a multimodal dataset spanning 13 organ systems and 8 clinical departments, with 1,026 expert-annotated cases. A rigorous three-step process ensures high-quality evaluation data across six clinically critical dimensions. We evaluate 32 state-of-the-art MLLMs, including open-source, proprietary, and medical-specific models, revealing substantial challenges in aligning outputs with expert judgment. Additionally, we develop baseline models that demonstrate substantial performance improvements through fine-tuning.
MeNTi: Bridging Medical Calculator and LLM Agent with Nested Tool Calling
Integrating tools into Large Language Models (LLMs) has facilitated the widespread application. Despite this, in specialized downstream task contexts, reliance solely on tools is insufficient to fully address the complexities of the real world. This particularly restricts the effective deployment of LLMs in fields such as medicine. In this paper, we focus on the downstream tasks of medical calculators, which use standardized tests to assess an individual's health status. We introduce MeNTi, a universal agent architecture for LLMs. MeNTi integrates a specialized medical toolkit and employs meta-tool and nested calling mechanisms to enhance LLM tool utilization. Specifically, it achieves flexible tool selection and nested tool calling to address practical issues faced in intricate medical scenarios, including calculator selection, slot filling, and unit conversion. To assess the capabilities of LLMs for quantitative assessment throughout the clinical process of calculator scenarios, we introduce CalcQA. This benchmark requires LLMs to use medical calculators to perform calculations and assess patient health status. CalcQA is constructed by professional physicians and includes 100 case-calculator pairs, complemented by a toolkit of 281 medical tools. The experimental results demonstrate significant performance improvements with our framework. This research paves new directions for applying LLMs in demanding scenarios of medicine.
Secrets of RLHF in Large Language Models Part I: PPO
Large language models (LLMs) have formulated a blueprint for the advancement of artificial general intelligence. Its primary objective is to function as a human-centric (helpful, honest, and harmless) assistant. Alignment with humans assumes paramount significance, and reinforcement learning with human feedback (RLHF) emerges as the pivotal technological paradigm underpinning this pursuit. Current technical routes usually include reward models to measure human preferences, Proximal Policy Optimization (PPO) to optimize policy model outputs, and process supervision to improve step-by-step reasoning capabilities. However, due to the challenges of reward design, environment interaction, and agent training, coupled with huge trial and error cost of large language models, there is a significant barrier for AI researchers to motivate the development of technical alignment and safe landing of LLMs. The stable training of RLHF has still been a puzzle. In the first report, we dissect the framework of RLHF, re-evaluate the inner workings of PPO, and explore how the parts comprising PPO algorithms impact policy agent training. We identify policy constraints being the key factor for the effective implementation of the PPO algorithm. Therefore, we explore the PPO-max, an advanced version of PPO algorithm, to efficiently improve the training stability of the policy model. Based on our main results, we perform a comprehensive analysis of RLHF abilities compared with SFT models and ChatGPT. The absence of open-source implementations has posed significant challenges to the investigation of LLMs alignment. Therefore, we are eager to release technical reports, reward models and PPO codes
Uni-Perceiver-MoE: Learning Sparse Generalist Models with Conditional MoEs
To build an artificial neural network like the biological intelligence system, recent works have unified numerous tasks into a generalist model, which can process various tasks with shared parameters and do not have any task-specific modules. While generalist models achieve promising results on various benchmarks, they have performance degradation on some tasks compared with task-specialized models. In this work, we find that interference among different tasks and modalities is the main factor to this phenomenon. To mitigate such interference, we introduce the Conditional Mixture-of-Experts (Conditional MoEs) to generalist models. Routing strategies under different levels of conditions are proposed to take both the training/inference cost and generalization ability into account. By incorporating the proposed Conditional MoEs, the recently proposed generalist model Uni-Perceiver can effectively mitigate the interference across tasks and modalities, and achieves state-of-the-art results on a series of downstream tasks via prompt tuning on 1% of downstream data. Moreover, the introduction of Conditional MoEs still holds the generalization ability of generalist models to conduct zero-shot inference on new tasks, e.g., video-text retrieval and video caption. Code and pre-trained generalist models shall be released.
Eliciting and Understanding Cross-Task Skills with Task-Level Mixture-of-Experts
Recent works suggest that transformer models are capable of multi-tasking on diverse NLP tasks and adapting to new tasks efficiently. However, the potential of these multi-task models may be limited as they use the same set of parameters for all tasks. In contrast, humans tackle tasks in a more flexible way, by making proper presumptions on what skills and knowledge are relevant and executing only the necessary computations. Inspired by this, we propose to use task-level mixture-of-expert models, which has a collection of transformer layers (i.e., experts) and a router component that chooses from these experts dynamically and flexibly. We find that these models help improve the average performance gain (ARG) metric by 2.6% when adapting to unseen tasks in the few-shot setting and by 5.6% in the zero-shot generalization setting. Further, we show that the learned routing decisions partly rediscover human categorization of NLP tasks -- certain experts are strongly associated with extractive tasks, some with classification tasks, and some with tasks requiring world knowledge.
UnifiedMLLM: Enabling Unified Representation for Multi-modal Multi-tasks With Large Language Model
Significant advancements has recently been achieved in the field of multi-modal large language models (MLLMs), demonstrating their remarkable capabilities in understanding and reasoning across diverse tasks. However, these models are often trained for specific tasks and rely on task-specific input-output formats, limiting their applicability to a broader range of tasks. This raises a fundamental question: Can we develop a unified approach to represent and handle different multi-modal tasks to maximize the generalizability of MLLMs? In this paper, we propose UnifiedMLLM, a comprehensive model designed to represent various tasks using a unified representation. Our model exhibits strong capabilities in comprehending the implicit intent of user instructions and preforming reasoning. In addition to generating textual responses, our model also outputs task tokens and grounding tokens, serving as indicators of task types and task granularity. These outputs are subsequently routed through the task router and directed to specific expert models for task completion. To train our model, we construct a task-specific dataset and an 100k multi-task dataset encompassing complex scenarios. Employing a three-stage training strategy, we equip our model with robust reasoning and task processing capabilities while preserving its generalization capacity and knowledge reservoir. Extensive experiments showcase the impressive performance of our unified representation approach across various tasks, surpassing existing methodologies. Furthermore, our approach exhibits exceptional scalability and generality. Our code, model, and dataset will be available at https://github.com/lzw-lzw/UnifiedMLLM.
RLTHF: Targeted Human Feedback for LLM Alignment
Fine-tuning large language models (LLMs) to align with user preferences is challenging due to the high cost of quality human annotations in Reinforcement Learning from Human Feedback (RLHF) and the generalizability limitations of AI Feedback. To address these challenges, we propose RLTHF, a human-AI hybrid framework that combines LLM-based initial alignment with selective human annotations to achieve full-human annotation alignment with minimal effort. RLTHF identifies hard-to-annotate samples mislabeled by LLMs using a reward model's reward distribution and iteratively enhances alignment by integrating strategic human corrections while leveraging LLM's correctly labeled samples. Evaluations on HH-RLHF and TL;DR datasets show that RLTHF reaches full-human annotation-level alignment with only 6-7% of the human annotation effort. Furthermore, models trained on RLTHF's curated datasets for downstream tasks outperform those trained on fully human-annotated datasets, underscoring the effectiveness of RLTHF's strategic data curation.
ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models
Alignment is crucial for training large language models. The predominant strategy is Reinforcement Learning from Human Feedback (RLHF), with Proximal Policy Optimization (PPO) as the de-facto algorithm. Yet, PPO is known to struggle with computational inefficiency, a challenge that this paper aims to address. We identify three important properties of RLHF tasks: fast simulation, deterministic transitions, and trajectory-level rewards, which are not leveraged in PPO. Based on these properties, we develop ReMax, a new algorithm tailored for RLHF. The design of ReMax builds on the celebrated algorithm REINFORCE but is enhanced with a new variance-reduction technique. ReMax offers threefold advantages over PPO: first, it is simple to implement with just 6 lines of code. It further eliminates more than 4 hyper-parameters in PPO, which are laborious to tune. Second, ReMax reduces memory usage by about 50%. To illustrate, PPO runs out of memory when fine-tuning a Llama2-7B model on A100-80GB GPUs, whereas ReMax can support the training. Even though memory-efficient techniques (e.g., ZeRO and offload) are employed for PPO to afford training, ReMax can utilize a larger batch size to increase throughput. Third, in terms of wall-clock time, PPO is about twice as slow as ReMax per iteration. Importantly, these improvements do not sacrifice task performance. We hypothesize that these advantages can be maintained in larger-scale models.
Improving Reinforcement Learning from Human Feedback Using Contrastive Rewards
Reinforcement learning from human feedback (RLHF) is the mainstream paradigm used to align large language models (LLMs) with human preferences. Yet existing RLHF heavily relies on accurate and informative reward models, which are vulnerable and sensitive to noise from various sources, e.g. human labeling errors, making the pipeline fragile. In this work, we improve the effectiveness of the reward model by introducing a penalty term on the reward, named as contrastive rewards. %Contrastive rewards Our approach involves two steps: (1) an offline sampling step to obtain responses to prompts that serve as baseline calculation and (2) a contrastive reward calculated using the baseline responses and used in the Proximal Policy Optimization (PPO) step. We show that contrastive rewards enable the LLM to penalize reward uncertainty, improve robustness, encourage improvement over baselines, calibrate according to task difficulty, and reduce variance in PPO. We show empirically contrastive rewards can improve RLHF substantially, evaluated by both GPTs and humans, and our method consistently outperforms strong baselines.
