new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 26

InstructDET: Diversifying Referring Object Detection with Generalized Instructions

We propose InstructDET, a data-centric method for referring object detection (ROD) that localizes target objects based on user instructions. While deriving from referring expressions (REC), the instructions we leverage are greatly diversified to encompass common user intentions related to object detection. For one image, we produce tremendous instructions that refer to every single object and different combinations of multiple objects. Each instruction and its corresponding object bounding boxes (bbxs) constitute one training data pair. In order to encompass common detection expressions, we involve emerging vision-language model (VLM) and large language model (LLM) to generate instructions guided by text prompts and object bbxs, as the generalizations of foundation models are effective to produce human-like expressions (e.g., describing object property, category, and relationship). We name our constructed dataset as InDET. It contains images, bbxs and generalized instructions that are from foundation models. Our InDET is developed from existing REC datasets and object detection datasets, with the expanding potential that any image with object bbxs can be incorporated through using our InstructDET method. By using our InDET dataset, we show that a conventional ROD model surpasses existing methods on standard REC datasets and our InDET test set. Our data-centric method InstructDET, with automatic data expansion by leveraging foundation models, directs a promising field that ROD can be greatly diversified to execute common object detection instructions.

  • 11 authors
·
Oct 8, 2023

Described Object Detection: Liberating Object Detection with Flexible Expressions

Detecting objects based on language information is a popular task that includes Open-Vocabulary object Detection (OVD) and Referring Expression Comprehension (REC). In this paper, we advance them to a more practical setting called Described Object Detection (DOD) by expanding category names to flexible language expressions for OVD and overcoming the limitation of REC only grounding the pre-existing object. We establish the research foundation for DOD by constructing a Description Detection Dataset (D^3). This dataset features flexible language expressions, whether short category names or long descriptions, and annotating all described objects on all images without omission. By evaluating previous SOTA methods on D^3, we find some troublemakers that fail current REC, OVD, and bi-functional methods. REC methods struggle with confidence scores, rejecting negative instances, and multi-target scenarios, while OVD methods face constraints with long and complex descriptions. Recent bi-functional methods also do not work well on DOD due to their separated training procedures and inference strategies for REC and OVD tasks. Building upon the aforementioned findings, we propose a baseline that largely improves REC methods by reconstructing the training data and introducing a binary classification sub-task, outperforming existing methods. Data and code are available at https://github.com/shikras/d-cube and related works are tracked in https://github.com/Charles-Xie/awesome-described-object-detection.

  • 6 authors
·
Jul 24, 2023

WeDetect: Fast Open-Vocabulary Object Detection as Retrieval

Open-vocabulary object detection aims to detect arbitrary classes via text prompts. Methods without cross-modal fusion layers (non-fusion) offer faster inference by treating recognition as a retrieval problem, \ie, matching regions to text queries in a shared embedding space. In this work, we fully explore this retrieval philosophy and demonstrate its unique advantages in efficiency and versatility through a model family named WeDetect: (1) State-of-the-art performance. WeDetect is a real-time detector with a dual-tower architecture. We show that, with well-curated data and full training, the non-fusion WeDetect surpasses other fusion models and establishes a strong open-vocabulary foundation. (2) Fast backtrack of historical data. WeDetect-Uni is a universal proposal generator based on WeDetect. We freeze the entire detector and only finetune an objectness prompt to retrieve generic object proposals across categories. Importantly, the proposal embeddings are class-specific and enable a new application, object retrieval, supporting retrieval objects in historical data. (3) Integration with LMMs for referring expression comprehension (REC). We further propose WeDetect-Ref, an LMM-based object classifier to handle complex referring expressions, which retrieves target objects from the proposal list extracted by WeDetect-Uni. It discards next-token prediction and classifies objects in a single forward pass. Together, the WeDetect family unifies detection, proposal generation, object retrieval, and REC under a coherent retrieval framework, achieving state-of-the-art performance across 15 benchmarks with high inference efficiency.

