- TNet: Terrace Convolutional Decoder Network for Remote Sensing Image Semantic Segmentation In remote sensing, most segmentation networks adopt the UNet architecture, often incorporating modules such as Transformers or Mamba to enhance global-local feature interactions within decoder stages. However, these enhancements typically focus on intra-scale relationships and neglect the global contextual dependencies across multiple resolutions. To address this limitation, we introduce the Terrace Convolutional Decoder Network (TNet), a simple yet effective architecture that leverages only convolution and addition operations to progressively integrate low-resolution features (rich in global context) into higher-resolution features (rich in local details) across decoding stages. This progressive fusion enables the model to learn spatially-aware convolutional kernels that naturally blend global and local information in a stage-wise manner. We implement TNet with a ResNet-18 encoder (TNet-R) and evaluate it on three benchmark datasets. TNet-R achieves competitive performance with a mean Intersection-over-Union (mIoU) of 85.35\% on ISPRS Vaihingen, 87.05\% on ISPRS Potsdam, and 52.19\% on LoveDA, while maintaining high computational efficiency. Code is publicly available. 4 authors · Aug 5
- DFYP: A Dynamic Fusion Framework with Spectral Channel Attention and Adaptive Operator learning for Crop Yield Prediction Accurate remote sensing-based crop yield prediction remains a fundamental challenging task due to complex spatial patterns, heterogeneous spectral characteristics, and dynamic agricultural conditions. Existing methods often suffer from limited spatial modeling capacity, weak generalization across crop types and years. To address these challenges, we propose DFYP, a novel Dynamic Fusion framework for crop Yield Prediction, which combines spectral channel attention, edge-adaptive spatial modeling and a learnable fusion mechanism to improve robustness across diverse agricultural scenarios. Specifically, DFYP introduces three key components: (1) a Resolution-aware Channel Attention (RCA) module that enhances spectral representation by adaptively reweighting input channels based on resolution-specific characteristics; (2) an Adaptive Operator Learning Network (AOL-Net) that dynamically selects operators for convolutional kernels to improve edge-sensitive spatial feature extraction under varying crop and temporal conditions; and (3) a dual-branch architecture with a learnable fusion mechanism, which jointly models local spatial details and global contextual information to support cross-resolution and cross-crop generalization. Extensive experiments on multi-year datasets MODIS and multi-crop dataset Sentinel-2 demonstrate that DFYP consistently outperforms current state-of-the-art baselines in RMSE, MAE, and R2 across different spatial resolutions, crop types, and time periods, showcasing its effectiveness and robustness for real-world agricultural monitoring. 5 authors · Jul 8