Exploring Data Scaling Trends and Effects in Reinforcement Learning from Human Feedback
Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning large language models with human preferences. While recent research has focused on algorithmic improvements, the importance of prompt-data construction has been overlooked. This paper addresses this gap by exploring data-driven bottlenecks in RLHF performance scaling, particularly reward hacking and decreasing response diversity. We introduce a hybrid reward system combining reasoning task verifiers (RTV) and a generative reward model (GenRM) to mitigate reward hacking. We also propose a novel prompt-selection method, Pre-PPO, to maintain response diversity and enhance learning effectiveness. Additionally, we find that prioritizing mathematical and coding tasks early in RLHF training significantly improves performance. Experiments across two model sizes validate our methods' effectiveness and scalability. Results show that RTV is most resistant to reward hacking, followed by GenRM with ground truth, and then GenRM with SFT Best-of-N responses. Our strategies enable rapid capture of subtle task-specific distinctions, leading to substantial improvements in overall RLHF performance. This work highlights the importance of careful data construction and provides practical methods to overcome performance barriers in RLHF.
MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications
The rapid development of Large Language Models (LLMs) for healthcare applications has spurred calls for holistic evaluation beyond frequently-cited benchmarks like USMLE, to better reflect real-world performance. While real-world assessments are valuable indicators of utility, they often lag behind the pace of LLM evolution, likely rendering findings obsolete upon deployment. This temporal disconnect necessitates a comprehensive upfront evaluation that can guide model selection for specific clinical applications. We introduce MEDIC, a framework assessing LLMs across five critical dimensions of clinical competence: medical reasoning, ethics and bias, data and language understanding, in-context learning, and clinical safety. MEDIC features a novel cross-examination framework quantifying LLM performance across areas like coverage and hallucination detection, without requiring reference outputs. We apply MEDIC to evaluate LLMs on medical question-answering, safety, summarization, note generation, and other tasks. Our results show performance disparities across model sizes, baseline vs medically finetuned models, and have implications on model selection for applications requiring specific model strengths, such as low hallucination or lower cost of inference. MEDIC's multifaceted evaluation reveals these performance trade-offs, bridging the gap between theoretical capabilities and practical implementation in healthcare settings, ensuring that the most promising models are identified and adapted for diverse healthcare applications.
Automated Rewards via LLM-Generated Progress Functions
Large Language Models (LLMs) have the potential to automate reward engineering by leveraging their broad domain knowledge across various tasks. However, they often need many iterations of trial-and-error to generate effective reward functions. This process is costly because evaluating every sampled reward function requires completing the full policy optimization process for each function. In this paper, we introduce an LLM-driven reward generation framework that is able to produce state-of-the-art policies on the challenging Bi-DexHands benchmark with 20x fewer reward function samples than the prior state-of-the-art work. Our key insight is that we reduce the problem of generating task-specific rewards to the problem of coarsely estimating task progress. Our two-step solution leverages the task domain knowledge and the code synthesis abilities of LLMs to author progress functions that estimate task progress from a given state. Then, we use this notion of progress to discretize states, and generate count-based intrinsic rewards using the low-dimensional state space. We show that the combination of LLM-generated progress functions and count-based intrinsic rewards is essential for our performance gains, while alternatives such as generic hash-based counts or using progress directly as a reward function fall short.
ALaRM: Align Language Models via Hierarchical Rewards Modeling
We introduce ALaRM, the first framework modeling hierarchical rewards in reinforcement learning from human feedback (RLHF), which is designed to enhance the alignment of large language models (LLMs) with human preferences. The framework addresses the limitations of current alignment approaches, which often struggle with the inconsistency and sparsity of human supervision signals, by integrating holistic rewards with aspect-specific rewards. This integration enables more precise and consistent guidance of language models towards desired outcomes, particularly in complex and open text generation tasks. By employing a methodology that filters and combines multiple rewards based on their consistency, the framework provides a reliable mechanism for improving model alignment. We validate our approach through applications in long-form question answering and machine translation tasks, employing gpt-3.5-turbo for pairwise comparisons, and demonstrate improvements over existing baselines. Our work underscores the effectiveness of hierarchical rewards modeling in refining LLM training processes for better human preference alignment. We release our code at https://ALaRM-fdu.github.io.
The Perfect Blend: Redefining RLHF with Mixture of Judges
Reinforcement learning from human feedback (RLHF) has become the leading approach for fine-tuning large language models (LLM). However, RLHF has limitations in multi-task learning (MTL) due to challenges of reward hacking and extreme multi-objective optimization (i.e., trade-off of multiple and/or sometimes conflicting objectives). Applying RLHF for MTL currently requires careful tuning of the weights for reward model and data combinations. This is often done via human intuition and does not generalize. In this work, we introduce a novel post-training paradigm which we called Constrained Generative Policy Optimization (CGPO). The core of CGPO is Mixture of Judges (MoJ) with cost-efficient constrained policy optimization with stratification, which can identify the perfect blend in RLHF in a principled manner. It shows strong empirical results with theoretical guarantees, does not require extensive hyper-parameter tuning, and is plug-and-play in common post-training pipelines. Together, this can detect and mitigate reward hacking behaviors while reaching a pareto-optimal point across an extremely large number of objectives. Our empirical evaluations demonstrate that CGPO significantly outperforms standard RLHF algorithms like PPO and DPO across various tasks including general chat, STEM questions, instruction following, and coding. Specifically, CGPO shows improvements of 7.4% in AlpacaEval-2 (general chat), 12.5% in Arena-Hard (STEM & reasoning), and consistent gains in other domains like math and coding. Notably, PPO, while commonly used, is prone to severe reward hacking in popular coding benchmarks, which CGPO successfully addresses. This breakthrough in RLHF not only tackles reward hacking and extreme multi-objective optimization challenges but also advances the state-of-the-art in aligning general-purpose LLMs for diverse applications.
Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare
The integration of Large Language Models (LLMs) into healthcare promises to transform medical diagnostics, research, and patient care. Yet, the progression of medical LLMs faces obstacles such as complex training requirements, rigorous evaluation demands, and the dominance of proprietary models that restrict academic exploration. Transparent, comprehensive access to LLM resources is essential for advancing the field, fostering reproducibility, and encouraging innovation in healthcare AI. We present Hippocrates, an open-source LLM framework specifically developed for the medical domain. In stark contrast to previous efforts, it offers unrestricted access to its training datasets, codebase, checkpoints, and evaluation protocols. This open approach is designed to stimulate collaborative research, allowing the community to build upon, refine, and rigorously evaluate medical LLMs within a transparent ecosystem. Also, we introduce Hippo, a family of 7B models tailored for the medical domain, fine-tuned from Mistral and LLaMA2 through continual pre-training, instruction tuning, and reinforcement learning from human and AI feedback. Our models outperform existing open medical LLMs models by a large-margin, even surpassing models with 70B parameters. Through Hippocrates, we aspire to unlock the full potential of LLMs not just to advance medical knowledge and patient care but also to democratize the benefits of AI research in healthcare, making them available across the globe.
Smart Help: Strategic Opponent Modeling for Proactive and Adaptive Robot Assistance in Households
Despite the significant demand for assistive technology among vulnerable groups (e.g., the elderly, children, and the disabled) in daily tasks, research into advanced AI-driven assistive solutions that genuinely accommodate their diverse needs remains sparse. Traditional human-machine interaction tasks often require machines to simply help without nuanced consideration of human abilities and feelings, such as their opportunity for practice and learning, sense of self-improvement, and self-esteem. Addressing this gap, we define a pivotal and novel challenge Smart Help, which aims to provide proactive yet adaptive support to human agents with diverse disabilities and dynamic goals in various tasks and environments. To establish this challenge, we leverage AI2-THOR to build a new interactive 3D realistic household environment for the Smart Help task. We introduce an innovative opponent modeling module that provides a nuanced understanding of the main agent's capabilities and goals, in order to optimize the assisting agent's helping policy. Rigorous experiments validate the efficacy of our model components and show the superiority of our holistic approach against established baselines. Our findings illustrate the potential of AI-imbued assistive robots in improving the well-being of vulnerable groups.
AgentTTS: Large Language Model Agent for Test-time Compute-optimal Scaling Strategy in Complex Tasks
Test-time scaling (TTS) enhances the performance of large language models (LLMs) by allocating additional compute resources during inference. However, existing research primarily investigates TTS in single-stage tasks; while many real-world problems are multi-stage complex tasks, composed of a sequence of heterogeneous subtasks with each subtask requires LLM of specific capability. Therefore, we study a novel problem: the test-time compute-optimal scaling in multi-stage complex tasks, aiming to select suitable models and allocate budgets per subtask to maximize overall performance. TTS in multi-stage tasks introduces two fundamental challenges: (i) The combinatorial search space of model and budget allocations, combined with the high cost of inference, makes brute-force search impractical. (ii) The optimal model and budget allocations across subtasks are interdependent, increasing the complexity of the compute-optimal search. To address this gap, we conduct extensive pilot experiments on four tasks across six datasets, deriving three empirical insights characterizing the behavior of LLMs in multi-stage complex tasks. Informed by these insights, we propose AgentTTS, an LLM-agent-based framework that autonomously searches for compute-optimal allocations through iterative feedback-driven interactions with the execution environment. Experimental results demonstrate that AgentTTS significantly outperforms traditional and other LLM-based baselines in search efficiency, and shows improved robustness to varying training set sizes and enhanced interpretability.
MM-RLHF: The Next Step Forward in Multimodal LLM Alignment
Despite notable advancements in Multimodal Large Language Models (MLLMs), most state-of-the-art models have not undergone thorough alignment with human preferences. This gap exists because current alignment research has primarily achieved progress in specific areas (e.g., hallucination reduction), while the broader question of whether aligning models with human preferences can systematically enhance MLLM capability remains largely unexplored. To this end, we introduce MM-RLHF, a dataset containing 120k fine-grained, human-annotated preference comparison pairs. This dataset represents a substantial advancement over existing resources, offering superior size, diversity, annotation granularity, and quality. Leveraging this dataset, we propose several key innovations to improve both the quality of reward models and the efficiency of alignment algorithms. Notably, we introduce a Critique-Based Reward Model, which generates critiques of model outputs before assigning scores, offering enhanced interpretability and more informative feedback compared to traditional scalar reward mechanisms. Additionally, we propose Dynamic Reward Scaling, a method that adjusts the loss weight of each sample according to the reward signal, thereby optimizing the use of high-quality comparison pairs. Our approach is rigorously evaluated across 10 distinct dimensions and 27 benchmarks, with results demonstrating significant and consistent improvements in model performance. Specifically, fine-tuning LLaVA-ov-7B with MM-RLHF and our alignment algorithm leads to a 19.5% increase in conversational abilities and a 60% improvement in safety. We have open-sourced the preference dataset, reward model, training and evaluation code, as well as reward modeling and safety benchmarks. For more details, please visit our project page: https://mm-rlhf.github.io.