  • 6 authors
·
Dec 13, 2025

Referring Expression Instance Retrieval and A Strong End-to-End Baseline

Using natural language to query visual information is a fundamental need in real-world applications. Text-Image Retrieval (TIR) retrieves a target image from a gallery based on an image-level description, while Referring Expression Comprehension (REC) localizes a target object within a given image using an instance-level description. However, real-world applications often present more complex demands. Users typically query an instance-level description across a large gallery and expect to receive both relevant image and the corresponding instance location. In such scenarios, TIR struggles with fine-grained descriptions and object-level localization, while REC is limited in its ability to efficiently search large galleries and lacks an effective ranking mechanism. In this paper, we introduce a new task called Referring Expression Instance Retrieval (REIR), which supports both instance-level retrieval and localization based on fine-grained referring expressions. First, we propose a large-scale benchmark for REIR, named REIRCOCO, constructed by prompting advanced vision-language models to generate high-quality referring expressions for instances in the MSCOCO and RefCOCO datasets. Second, we present a baseline method, Contrastive Language-Instance Alignment with Relation Experts (CLARE), which employs a dual-stream architecture to address REIR in an end-to-end manner. Given a referring expression, the textual branch encodes it into a query embedding. The visual branch detects candidate objects and extracts their instance-level visual features. The most similar candidate to the query is selected for bounding box prediction. CLARE is first trained on object detection and REC datasets to establish initial grounding capabilities, then optimized via Contrastive Language-Instance Alignment (CLIA) for improved retrieval across images. We will release our code and benchmark publicly.

  • 8 authors
·
Jun 22, 2025

Referring Expression Comprehension: A Survey of Methods and Datasets

Referring expression comprehension (REC) aims to localize a target object in an image described by a referring expression phrased in natural language. Different from the object detection task that queried object labels have been pre-defined, the REC problem only can observe the queries during the test. It thus more challenging than a conventional computer vision problem. This task has attracted a lot of attention from both computer vision and natural language processing community, and several lines of work have been proposed, from CNN-RNN model, modular network to complex graph-based model. In this survey, we first examine the state of the art by comparing modern approaches to the problem. We classify methods by their mechanism to encode the visual and textual modalities. In particular, we examine the common approach of joint embedding images and expressions to a common feature space. We also discuss modular architectures and graph-based models that interface with structured graph representation. In the second part of this survey, we review the datasets available for training and evaluating REC systems. We then group results according to the datasets, backbone models, settings so that they can be fairly compared. Finally, we discuss promising future directions for the field, in particular the compositional referring expression comprehension that requires longer reasoning chain to address.

  • 3 authors
·
Jul 18, 2020

3D-AffordanceLLM: Harnessing Large Language Models for Open-Vocabulary Affordance Detection in 3D Worlds

3D Affordance detection is a challenging problem with broad applications on various robotic tasks. Existing methods typically formulate the detection paradigm as a label-based semantic segmentation task. This paradigm relies on predefined labels and lacks the ability to comprehend complex natural language, resulting in limited generalization in open-world scene. To address these limitations, we reformulate the traditional affordance detection paradigm into Instruction Reasoning Affordance Segmentation (IRAS) task. This task is designed to output a affordance mask region given a query reasoning text, which avoids fixed categories of input labels. We accordingly propose the 3D-AffordanceLLM (3D-ADLLM), a framework designed for reasoning affordance detection in 3D open-scene. Specifically, 3D-ADLLM introduces large language models (LLMs) to 3D affordance perception with a custom-designed decoder for generating affordance masks, thus achieving open-world reasoning affordance detection. In addition, given the scarcity of 3D affordance datasets for training large models, we seek to extract knowledge from general segmentation data and transfer it to affordance detection. Thus, we propose a multi-stage training strategy that begins with a novel pre-training task, i.e., Referring Object Part Segmentation~(ROPS). This stage is designed to equip the model with general recognition and segmentation capabilities at the object-part level. Then followed by fine-tuning with the IRAS task, 3D-ADLLM obtains the reasoning ability for affordance detection. In summary, 3D-ADLLM leverages the rich world knowledge and human-object interaction reasoning ability of LLMs, achieving approximately an 8\% improvement in mIoU on open-vocabulary affordance detection tasks.