Reinforcement Learning from Human Feedback with High-Confidence Safety Constraints
Existing approaches to language model alignment often treat safety as a tradeoff against helpfulness, which can lead to unacceptable responses in sensitive domains. To ensure reliable performance in such settings, we propose High-Confidence Safe Reinforcement Learning from Human Feedback (HC-RLHF), a method that provides high-confidence safety guarantees while maximizing helpfulness. Similar to previous methods, HC-RLHF explicitly decouples human preferences into helpfulness and harmlessness (safety), which are learned by training a reward model and a cost model, respectively. It then employs a two-step process to find safe solutions. In the first step, it optimizes the reward function under an intentionally pessimistic version of the cost constraint. In the second step, the trained model undergoes a safety test to verify whether its performance stays within an upper-confidence bound of the actual cost constraint. We provide a theoretical analysis of HC-RLHF, including proof that it will not return an unsafe solution with a probability greater than a user-specified threshold. For our empirical analysis, we apply HC-RLHF to align three different language models (Qwen2-1.5B, Qwen2.5-3B, and LLaMa3.2-3B) with human preferences. Our results demonstrate that HC-RLHF produces safe models with high probability and can improve harmlessness and helpfulness compared to previous methods.
O1 Replication Journey -- Part 3: Inference-time Scaling for Medical Reasoning
Building upon our previous investigations of O1 replication (Part 1: Journey Learning [Qin et al., 2024] and Part 2: Distillation [Huang et al., 2024]), this work explores the potential of inference-time scaling in large language models (LLMs) for medical reasoning tasks, ranging from diagnostic decision-making to treatment planning. Through extensive experiments on medical benchmarks of varying complexity (MedQA, Medbullets, and JAMA Clinical Challenges), our investigation reveals several key insights: (1) Increasing inference time does lead to improved performance. With a modest training set of 500 samples, our model yields substantial performance improvements of 6%-11%. (2) Task complexity directly correlates with the required length of reasoning chains, confirming the necessity of extended thought processes for challenging problems. (3) The differential diagnoses generated by our model adhere to the principles of the hypothetico-deductive method, producing a list of potential conditions that may explain a patient's symptoms and systematically narrowing these possibilities by evaluating the evidence. These findings demonstrate the promising synergy between inference-time scaling and journey learning in advancing LLMs' real-world clinical reasoning capabilities.
Building Trust in Clinical LLMs: Bias Analysis and Dataset Transparency
Large language models offer transformative potential for healthcare, yet their responsible and equitable development depends critically on a deeper understanding of how training data characteristics influence model behavior, including the potential for bias. Current practices in dataset curation and bias assessment often lack the necessary transparency, creating an urgent need for comprehensive evaluation frameworks to foster trust and guide improvements. In this study, we present an in-depth analysis of potential downstream biases in clinical language models, with a focus on differential opioid prescription tendencies across diverse demographic groups, such as ethnicity, gender, and age. As part of this investigation, we introduce HC4: Healthcare Comprehensive Commons Corpus, a novel and extensively curated pretraining dataset exceeding 89 billion tokens. Our evaluation leverages both established general benchmarks and a novel, healthcare-specific methodology, offering crucial insights to support fairness and safety in clinical AI applications.
Aloe: A Family of Fine-tuned Open Healthcare LLMs
As the capabilities of Large Language Models (LLMs) in healthcare and medicine continue to advance, there is a growing need for competitive open-source models that can safeguard public interest. With the increasing availability of highly competitive open base models, the impact of continued pre-training is increasingly uncertain. In this work, we explore the role of instruct tuning, model merging, alignment, red teaming and advanced inference schemes, as means to improve current open models. To that end, we introduce the Aloe family, a set of open medical LLMs highly competitive within its scale range. Aloe models are trained on the current best base models (Mistral, LLaMA 3), using a new custom dataset which combines public data sources improved with synthetic Chain of Thought (CoT). Aloe models undergo an alignment phase, becoming one of the first few policy-aligned open healthcare LLM using Direct Preference Optimization, setting a new standard for ethical performance in healthcare LLMs. Model evaluation expands to include various bias and toxicity datasets, a dedicated red teaming effort, and a much-needed risk assessment for healthcare LLMs. Finally, to explore the limits of current LLMs in inference, we study several advanced prompt engineering strategies to boost performance across benchmarks, yielding state-of-the-art results for open healthcare 7B LLMs, unprecedented at this scale.
Understanding the Effects of RLHF on LLM Generalisation and Diversity
Large language models (LLMs) fine-tuned with reinforcement learning from human feedback (RLHF) have been used in some of the most widely deployed AI models to date, such as OpenAI's ChatGPT, Anthropic's Claude, or Meta's LLaMA-2. While there has been significant work developing these methods, our understanding of the benefits and downsides of each stage in RLHF is still limited. To fill this gap, we present an extensive analysis of how each stage of the process (i.e. supervised fine-tuning (SFT), reward modelling, and RLHF) affects two key properties: out-of-distribution (OOD) generalisation and output diversity. OOD generalisation is crucial given the wide range of real-world scenarios in which these models are being used, while output diversity refers to the model's ability to generate varied outputs and is important for a variety of use cases. We perform our analysis across two base models on both summarisation and instruction following tasks, the latter being highly relevant for current LLM use cases. We find that RLHF generalises better than SFT to new inputs, particularly as the distribution shift between train and test becomes larger. However, RLHF significantly reduces output diversity compared to SFT across a variety of measures, implying a tradeoff in current LLM fine-tuning methods between generalisation and diversity. Our results provide guidance on which fine-tuning method should be used depending on the application, and show that more research is needed to improve the trade-off between generalisation and diversity.
Beyond Correctness: Evaluating Subjective Writing Preferences Across Cultures
Current preference learning methods achieve high accuracy on standard benchmarks but exhibit significant performance degradation when objective quality signals are removed. We introduce WritingPreferenceBench, a dataset of 1,800 human-annotated preference pairs (1,200 English, 600 Chinese) across 8 creative writing genres, where responses are matched for objective correctness, factual accuracy, and length. On this benchmark, sequence-based reward models--the standard architecture for RLHF--achieve only 52.7% mean accuracy, while zero-shot language model judges perform at 53.9%. In contrast, generative reward models that produce explicit reasoning chains achieve 81.8% accuracy. We observe high within-model variance across genres: individual models range from 18.2% to 81.8% accuracy across different writing categories, with standard deviations averaging 10.1%. This variance persists regardless of model scale, with 27B parameter models showing no consistent improvement over 8B variants. Our results suggest that current RLHF methods primarily learn to detect objective errors rather than capture subjective quality preferences (e.g., creativity, stylistic flair, and emotional resonance), and that successful preference modeling may require intermediate reasoning representations rather than direct classification.
OncoReason: Structuring Clinical Reasoning in LLMs for Robust and Interpretable Survival Prediction
Predicting cancer treatment outcomes requires models that are both accurate and interpretable, particularly in the presence of heterogeneous clinical data. While large language models (LLMs) have shown strong performance in biomedical NLP, they often lack structured reasoning capabilities critical for high-stakes decision support. We present a unified, multi-task learning framework that aligns autoregressive LLMs with clinical reasoning for outcome prediction on the MSK-CHORD dataset. Our models are trained to jointly perform binary survival classification, continuous survival time regression, and natural language rationale generation. We evaluate three alignment strategies: (1) standard supervised fine-tuning (SFT), (2) SFT with Chain-of-Thought (CoT) prompting to elicit step-by-step reasoning, and (3) Group Relative Policy Optimization (GRPO), a reinforcement learning method that aligns model outputs to expert-derived reasoning trajectories. Experiments with LLaMa3-8B and Med42-8B backbones demonstrate that CoT prompting improves F1 by +6.0 and reduces MAE by 12%, while GRPO achieves state-of-the-art interpretability and predictive performance across BLEU, ROUGE, and BERTScore. We further show that existing biomedical LLMs often fail to produce valid reasoning traces due to architectural constraints. Our findings underscore the importance of reasoning-aware alignment in multi-task clinical modeling and set a new benchmark for interpretable, trustworthy LLMs in precision oncology.
SemEval-2024 Task 2: Safe Biomedical Natural Language Inference for Clinical Trials
Large Language Models (LLMs) are at the forefront of NLP achievements but fall short in dealing with shortcut learning, factual inconsistency, and vulnerability to adversarial inputs.These shortcomings are especially critical in medical contexts, where they can misrepresent actual model capabilities. Addressing this, we present SemEval-2024 Task 2: Safe Biomedical Natural Language Inference for ClinicalTrials. Our contributions include the refined NLI4CT-P dataset (i.e., Natural Language Inference for Clinical Trials - Perturbed), designed to challenge LLMs with interventional and causal reasoning tasks, along with a comprehensive evaluation of methods and results for participant submissions. A total of 106 participants registered for the task contributing to over 1200 individual submissions and 25 system overview papers. This initiative aims to advance the robustness and applicability of NLI models in healthcare, ensuring safer and more dependable AI assistance in clinical decision-making. We anticipate that the dataset, models, and outcomes of this task can support future research in the field of biomedical NLI. The dataset, competition leaderboard, and website are publicly available.
Procedural Knowledge Improves Agentic LLM Workflows
Large language models (LLMs) often struggle when performing agentic tasks without substantial tool support, prom-pt engineering, or fine tuning. Despite research showing that domain-dependent, procedural knowledge can dramatically increase planning efficiency, little work evaluates its potential for improving LLM performance on agentic tasks that may require implicit planning. We formalize, implement, and evaluate an agentic LLM workflow that leverages procedural knowledge in the form of a hierarchical task network (HTN). Empirical results of our implementation show that hand-coded HTNs can dramatically improve LLM performance on agentic tasks, and using HTNs can boost a 20b or 70b parameter LLM to outperform a much larger 120b parameter LLM baseline. Furthermore, LLM-created HTNs improve overall performance, though less so. The results suggest that leveraging expertise--from humans, documents, or LLMs--to curate procedural knowledge will become another important tool for improving LLM workflows.