  • 7 authors
·
Feb 27, 2025

Griffon v2: Advancing Multimodal Perception with High-Resolution Scaling and Visual-Language Co-Referring

Large Vision Language Models have achieved fine-grained object perception, but the limitation of image resolution remains a significant obstacle to surpass the performance of task-specific experts in complex and dense scenarios. Such limitation further restricts the model's potential to achieve nuanced visual and language referring in domains such as GUI Agents, Counting and \etc. To address this issue, we introduce a unified high-resolution generalist model, Griffon v2, enabling flexible object referring with visual and textual prompts. To efficiently scaling up image resolution, we design a simple and lightweight down-sampling projector to overcome the input tokens constraint in Large Language Models. This design inherently preserves the complete contexts and fine details, and significantly improves multimodal perception ability especially for small objects. Building upon this, we further equip the model with visual-language co-referring capabilities through a plug-and-play visual tokenizer. It enables user-friendly interaction with flexible target images, free-form texts and even coordinates. Experiments demonstrate that Griffon v2 can localize any objects of interest with visual and textual referring, achieve state-of-the-art performance on REC, phrase grounding, and REG tasks, and outperform expert models in object detection and object counting. Data, codes and models will be released at https://github.com/jefferyZhan/Griffon.

  • 6 authors
·
Mar 14, 2024 3

Griffon-G: Bridging Vision-Language and Vision-Centric Tasks via Large Multimodal Models

Large Multimodal Models (LMMs) have achieved significant breakthroughs in various vision-language and vision-centric tasks based on auto-regressive modeling. However, these models typically focus on either vision-centric tasks, such as visual grounding and region description, or vision-language tasks, like image caption and multi-scenario VQAs. None of the LMMs have yet comprehensively unified both types of tasks within a single model, as seen in Large Language Models in the natural language processing field. Furthermore, even with abundant multi-task instruction-following data, directly stacking these data for universal capabilities extension remains challenging. To address these issues, we introduce a novel multi-dimension curated and consolidated multimodal dataset, named CCMD-8M, which overcomes the data barriers of unifying vision-centric and vision-language tasks through multi-level data curation and multi-task consolidation. More importantly, we present Griffon-G, a general large multimodal model that addresses both vision-centric and vision-language tasks within a single end-to-end paradigm. Griffon-G resolves the training collapse issue encountered during the joint optimization of these tasks, achieving better training efficiency. Evaluations across multimodal benchmarks, general Visual Question Answering (VQA) tasks, scene text-centric VQA tasks, document-related VQA tasks, Referring Expression Comprehension, and object detection demonstrate that Griffon-G surpasses the advanced LMMs and achieves expert-level performance in complicated vision-centric tasks.

  • 6 authors
·
Oct 21, 2024

Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone

Vision-language (VL) pre-training has recently received considerable attention. However, most existing end-to-end pre-training approaches either only aim to tackle VL tasks such as image-text retrieval, visual question answering (VQA) and image captioning that test high-level understanding of images, or only target region-level understanding for tasks such as phrase grounding and object detection. We present FIBER (Fusion-In-the-Backbone-based transformER), a new VL model architecture that can seamlessly handle both these types of tasks. Instead of having dedicated transformer layers for fusion after the uni-modal backbones, FIBER pushes multimodal fusion deep into the model by inserting cross-attention into the image and text backbones, bringing gains in terms of memory and performance. In addition, unlike previous work that is either only pre-trained on image-text data or on fine-grained data with box-level annotations, we present a two-stage pre-training strategy that uses both these kinds of data efficiently: (i) coarse-grained pre-training based on image-text data; followed by (ii) fine-grained pre-training based on image-text-box data. We conduct comprehensive experiments on a wide range of VL tasks, ranging from VQA, image captioning, and retrieval, to phrase grounding, referring expression comprehension, and object detection. Using deep multimodal fusion coupled with the two-stage pre-training, FIBER provides consistent performance improvements over strong baselines across all tasks, often outperforming methods using magnitudes more data. Code is available at https://github.com/microsoft/FIBER.