SMMILE: An Expert-Driven Benchmark for Multimodal Medical In-Context Learning
Multimodal in-context learning (ICL) remains underexplored despite significant potential for domains such as medicine. Clinicians routinely encounter diverse, specialized tasks requiring adaptation from limited examples, such as drawing insights from a few relevant prior cases or considering a constrained set of differential diagnoses. While multimodal large language models (MLLMs) have shown advances in medical visual question answering (VQA), their ability to learn multimodal tasks from context is largely unknown. We introduce SMMILE, the first expert-driven multimodal ICL benchmark for medical tasks. Eleven medical experts curated problems, each including a multimodal query and multimodal in-context examples as task demonstrations. SMMILE encompasses 111 problems (517 question-image-answer triplets) covering 6 medical specialties and 13 imaging modalities. We further introduce SMMILE++, an augmented variant with 1038 permuted problems. A comprehensive evaluation of 15 MLLMs demonstrates that most models exhibit moderate to poor multimodal ICL ability in medical tasks. In open-ended evaluations, ICL contributes only 8% average improvement over zero-shot on SMMILE and 9.4% on SMMILE++. We observe a susceptibility for irrelevant in-context examples: even a single noisy or irrelevant example can degrade performance by up to 9.5%. Moreover, example ordering exhibits a recency bias, i.e., placing the most relevant example last can lead to substantial performance improvements by up to 71%. Our findings highlight critical limitations and biases in current MLLMs when learning multimodal medical tasks from context.
Fine-Grained Human Feedback Gives Better Rewards for Language Model Training
Language models (LMs) often exhibit undesirable text generation behaviors, including generating false, toxic, or irrelevant outputs. Reinforcement learning from human feedback (RLHF) - where human preference judgments on LM outputs are transformed into a learning signal - has recently shown promise in addressing these issues. However, such holistic feedback conveys limited information on long text outputs; it does not indicate which aspects of the outputs influenced user preference; e.g., which parts contain what type(s) of errors. In this paper, we use fine-grained human feedback (e.g., which sentence is false, which sub-sentence is irrelevant) as an explicit training signal. We introduce Fine-Grained RLHF, a framework that enables training and learning from reward functions that are fine-grained in two respects: (1) density, providing a reward after every segment (e.g., a sentence) is generated; and (2) incorporating multiple reward models associated with different feedback types (e.g., factual incorrectness, irrelevance, and information incompleteness). We conduct experiments on detoxification and long-form question answering to illustrate how learning with such reward functions leads to improved performance, supported by both automatic and human evaluation. Additionally, we show that LM behaviors can be customized using different combinations of fine-grained reward models. We release all data, collected human feedback, and codes at https://FineGrainedRLHF.github.io.
Preference Ranking Optimization for Human Alignment
Large language models (LLMs) often contain misleading content, emphasizing the need to align them with human values to ensure secur AI systems. Reinforcement learning from human feedback (RLHF) has been employed to achieve this alignment by combining a reward model, typically based on Bradley-Terry paired comparison, with an RL algorithm such as Proximal Policy Optimization (PPO) to optimize LLM responses. However, RLHF exhibits complexity, instability, and sensitivity to hyperparameters. In this paper, we propose Preference Ranking Optimization (PRO) as an alternative to PPO for directly aligning LLMs with the Bradley-Terry comparison. PRO extends the pairwise Bradley-Terry comparison to accommodate preference rankings of any length. By iteratively contrasting the likelihood of generating responses, PRO instructs the LLM to prioritize the best response while progressively ranking the remaining responses. In this manner, PRO effectively transforms human alignment into aligning the probability ranking of n responses generated by LLM with the preference ranking of humans towards these responses. Experiments have shown that PRO outperforms existing alignment algorithms, achieving comparable results to ChatGPT and human responses through automatic-based, reward-based, GPT-4, and human evaluations. Furthermore, we demonstrate that longer, more diverse, and higher-quality preference ranking sequences can consistently enhance the performance of human alignment.
Attention Heads of Large Language Models: A Survey
Since the advent of ChatGPT, Large Language Models (LLMs) have excelled in various tasks but remain largely as black-box systems. Consequently, their development relies heavily on data-driven approaches, limiting performance enhancement through changes in internal architecture and reasoning pathways. As a result, many researchers have begun exploring the potential internal mechanisms of LLMs, aiming to identify the essence of their reasoning bottlenecks, with most studies focusing on attention heads. Our survey aims to shed light on the internal reasoning processes of LLMs by concentrating on the interpretability and underlying mechanisms of attention heads. We first distill the human thought process into a four-stage framework: Knowledge Recalling, In-Context Identification, Latent Reasoning, and Expression Preparation. Using this framework, we systematically review existing research to identify and categorize the functions of specific attention heads. Furthermore, we summarize the experimental methodologies used to discover these special heads, dividing them into two categories: Modeling-Free methods and Modeling-Required methods. Also, we outline relevant evaluation methods and benchmarks. Finally, we discuss the limitations of current research and propose several potential future directions. Our reference list is open-sourced at https://github.com/IAAR-Shanghai/Awesome-Attention-Heads.
Assess and Prompt: A Generative RL Framework for Improving Engagement in Online Mental Health Communities
Online Mental Health Communities (OMHCs) provide crucial peer and expert support, yet many posts remain unanswered due to missing support attributes that signal the need for help. We present a novel framework that identifies these gaps and prompts users to enrich their posts, thereby improving engagement. To support this, we introduce REDDME, a new dataset of 4,760 posts from mental health subreddits annotated for the span and intensity of three key support attributes: event what happened?, effect what did the user experience?, and requirement what support they need?. Next, we devise a hierarchical taxonomy, CueTaxo, of support attributes for controlled question generation. Further, we propose MH-COPILOT, a reinforcement learning-based system that integrates (a) contextual attribute-span identification, (b) support attribute intensity classification, (c) controlled question generation via a hierarchical taxonomy, and (d) a verifier for reward modeling. Our model dynamically assesses posts for the presence/absence of support attributes, and generates targeted prompts to elicit missing information. Empirical results across four notable language models demonstrate significant improvements in attribute elicitation and user engagement. A human evaluation further validates the model's effectiveness in real-world OMHC settings.
Integrating Text and Time-Series into (Large) Language Models to Predict Medical Outcomes
Large language models (LLMs) excel at text generation, but their ability to handle clinical classification tasks involving structured data, such as time series, remains underexplored. In this work, we adapt instruction-tuned LLMs using DSPy-based prompt optimization to process clinical notes and structured EHR inputs jointly. Our results show that this approach achieves performance on par with specialized multimodal systems while requiring less complexity and offering greater adaptability across tasks.
Hierarchies of Reward Machines
Reward machines (RMs) are a recent formalism for representing the reward function of a reinforcement learning task through a finite-state machine whose edges encode subgoals of the task using high-level events. The structure of RMs enables the decomposition of a task into simpler and independently solvable subtasks that help tackle long-horizon and/or sparse reward tasks. We propose a formalism for further abstracting the subtask structure by endowing an RM with the ability to call other RMs, thus composing a hierarchy of RMs (HRM). We exploit HRMs by treating each call to an RM as an independently solvable subtask using the options framework, and describe a curriculum-based method to learn HRMs from traces observed by the agent. Our experiments reveal that exploiting a handcrafted HRM leads to faster convergence than with a flat HRM, and that learning an HRM is feasible in cases where its equivalent flat representation is not.
Prompt Optimization with Human Feedback
Large language models (LLMs) have demonstrated remarkable performances in various tasks. However, the performance of LLMs heavily depends on the input prompt, which has given rise to a number of recent works on prompt optimization. However, previous works often require the availability of a numeric score to assess the quality of every prompt. Unfortunately, when a human user interacts with a black-box LLM, attaining such a score is often infeasible and unreliable. Instead, it is usually significantly easier and more reliable to obtain preference feedback from a human user, i.e., showing the user the responses generated from a pair of prompts and asking the user which one is preferred. Therefore, in this paper, we study the problem of prompt optimization with human feedback (POHF), in which we aim to optimize the prompt for a black-box LLM using only human preference feedback. Drawing inspiration from dueling bandits, we design a theoretically principled strategy to select a pair of prompts to query for preference feedback in every iteration, and hence introduce our algorithm named automated POHF (APOHF). We apply our APOHF algorithm to various tasks, including optimizing user instructions, prompt optimization for text-to-image generative models, and response optimization with human feedback (i.e., further refining the response using a variant of our APOHF). The results demonstrate that our APOHF can efficiently find a good prompt using a small number of preference feedback instances. Our code can be found at https://github.com/xqlin98/APOHF.
HelpSteer2-Preference: Complementing Ratings with Preferences
Reward models are critical for aligning models to follow instructions, and are typically trained following one of two popular paradigms: Bradley-Terry style or Regression style. However, there is a lack of evidence that either approach is better than the other, when adequately matched for data. This is primarily because these approaches require data collected in different (but incompatible) formats, meaning that adequately matched data is not available in existing public datasets. To tackle this problem, we release preference annotations (designed for Bradley-Terry training) to complement existing ratings (designed for Regression style training) in the HelpSteer2 dataset. To improve data interpretability, preference annotations are accompanied with human-written justifications. Using this data, we conduct the first head-to-head comparison of Bradley-Terry and Regression models when adequately matched for data. Based on insights derived from such a comparison, we propose a novel approach to combine Bradley-Terry and Regression reward modeling. A Llama-3.1-70B-Instruct model tuned with this approach scores 94.1 on RewardBench, emerging top of more than 140 reward models as of 1 Oct 2024. We also demonstrate the effectiveness of this reward model at aligning models to follow instructions in RLHF. We open-source this dataset (CC-BY-4.0 license) at https://huggingface.co/datasets/nvidia/HelpSteer2 and openly release the trained Reward Model at https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward
Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset
A significant barrier to progress in data-driven approaches to building dialog systems is the lack of high quality, goal-oriented conversational data. To help satisfy this elementary requirement, we introduce the initial release of the Taskmaster-1 dataset which includes 13,215 task-based dialogs comprising six domains. Two procedures were used to create this collection, each with unique advantages. The first involves a two-person, spoken "Wizard of Oz" (WOz) approach in which trained agents and crowdsourced workers interact to complete the task while the second is "self-dialog" in which crowdsourced workers write the entire dialog themselves. We do not restrict the workers to detailed scripts or to a small knowledge base and hence we observe that our dataset contains more realistic and diverse conversations in comparison to existing datasets. We offer several baseline models including state of the art neural seq2seq architectures with benchmark performance as well as qualitative human evaluations. Dialogs are labeled with API calls and arguments, a simple and cost effective approach which avoids the requirement of complex annotation schema. The layer of abstraction between the dialog model and the service provider API allows for a given model to interact with multiple services that provide similar functionally. Finally, the dataset will evoke interest in written vs. spoken language, discourse patterns, error handling and other linguistic phenomena related to dialog system research, development and design.
Med-PRM: Medical Reasoning Models with Stepwise, Guideline-verified Process Rewards
Large language models have shown promise in clinical decision making, but current approaches struggle to localize and correct errors at specific steps of the reasoning process. This limitation is critical in medicine, where identifying and addressing reasoning errors is essential for accurate diagnosis and effective patient care. We introduce Med-PRM, a process reward modeling framework that leverages retrieval-augmented generation to verify each reasoning step against established medical knowledge bases. By verifying intermediate reasoning steps with evidence retrieved from clinical guidelines and literature, our model can precisely assess the reasoning quality in a fine-grained manner. Evaluations on five medical QA benchmarks and two open-ended diagnostic tasks demonstrate that Med-PRM achieves state-of-the-art performance, with improving the performance of base models by up to 13.50% using Med-PRM. Moreover, we demonstrate the generality of Med-PRM by integrating it in a plug-and-play fashion with strong policy models such as Meerkat, achieving over 80\% accuracy on MedQA for the first time using small-scale models of 8 billion parameters. Our code and data are available at: https://med-prm.github.io/
Baichuan-M2: Scaling Medical Capability with Large Verifier System
As large language models (LLMs) advance in conversational and reasoning capabilities, their practical application in healthcare has become a critical research focus. However, there is a notable gap between the performance of medical LLMs on static benchmarks such as USMLE and their utility in real-world clinical decision-making. This discrepancy arises because traditional exams fail to capture the dynamic, interactive nature of medical consultations. To address this challenge, we introduce a novel dynamic verification framework that moves beyond static answer verifier, establishing a large-scale, high-fidelity interactive reinforcement learning system. Our framework comprises two key components: a Patient Simulator that creates realistic clinical environments using de-identified medical records, and a Clinical Rubrics Generator that dynamically produces multi-dimensional evaluation metrics. Building on this foundation, we develop Baichuan-M2, a 32B-parameter medical augmented reasoning model trained through a multi-stage reinforcement learning strategy with an improved Group Relative Policy Optimization (GRPO) algorithm. Evaluated on HealthBench, Baichuan-M2 outperforms all other open-source models and most advanced closed-source counterparts, achieving a score above 32 on the challenging HealthBench Hard benchmark-previously exceeded only by GPT-5. Our work demonstrates that robust dynamic verifier system is essential for aligning LLM capabilities with practical clinical applications, establishing a new Pareto front in the performance-parameter trade-off for medical AI deployment.
ToolBeHonest: A Multi-level Hallucination Diagnostic Benchmark for Tool-Augmented Large Language Models
Tool-augmented large language models (LLMs) are rapidly being integrated into real-world applications. Due to the lack of benchmarks, the community still needs to fully understand the hallucination issues within these models. To address this challenge, we introduce a comprehensive diagnostic benchmark, ToolBH. Specifically, we assess the LLM's hallucinations through two perspectives: depth and breadth. In terms of depth, we propose a multi-level diagnostic process, including (1) solvability detection, (2) solution planning, and (3) missing-tool analysis. For breadth, we consider three scenarios based on the characteristics of the toolset: missing necessary tools, potential tools, and limited functionality tools. Furthermore, we developed seven tasks and collected 700 evaluation samples through multiple rounds of manual annotation. The results show the significant challenges presented by the ToolBH benchmark. The current advanced models Gemini-1.5-Pro and GPT-4o only achieve a total score of 45.3 and 37.0, respectively, on a scale of 100. In this benchmark, larger model parameters do not guarantee better performance; the training data and response strategies also play a crucial role in tool-enhanced LLM scenarios. Our diagnostic analysis indicates that the primary reason for model errors lies in assessing task solvability. Additionally, open-weight models suffer from performance drops with verbose replies, whereas proprietary models excel with longer reasoning.
Do We Still Need Clinical Language Models?
Although recent advances in scaling large language models (LLMs) have resulted in improvements on many NLP tasks, it remains unclear whether these models trained primarily with general web text are the right tool in highly specialized, safety critical domains such as clinical text. Recent results have suggested that LLMs encode a surprising amount of medical knowledge. This raises an important question regarding the utility of smaller domain-specific language models. With the success of general-domain LLMs, is there still a need for specialized clinical models? To investigate this question, we conduct an extensive empirical analysis of 12 language models, ranging from 220M to 175B parameters, measuring their performance on 3 different clinical tasks that test their ability to parse and reason over electronic health records. As part of our experiments, we train T5-Base and T5-Large models from scratch on clinical notes from MIMIC III and IV to directly investigate the efficiency of clinical tokens. We show that relatively small specialized clinical models substantially outperform all in-context learning approaches, even when finetuned on limited annotated data. Further, we find that pretraining on clinical tokens allows for smaller, more parameter-efficient models that either match or outperform much larger language models trained on general text. We release the code and the models used under the PhysioNet Credentialed Health Data license and data use agreement.
Dissecting Sample Hardness: A Fine-Grained Analysis of Hardness Characterization Methods for Data-Centric AI
Characterizing samples that are difficult to learn from is crucial to developing highly performant ML models. This has led to numerous Hardness Characterization Methods (HCMs) that aim to identify "hard" samples. However, there is a lack of consensus regarding the definition and evaluation of "hardness". Unfortunately, current HCMs have only been evaluated on specific types of hardness and often only qualitatively or with respect to downstream performance, overlooking the fundamental quantitative identification task. We address this gap by presenting a fine-grained taxonomy of hardness types. Additionally, we propose the Hardness Characterization Analysis Toolkit (H-CAT), which supports comprehensive and quantitative benchmarking of HCMs across the hardness taxonomy and can easily be extended to new HCMs, hardness types, and datasets. We use H-CAT to evaluate 13 different HCMs across 8 hardness types. This comprehensive evaluation encompassing over 14K setups uncovers strengths and weaknesses of different HCMs, leading to practical tips to guide HCM selection and future development. Our findings highlight the need for more comprehensive HCM evaluation, while we hope our hardness taxonomy and toolkit will advance the principled evaluation and uptake of data-centric AI methods.
Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks
The rapid development of AI systems has been greatly influenced by the emergence of foundation models. A common approach for targeted problems involves fine-tuning these pre-trained foundation models for specific target tasks, resulting in a rapid spread of models fine-tuned across a diverse array of tasks. This work focuses on the problem of merging multiple fine-tunings of the same foundation model derived from a spectrum of auxiliary tasks. We introduce a new simple method, Model Breadcrumbs, which consists of a sparsely defined set of weights that carve out a trajectory within the weight space of a pre-trained model, enhancing task performance when traversed. These breadcrumbs are constructed by subtracting the weights from a pre-trained model before and after fine-tuning, followed by a sparsification process that eliminates weight outliers and negligible perturbations. Our experiments demonstrate the effectiveness of Model Breadcrumbs to simultaneously improve performance across multiple tasks. This contribution aligns with the evolving paradigm of updatable machine learning, reminiscent of the collaborative principles underlying open-source software development, fostering a community-driven effort to reliably update machine learning models. Our method is shown to be more efficient and unlike previous proposals does not require hyperparameter tuning for each new task added. Through extensive experimentation involving various models, tasks, and modalities we establish that integrating Model Breadcrumbs offers a simple, efficient, and highly effective approach for constructing multi-task models and facilitating updates to foundation models.
A Long Way to Go: Investigating Length Correlations in RLHF
Great successes have been reported using Reinforcement Learning from Human Feedback (RLHF) to align large language models. Open-source preference datasets and reward models have enabled wider experimentation beyond generic chat settings, particularly to make systems more "helpful" for tasks like web question answering, summarization, and multi-turn dialogue. When optimizing for helpfulness, RLHF has been consistently observed to drive models to produce longer outputs. This paper demonstrates that optimizing for response length is a significant factor behind RLHF's reported improvements in these settings. First, we study the relationship between reward and length for reward models trained on three open-source preference datasets for helpfulness. Here, length correlates strongly with reward, and improvements in reward score are driven in large part by shifting the distribution over output lengths. We then explore interventions during both RL and reward model learning to see if we can achieve the same downstream improvements as RLHF without increasing length. While our interventions mitigate length increases, they aren't uniformly effective across settings. Furthermore, we find that even running RLHF with a reward based solely on length can reproduce most of the downstream improvements over the initial policy model, showing that reward models in these settings have a long way to go.