  • 12 authors
·
Jun 15, 2022

Detect Anything via Next Point Prediction

Object detection has long been dominated by traditional coordinate regression-based models, such as YOLO, DETR, and Grounding DINO. Although recent efforts have attempted to leverage MLLMs to tackle this task, they face challenges like low recall rate, duplicate predictions, coordinate misalignment, etc. In this work, we bridge this gap and propose Rex-Omni, a 3B-scale MLLM that achieves state-of-the-art object perception performance. On benchmarks like COCO and LVIS, Rex-Omni attains performance comparable to or exceeding regression-based models (e.g., DINO, Grounding DINO) in a zero-shot setting. This is enabled by three key designs: 1) Task Formulation: we use special tokens to represent quantized coordinates from 0 to 999, reducing the model's learning difficulty and improving token efficiency for coordinate prediction; 2) Data Engines: we construct multiple data engines to generate high-quality grounding, referring, and pointing data, providing semantically rich supervision for training; \3) Training Pipelines: we employ a two-stage training process, combining supervised fine-tuning on 22 million data with GRPO-based reinforcement post-training. This RL post-training leverages geometry-aware rewards to effectively bridge the discrete-to-continuous coordinate prediction gap, improve box accuracy, and mitigate undesirable behaviors like duplicate predictions that stem from the teacher-guided nature of the initial SFT stage. Beyond conventional detection, Rex-Omni's inherent language understanding enables versatile capabilities such as object referring, pointing, visual prompting, GUI grounding, spatial referring, OCR and key-pointing, all systematically evaluated on dedicated benchmarks. We believe that Rex-Omni paves the way for more versatile and language-aware visual perception systems.

IDEA-Research IDEA-Research
·
Oct 14, 2025 3

SOS: Synthetic Object Segments Improve Detection, Segmentation, and Grounding

Visual grouping -- operationalized via instance segmentation, visual grounding, and object detection -- underpins applications from robotic perception to photo editing. Large annotated datasets are costly, biased in coverage, and hard to scale. Synthetic data are promising but often lack flexibility, accuracy, and compositional diversity. We present SOS, a simple and scalable data synthesis pipeline based on an object-centric composition strategy. It pastes high-quality synthetic object segments into new images using structured layout priors and generative relighting, producing accurate and diverse masks, boxes, and referring expressions. Models trained on 100000 synthetic images from SOS outperform those trained on larger real-image datasets such as GRIT (20M) and V3Det (200K) on detection and grounding tasks, achieving +10.9 AP on LVIS detection and +8.4 N_{Acc} on gRefCOCO grounding. SOS enables controllable dataset construction and improves generalization in both low-data and closed-vocabulary settings. Augmenting LVIS and COCO with synthetic object segments yields strong performance across real-data scales and even larger gains under extremely limited real data (for example, +3.83 AP_{rare} on LVIS instance segmentation and +6.59 AP with a 1 percent COCO setup). This controllability also supports targeted data generation for challenging intra-class referring in visual grounding.