Efficient Online RFT with Plug-and-Play LLM Judges: Unlocking State-of-the-Art Performance
Reward-model training is the cost bottleneck in modern Reinforcement Learning Human Feedback (RLHF) pipelines, often requiring tens of billions of parameters and an offline preference-tuning phase. In the proposed method, a frozen, instruction-tuned 7B LLM is augmented with only a one line JSON rubric and a rank-16 LoRA adapter (affecting just 0.8% of the model's parameters), enabling it to serve as a complete substitute for the previously used heavyweight evaluation models. The plug-and-play judge achieves 96.2% accuracy on RewardBench, outperforming specialized reward networks ranging from 27B to 70B parameters. Additionally, it allows a 7B actor to outperform the top 70B DPO baseline, which scores 61.8%, by achieving 92% exact match accuracy on GSM-8K utilizing online PPO. Thorough ablations indicate that (i) six in context demonstrations deliver the majority of the zero-to-few-shot improvements (+2pp), and (ii) the LoRA effectively addresses the remaining disparity, particularly in the safety and adversarial Chat-Hard segments. The proposed model introduces HH-Rationales, a subset of 10,000 pairs from Anthropic HH-RLHF, to examine interpretability, accompanied by human generated justifications. GPT-4 scoring indicates that our LoRA judge attains approximately = 9/10 in similarity to human explanations, while zero-shot judges score around =5/10. These results indicate that the combination of prompt engineering and tiny LoRA produces a cost effective, transparent, and easily adjustable reward function, removing the offline phase while achieving new state-of-the-art outcomes for both static evaluation and online RLHF.
Secrets of RLHF in Large Language Models Part II: Reward Modeling
Reinforcement Learning from Human Feedback (RLHF) has become a crucial technology for aligning language models with human values and intentions, enabling models to produce more helpful and harmless responses. Reward models are trained as proxies for human preferences to drive reinforcement learning optimization. While reward models are often considered central to achieving high performance, they face the following challenges in practical applications: (1) Incorrect and ambiguous preference pairs in the dataset may hinder the reward model from accurately capturing human intent. (2) Reward models trained on data from a specific distribution often struggle to generalize to examples outside that distribution and are not suitable for iterative RLHF training. In this report, we attempt to address these two issues. (1) From a data perspective, we propose a method to measure the strength of preferences within the data, based on a voting mechanism of multiple reward models. Experimental results confirm that data with varying preference strengths have different impacts on reward model performance. We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset and fully leverage high-quality preference data. (2) From an algorithmic standpoint, we introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses, thereby improving model generalization. Furthermore, we employ meta-learning to enable the reward model to maintain the ability to differentiate subtle differences in out-of-distribution samples, and this approach can be utilized for iterative RLHF optimization.
UPRISE: Universal Prompt Retrieval for Improving Zero-Shot Evaluation
Large Language Models (LLMs) are popular for their impressive abilities, but the need for model-specific fine-tuning or task-specific prompt engineering can hinder their generalization. We propose UPRISE (Universal Prompt Retrieval for Improving zero-Shot Evaluation), which tunes a lightweight and versatile retriever that automatically retrieves prompts for a given zero-shot task input. Specifically, we demonstrate universality in a cross-task and cross-model scenario: the retriever is tuned on a diverse set of tasks, but tested on unseen task types; we use a small frozen LLM, GPT-Neo-2.7B, for tuning the retriever, but test the retriever on different LLMs of much larger scales, such as BLOOM-7.1B, OPT-66B and GPT3-175B. Additionally, we show that UPRISE mitigates the hallucination problem in our experiments with ChatGPT, suggesting its potential to improve even the strongest LLMs. Our model and code are available at https://github.com/microsoft/LMOps.
The ELEVATE-AI LLMs Framework: An Evaluation Framework for Use of Large Language Models in HEOR: an ISPOR Working Group Report
Introduction. Generative Artificial Intelligence, particularly large language models (LLMs), offers transformative potential for Health Economics and Outcomes Research (HEOR). However, evaluating the quality, transparency, and rigor of LLM-assisted research lacks standardized guidance. This article introduces the ELEVATE AI LLMs framework and checklist, designed to support researchers and reviewers in assessing LLM use in HEOR. Methods. The ELEVATE AI LLMs framework was developed through a targeted review of existing guidelines and evaluation frameworks. The framework comprises ten evaluation domains, including model characteristics, accuracy, comprehensiveness, and fairness. The accompanying checklist operationalizes the framework. To validate the framework, we applied it to two published studies, demonstrating its usability across different HEOR tasks. Results. The ELEVATE AI LLMs framework provides a comprehensive structure for evaluating LLM-assisted research, while the checklist facilitates practical application. Validation of the framework and checklist on studies of systematic literature reviews and health economic modeling highlighted their ability to identify strengths and gaps in reporting. Limitations. While the ELEVATE AI LLMs framework provides robust guidance, its broader generalizability and applicability to diverse HEOR tasks require further empirical testing. Additionally, several metrics adapted from computer science need further validation in HEOR contexts. Conclusion. The ELEVATE AI LLMs framework and checklist fill a critical gap in HEOR by offering structured guidance for evaluating LLM-assisted research. By promoting transparency, accuracy, and reproducibility, they aim to standardize and improve the integration of LLMs into HEOR, ensuring their outputs meet the field's rigorous standards.
TaskExpert: Dynamically Assembling Multi-Task Representations with Memorial Mixture-of-Experts
Learning discriminative task-specific features simultaneously for multiple distinct tasks is a fundamental problem in multi-task learning. Recent state-of-the-art models consider directly decoding task-specific features from one shared task-generic feature (e.g., feature from a backbone layer), and utilize carefully designed decoders to produce multi-task features. However, as the input feature is fully shared and each task decoder also shares decoding parameters for different input samples, it leads to a static feature decoding process, producing less discriminative task-specific representations. To tackle this limitation, we propose TaskExpert, a novel multi-task mixture-of-experts model that enables learning multiple representative task-generic feature spaces and decoding task-specific features in a dynamic manner. Specifically, TaskExpert introduces a set of expert networks to decompose the backbone feature into several representative task-generic features. Then, the task-specific features are decoded by using dynamic task-specific gating networks operating on the decomposed task-generic features. Furthermore, to establish long-range modeling of the task-specific representations from different layers of TaskExpert, we design a multi-task feature memory that updates at each layer and acts as an additional feature expert for dynamic task-specific feature decoding. Extensive experiments demonstrate that our TaskExpert clearly outperforms previous best-performing methods on all 9 metrics of two competitive multi-task learning benchmarks for visual scene understanding (i.e., PASCAL-Context and NYUD-v2). Codes and models will be made publicly available at https://github.com/prismformore/Multi-Task-Transformer
LLM4SR: A Survey on Large Language Models for Scientific Research
In recent years, the rapid advancement of Large Language Models (LLMs) has transformed the landscape of scientific research, offering unprecedented support across various stages of the research cycle. This paper presents the first systematic survey dedicated to exploring how LLMs are revolutionizing the scientific research process. We analyze the unique roles LLMs play across four critical stages of research: hypothesis discovery, experiment planning and implementation, scientific writing, and peer reviewing. Our review comprehensively showcases the task-specific methodologies and evaluation benchmarks. By identifying current challenges and proposing future research directions, this survey not only highlights the transformative potential of LLMs, but also aims to inspire and guide researchers and practitioners in leveraging LLMs to advance scientific inquiry. Resources are available at the following repository: https://github.com/du-nlp-lab/LLM4SR
Doubly Robust Alignment for Large Language Models
This paper studies reinforcement learning from human feedback (RLHF) for aligning large language models with human preferences. While RLHF has demonstrated promising results, many algorithms are highly sensitive to misspecifications in the underlying preference model (e.g., the Bradley-Terry model), the reference policy, or the reward function, resulting in undesirable fine-tuning. To address model misspecification, we propose a doubly robust preference optimization algorithm that remains consistent when either the preference model or the reference policy is correctly specified (without requiring both). Our proposal demonstrates superior and more robust performance than state-of-the-art algorithms, both in theory and in practice. The code is available at https://github.com/DRPO4LLM/DRPO4LLM
Establishing Task Scaling Laws via Compute-Efficient Model Ladders
We develop task scaling laws and model ladders to predict the individual task performance of pretrained language models (LMs) in the overtrained setting. Standard power laws for language modeling loss cannot accurately model task performance. Therefore, we leverage a two-step prediction approach: first use model and data size to predict a task-specific loss, and then use this task loss to predict task performance. We train a set of small-scale "ladder" models, collect data points to fit the parameterized functions of the two prediction steps, and make predictions for two target models: a 7B model trained to 4T tokens and a 13B model trained to 5T tokens. Training the ladder models only costs 1% of the compute used for the target models. On four multiple-choice tasks written in ranked classification format, we can predict the accuracy of both target models within 2 points of absolute error. We have higher prediction error on four other tasks (average absolute error 6.9) and find that these are often tasks with higher variance in task metrics. We also find that using less compute to train fewer ladder models tends to deteriorate predictions. Finally, we empirically show that our design choices and the two-step approach lead to superior performance in establishing scaling laws.
A Two-stage Reinforcement Learning-based Approach for Multi-entity Task Allocation
Task allocation is a key combinatorial optimization problem, crucial for modern applications such as multi-robot cooperation and resource scheduling. Decision makers must allocate entities to tasks reasonably across different scenarios. However, traditional methods assume static attributes and numbers of tasks and entities, often relying on dynamic programming and heuristic algorithms for solutions. In reality, task allocation resembles Markov decision processes, with dynamically changing task and entity attributes. Thus, algorithms must dynamically allocate tasks based on their states. To address this issue, we propose a two-stage task allocation algorithm based on similarity, utilizing reinforcement learning to learn allocation strategies. The proposed pre-assign strategy allows entities to preselect appropriate tasks, effectively avoiding local optima and thereby better finding the optimal allocation. We also introduce an attention mechanism and a hyperparameter network structure to adapt to the changing number and attributes of entities and tasks, enabling our network structure to generalize to new tasks. Experimental results across multiple environments demonstrate that our algorithm effectively addresses the challenges of dynamic task allocation in practical applications. Compared to heuristic algorithms like genetic algorithms, our reinforcement learning approach better solves dynamic allocation problems and achieves zero-shot generalization to new tasks with good performance. The code is available at https://github.com/yk7333/TaskAllocation.
MedBookVQA: A Systematic and Comprehensive Medical Benchmark Derived from Open-Access Book
The accelerating development of general medical artificial intelligence (GMAI), powered by multimodal large language models (MLLMs), offers transformative potential for addressing persistent healthcare challenges, including workforce deficits and escalating costs. The parallel development of systematic evaluation benchmarks emerges as a critical imperative to enable performance assessment and provide technological guidance. Meanwhile, as an invaluable knowledge source, the potential of medical textbooks for benchmark development remains underexploited. Here, we present MedBookVQA, a systematic and comprehensive multimodal benchmark derived from open-access medical textbooks. To curate this benchmark, we propose a standardized pipeline for automated extraction of medical figures while contextually aligning them with corresponding medical narratives. Based on this curated data, we generate 5,000 clinically relevant questions spanning modality recognition, disease classification, anatomical identification, symptom diagnosis, and surgical procedures. A multi-tier annotation system categorizes queries through hierarchical taxonomies encompassing medical imaging modalities (42 categories), body anatomies (125 structures), and clinical specialties (31 departments), enabling nuanced analysis across medical subdomains. We evaluate a wide array of MLLMs, including proprietary, open-sourced, medical, and reasoning models, revealing significant performance disparities across task types and model categories. Our findings highlight critical capability gaps in current GMAI systems while establishing textbook-derived multimodal benchmarks as essential evaluation tools. MedBookVQA establishes textbook-derived benchmarking as a critical paradigm for advancing clinical AI, exposing limitations in GMAI systems while providing anatomically structured performance metrics across specialties.
TAPO: Task-Referenced Adaptation for Prompt Optimization
Prompt engineering can significantly improve the performance of large language models (LLMs), with automated prompt optimization (APO) gaining significant attention due to the time-consuming and laborious nature of manual prompt design. However, much of the existing work in APO overlooks task-specific characteristics, resulting in prompts that lack domain specificity and are not well-suited for task-specific optimization. In this paper, we introduce TAPO, a multitask-aware prompt optimization framework composed of three key modules. First, a task-aware metric selection module is proposed to enhance task-specific prompt generation capabilities. Second, we present a multi-metrics evaluation module to jointly evaluate prompts from multiple perspectives. Third, an evolution-based optimization framework is introduced for automatic prompt refinement, which improves adaptability across various tasks. Extensive experiments on six datasets demonstrate the effectiveness of our approach, and our code is publicly available.
MADP: Multi-Agent Deductive Planning for Enhanced Cognitive-Behavioral Mental Health Question Answer
The Mental Health Question Answer (MHQA) task requires the seeker and supporter to complete the support process in one-turn dialogue. Given the richness of help-seeker posts, supporters must thoroughly understand the content and provide logical, comprehensive, and well-structured responses. Previous works in MHQA mostly focus on single-agent approaches based on the cognitive element of Cognitive Behavioral Therapy (CBT), but they overlook the interactions among various CBT elements, such as emotion and cognition. This limitation hinders the models' ability to thoroughly understand the distress of help-seekers. To address this, we propose a framework named Multi-Agent Deductive Planning (MADP), which is based on the interactions between the various psychological elements of CBT. This method guides Large Language Models (LLMs) to achieve a deeper understanding of the seeker's context and provide more personalized assistance based on individual circumstances. Furthermore, we construct a new dataset based on the MADP framework and use it to fine-tune LLMs, resulting in a specialized model named MADP-LLM. We conduct extensive experiments, including comparisons with multiple LLMs, human evaluations, and automatic evaluations, to validate the effectiveness of the MADP framework and MADP-LLM.
Context Clues: Evaluating Long Context Models for Clinical Prediction Tasks on EHRs
Foundation Models (FMs) trained on Electronic Health Records (EHRs) have achieved state-of-the-art results on numerous clinical prediction tasks. However, most existing EHR FMs have context windows of <1k tokens. This prevents them from modeling full patient EHRs which can exceed 10k's of events. Recent advancements in subquadratic long-context architectures (e.g., Mamba) offer a promising solution. However, their application to EHR data has not been well-studied. We address this gap by presenting the first systematic evaluation of the effect of context length on modeling EHR data. We find that longer context models improve predictive performance -- our Mamba-based model surpasses the prior state-of-the-art on 9/14 tasks on the EHRSHOT prediction benchmark. For clinical applications, however, model performance alone is insufficient -- robustness to the unique properties of EHR is crucial. Thus, we also evaluate models across three previously underexplored properties of EHR data: (1) the prevalence of "copy-forwarded" diagnoses which creates artificial repetition of tokens within EHR sequences; (2) the irregular time intervals between EHR events which can lead to a wide range of timespans within a context window; and (3) the natural increase in disease complexity over time which makes later tokens in the EHR harder to predict than earlier ones. Stratifying our EHRSHOT results, we find that higher levels of each property correlate negatively with model performance, but that longer context models are more robust to more extreme levels of these properties. Our work highlights the potential for using long-context architectures to model EHR data, and offers a case study for identifying new challenges in modeling sequential data motivated by domains outside of natural language. We release our models and code at: https://github.com/som-shahlab/long_context_clues
AnyTaskTune: Advanced Domain-Specific Solutions through Task-Fine-Tuning
The pervasive deployment of Large Language Models-LLMs in various sectors often neglects the nuanced requirements of individuals and small organizations, who benefit more from models precisely tailored to their specific business contexts rather than those with broadly superior general capabilities. This work introduces AnyTaskTune, a novel fine-tuning methodology coined as Task-Fine-Tune, specifically developed to elevate model performance on a diverse array of domain-specific tasks. This method involves a meticulous process to identify and define targeted sub-tasks within a domain, followed by the creation of specialized enhancement datasets for fine-tuning, thereby optimizing task-specific model performance. We conducted comprehensive fine-tuning experiments not only in the legal domain for tasks such as keyword extraction and sentence prediction but across over twenty different sub-tasks derived from the domains of finance, healthcare, law, psychology, consumer services, and human resources. To substantiate our approach and facilitate community engagement, we will open-source these bilingual task datasets. Our findings demonstrate that models fine-tuned using the Task-Fine-Tune methodology not only achieve superior performance on these specific tasks but also significantly outperform models with higher general capabilities in their respective domains. Our work is publicly available at https://github.com/PandaVT/DataTager.
Soft Injection of Task Embeddings Outperforms Prompt-Based In-Context Learning
In-Context Learning (ICL) enables Large Language Models (LLMs) to perform tasks by conditioning on input-output examples in the prompt, without requiring any update in model parameters. While widely adopted, it remains unclear whether prompting with multiple examples is the most effective and efficient way to convey task information. In this work, we propose Soft Injection of task embeddings. The task embeddings are constructed only once using few-shot ICL prompts and repeatedly used during inference. Soft injection is performed by softly mixing task embeddings with attention head activations using pre-optimized mixing parameters, referred to as soft head-selection parameters. This method not only allows a desired task to be performed without in-prompt demonstrations but also significantly outperforms existing ICL approaches while reducing memory usage and compute cost at inference time. An extensive evaluation is performed across 57 tasks and 12 LLMs, spanning four model families of sizes from 4B to 70B. Averaged across 57 tasks, our method outperforms 10-shot ICL by 10.2%-14.3% across 12 LLMs. Additional analyses show that our method also serves as an insightful tool for analyzing task-relevant roles of attention heads, revealing that task-relevant head positions selected by our method transfer across similar tasks but not across dissimilar ones -- underscoring the task-specific nature of head functionality. Our soft injection method opens a new paradigm for reducing prompt length and improving task performance by shifting task conditioning from the prompt space to the activation space.
The Illusion of Diminishing Returns: Measuring Long Horizon Execution in LLMs
Does continued scaling of large language models (LLMs) yield diminishing returns? Real-world value often stems from the length of task an agent can complete. We start this work by observing the simple but counterintuitive fact that marginal gains in single-step accuracy can compound into exponential improvements in the length of a task a model can successfully complete. Then, we argue that failures of LLMs when simple tasks are made longer arise from mistakes in execution, rather than an inability to reason. We propose isolating execution capability, by explicitly providing the knowledge and plan needed to solve a long-horizon task. We find that larger models can correctly execute significantly more turns even when small models have 100\% single-turn accuracy. We observe that the per-step accuracy of models degrades as the number of steps increases. This is not just due to long-context limitations -- curiously, we observe a self-conditioning effect -- models become more likely to make mistakes when the context contains their errors from prior turns. Self-conditioning does not reduce by just scaling the model size. In contrast, recent thinking models do not self-condition, and can also execute much longer tasks in a single turn. We conclude by benchmarking frontier thinking models on the length of task they can execute in a single turn. Overall, by focusing on the ability to execute, we hope to reconcile debates on how LLMs can solve complex reasoning problems yet fail at simple tasks when made longer, and highlight the massive benefits of scaling model size and sequential test-time compute for long-horizon tasks.
Better to Ask in English: Cross-Lingual Evaluation of Large Language Models for Healthcare Queries
Large language models (LLMs) are transforming the ways the general public accesses and consumes information. Their influence is particularly pronounced in pivotal sectors like healthcare, where lay individuals are increasingly appropriating LLMs as conversational agents for everyday queries. While LLMs demonstrate impressive language understanding and generation proficiencies, concerns regarding their safety remain paramount in these high-stake domains. Moreover, the development of LLMs is disproportionately focused on English. It remains unclear how these LLMs perform in the context of non-English languages, a gap that is critical for ensuring equity in the real-world use of these systems.This paper provides a framework to investigate the effectiveness of LLMs as multi-lingual dialogue systems for healthcare queries. Our empirically-derived framework XlingEval focuses on three fundamental criteria for evaluating LLM responses to naturalistic human-authored health-related questions: correctness, consistency, and verifiability. Through extensive experiments on four major global languages, including English, Spanish, Chinese, and Hindi, spanning three expert-annotated large health Q&A datasets, and through an amalgamation of algorithmic and human-evaluation strategies, we found a pronounced disparity in LLM responses across these languages, indicating a need for enhanced cross-lingual capabilities. We further propose XlingHealth, a cross-lingual benchmark for examining the multilingual capabilities of LLMs in the healthcare context. Our findings underscore the pressing need to bolster the cross-lingual capacities of these models, and to provide an equitable information ecosystem accessible to all.
Nash Learning from Human Feedback
Reinforcement learning from human feedback (RLHF) has emerged as the main paradigm for aligning large language models (LLMs) with human preferences. Typically, RLHF involves the initial step of learning a reward model from human feedback, often expressed as preferences between pairs of text generations produced by a pre-trained LLM. Subsequently, the LLM's policy is fine-tuned by optimizing it to maximize the reward model through a reinforcement learning algorithm. However, an inherent limitation of current reward models is their inability to fully represent the richness of human preferences and their dependency on the sampling distribution. In this study, we introduce an alternative pipeline for the fine-tuning of LLMs using pairwise human feedback. Our approach entails the initial learning of a preference model, which is conditioned on two inputs given a prompt, followed by the pursuit of a policy that consistently generates responses preferred over those generated by any competing policy, thus defining the Nash equilibrium of this preference model. We term this approach Nash learning from human feedback (NLHF). In the context of a tabular policy representation, we present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent. This algorithm produces a sequence of policies, with the last iteration converging to the regularized Nash equilibrium. Additionally, we explore parametric representations of policies and introduce gradient descent algorithms for deep-learning architectures. To demonstrate the effectiveness of our approach, we present experimental results involving the fine-tuning of a LLM for a text summarization task. We believe NLHF offers a compelling avenue for preference learning and policy optimization with the potential of advancing the field of aligning LLMs with human preferences.
Overcoming Common Flaws in the Evaluation of Selective Classification Systems
Selective Classification, wherein models can reject low-confidence predictions, promises reliable translation of machine-learning based classification systems to real-world scenarios such as clinical diagnostics. While current evaluation of these systems typically assumes fixed working points based on pre-defined rejection thresholds, methodological progress requires benchmarking the general performance of systems akin to the AUROC in standard classification. In this work, we define 5 requirements for multi-threshold metrics in selective classification regarding task alignment, interpretability, and flexibility, and show how current approaches fail to meet them. We propose the Area under the Generalized Risk Coverage curve (AUGRC), which meets all requirements and can be directly interpreted as the average risk of undetected failures. We empirically demonstrate the relevance of AUGRC on a comprehensive benchmark spanning 6 data sets and 13 confidence scoring functions. We find that the proposed metric substantially changes metric rankings on 5 out of the 6 data sets.
Characterizing Knowledge Graph Tasks in LLM Benchmarks Using Cognitive Complexity Frameworks
Large Language Models (LLMs) are increasingly used for tasks involving Knowledge Graphs (KGs), whose evaluation typically focuses on accuracy and output correctness. We propose a complementary task characterization approach using three complexity frameworks from cognitive psychology. Applying this to the LLM-KG-Bench framework, we highlight value distributions, identify underrepresented demands and motivate richer interpretation and diversity for benchmark evaluation tasks.
Reusing Embeddings: Reproducible Reward Model Research in Large Language Model Alignment without GPUs
Large Language Models (LLMs) have made substantial strides in structured tasks through Reinforcement Learning (RL), demonstrating proficiency in mathematical reasoning and code generation. However, applying RL in broader domains like chatbots and content generation -- through the process known as Reinforcement Learning from Human Feedback (RLHF) -- presents unique challenges. Reward models in RLHF are critical, acting as proxies that evaluate the alignment of LLM outputs with human intent. Despite advancements, the development of reward models is hindered by challenges such as computational heavy training, costly evaluation, and therefore poor reproducibility. We advocate for using embedding-based input in reward model research as an accelerated solution to those challenges. By leveraging embeddings for reward modeling, we can enhance reproducibility, reduce computational demands on hardware, improve training stability, and significantly reduce training and evaluation costs, hence facilitating fair and efficient comparisons in this active research area. We then show a case study of reproducing existing reward model ensemble research using embedding-based reward models. We discussed future avenues for research, aiming to contribute to safer and more effective LLM deployments.
Generative models for wearables data
Data scarcity is a common obstacle in medical research due to the high costs associated with data collection and the complexity of gaining access to and utilizing data. Synthesizing health data may provide an efficient and cost-effective solution to this shortage, enabling researchers to explore distributions and populations that are not represented in existing observations or difficult to access due to privacy considerations. To that end, we have developed a multi-task self-attention model that produces realistic wearable activity data. We examine the characteristics of the generated data and quantify its similarity to genuine samples with both quantitative and qualitative approaches.
Turning large language models into cognitive models
Large language models are powerful systems that excel at many tasks, ranging from translation to mathematical reasoning. Yet, at the same time, these models often show unhuman-like characteristics. In the present paper, we address this gap and ask whether large language models can be turned into cognitive models. We find that -- after finetuning them on data from psychological experiments -- these models offer accurate representations of human behavior, even outperforming traditional cognitive models in two decision-making domains. In addition, we show that their representations contain the information necessary to model behavior on the level of individual subjects. Finally, we demonstrate that finetuning on multiple tasks enables large language models to predict human behavior in a previously unseen task. Taken together, these results suggest that large, pre-trained models can be adapted to become generalist cognitive models, thereby opening up new research directions that could transform cognitive psychology and the behavioral sciences as a whole.
CLIMB: A Benchmark of Clinical Bias in Large Language Models
Large language models (LLMs) are increasingly applied to clinical decision-making. However, their potential to exhibit bias poses significant risks to clinical equity. Currently, there is a lack of benchmarks that systematically evaluate such clinical bias in LLMs. While in downstream tasks, some biases of LLMs can be avoided such as by instructing the model to answer "I'm not sure...", the internal bias hidden within the model still lacks deep studies. We introduce CLIMB (shorthand for A Benchmark of Clinical Bias in Large Language Models), a pioneering comprehensive benchmark to evaluate both intrinsic (within LLMs) and extrinsic (on downstream tasks) bias in LLMs for clinical decision tasks. Notably, for intrinsic bias, we introduce a novel metric, AssocMAD, to assess the disparities of LLMs across multiple demographic groups. Additionally, we leverage counterfactual intervention to evaluate extrinsic bias in a task of clinical diagnosis prediction. Our experiments across popular and medically adapted LLMs, particularly from the Mistral and LLaMA families, unveil prevalent behaviors with both intrinsic and extrinsic bias. This work underscores the critical need to mitigate clinical bias and sets a new standard for future evaluations of LLMs' clinical bias.
Would I Lie To You? Inference Time Alignment of Language Models using Direct Preference Heads
Pre-trained Language Models (LMs) exhibit strong zero-shot and in-context learning capabilities; however, their behaviors are often difficult to control. By utilizing Reinforcement Learning from Human Feedback (RLHF), it is possible to fine-tune unsupervised LMs to follow instructions and produce outputs that reflect human preferences. Despite its benefits, RLHF has been shown to potentially harm a language model's reasoning capabilities and introduce artifacts such as hallucinations where the model may fabricate facts. To address this issue we introduce Direct Preference Heads (DPH), a fine-tuning framework that enables LMs to learn human preference signals through an auxiliary reward head without directly affecting the output distribution of the language modeling head. We perform a theoretical analysis of our objective function and find strong ties to Conservative Direct Preference Optimization (cDPO). Finally we evaluate our models on GLUE, RACE, and the GPT4All evaluation suite and demonstrate that our method produces models which achieve higher scores than those fine-tuned with Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO) alone.
VeriGUI: Verifiable Long-Chain GUI Dataset
Recent studies have delved into constructing autonomous agents capable of performing complex Graphical User Interface (GUI)-based computer tasks, with the potential to revolutionize human-computer interaction. Despite encouraging results, existing efforts mainly focus on short-term interactions and rely on outcome-only verification, thereby limiting their scalability in real-world GUI applications that demand long-horizon task decomposition and execution. In this work, we introduce VeriGUI, a novel verifiable long-chain GUI dataset designed to facilitate the development and evaluation of generalist GUI agents operating in realistic computer environments. Our dataset emphasizes two critical dimensions: (1) long-chain complexity, with tasks decomposed into a sequence of interdependent subtasks spanning hundreds of steps, explicitly designed to allow any subtask to serve as a valid starting point; and (2) subtask-level verifiability, which enables diverse exploration strategies within each subtask, while ensuring that each subtask-level goal remains verifiable and consistent. The dataset consists of GUI task trajectories across both desktop and web, annotated by human experts. Extensive experiments on VeriGUI using various agents with different foundation models reveal significant performance gaps in handling long-horizon tasks, highlighting the need for more robust planning and decision-making capabilities in GUI agents.
Tx-LLM: A Large Language Model for Therapeutics
Developing therapeutics is a lengthy and expensive process that requires the satisfaction of many different criteria, and AI models capable of expediting the process would be invaluable. However, the majority of current AI approaches address only a narrowly defined set of tasks, often circumscribed within a particular domain. To bridge this gap, we introduce Tx-LLM, a generalist large language model (LLM) fine-tuned from PaLM-2 which encodes knowledge about diverse therapeutic modalities. Tx-LLM is trained using a collection of 709 datasets that target 66 tasks spanning various stages of the drug discovery pipeline. Using a single set of weights, Tx-LLM simultaneously processes a wide variety of chemical or biological entities(small molecules, proteins, nucleic acids, cell lines, diseases) interleaved with free-text, allowing it to predict a broad range of associated properties, achieving competitive with state-of-the-art (SOTA) performance on 43 out of 66 tasks and exceeding SOTA on 22. Among these, Tx-LLM is particularly powerful and exceeds best-in-class performance on average for tasks combining molecular SMILES representations with text such as cell line names or disease names, likely due to context learned during pretraining. We observe evidence of positive transfer between tasks with diverse drug types (e.g.,tasks involving small molecules and tasks involving proteins), and we study the impact of model size, domain finetuning, and prompting strategies on performance. We believe Tx-LLM represents an important step towards LLMs encoding biochemical knowledge and could have a future role as an end-to-end tool across the drug discovery development pipeline.