  • 7 authors
·
Oct 10, 2025

Improving Contrastive Learning for Referring Expression Counting

Object counting has progressed from class-specific models, which count only known categories, to class-agnostic models that generalize to unseen categories. The next challenge is Referring Expression Counting (REC), where the goal is to count objects based on fine-grained attributes and contextual differences. Existing methods struggle with distinguishing visually similar objects that belong to the same category but correspond to different referring expressions. To address this, we propose C-REX, a novel contrastive learning framework, based on supervised contrastive learning, designed to enhance discriminative representation learning. Unlike prior works, C-REX operates entirely within the image space, avoiding the misalignment issues of image-text contrastive learning, thus providing a more stable contrastive signal. It also guarantees a significantly larger pool of negative samples, leading to improved robustness in the learned representations. Moreover, we showcase that our framework is versatile and generic enough to be applied to other similar tasks like class-agnostic counting. To support our approach, we analyze the key components of sota detection-based models and identify that detecting object centroids instead of bounding boxes is the key common factor behind their success in counting tasks. We use this insight to design a simple yet effective detection-based baseline to build upon. Our experiments show that C-REX achieves state-of-the-art results in REC, outperforming previous methods by more than 22\% in MAE and more than 10\% in RMSE, while also demonstrating strong performance in class-agnostic counting. Code is available at https://github.com/cvlab-stonybrook/c-rex.

PropVG: End-to-End Proposal-Driven Visual Grounding with Multi-Granularity Discrimination

Recent advances in visual grounding have largely shifted away from traditional proposal-based two-stage frameworks due to their inefficiency and high computational complexity, favoring end-to-end direct reference paradigms. However, these methods rely exclusively on the referred target for supervision, overlooking the potential benefits of prominent prospective targets. Moreover, existing approaches often fail to incorporate multi-granularity discrimination, which is crucial for robust object identification in complex scenarios. To address these limitations, we propose PropVG, an end-to-end proposal-based framework that, to the best of our knowledge, is the first to seamlessly integrate foreground object proposal generation with referential object comprehension without requiring additional detectors. Furthermore, we introduce a Contrastive-based Refer Scoring (CRS) module, which employs contrastive learning at both sentence and word levels to enhance the capability in understanding and distinguishing referred objects. Additionally, we design a Multi-granularity Target Discrimination (MTD) module that fuses object- and semantic-level information to improve the recognition of absent targets. Extensive experiments on gRefCOCO (GREC/GRES), Ref-ZOM, R-RefCOCO, and RefCOCO (REC/RES) benchmarks demonstrate the effectiveness of PropVG. The codes and models are available at https://github.com/Dmmm1997/PropVG.

  • 7 authors
·
Sep 5, 2025

Rex-Thinker: Grounded Object Referring via Chain-of-Thought Reasoning

Object referring aims to detect all objects in an image that match a given natural language description. We argue that a robust object referring model should be grounded, meaning its predictions should be both explainable and faithful to the visual content. Specifically, it should satisfy two key properties: 1) Verifiable, by producing interpretable reasoning that justifies its predictions and clearly links them to visual evidence; and 2) Trustworthy, by learning to abstain when no object in the image satisfies the given expression. However, most methods treat referring as a direct bounding box prediction task, offering limited interpretability and struggling to reject expressions with no matching object. In this work, we propose Rex-Thinker, a model that formulates object referring as an explicit CoT reasoning task. Given a referring expression, we first identify all candidate object instances corresponding to the referred object category. Rex-Thinker then performs step-by-step reasoning over each candidate to assess whether it matches the given expression, before making a final prediction. To support this paradigm, we construct a large-scale CoT-style referring dataset named HumanRef-CoT by prompting GPT-4o on the HumanRef dataset. Each reasoning trace follows a structured planning, action, and summarization format, enabling the model to learn decomposed, interpretable reasoning over object candidates. We then train Rex-Thinker in two stages: a cold-start supervised fine-tuning phase to teach the model how to perform structured reasoning, followed by GRPO-based RL learning to improve accuracy and generalization. Experiments show that our approach outperforms standard baselines in both precision and interpretability on in-domain evaluation, while also demonstrating improved ability to reject hallucinated outputs and strong generalization in out-of-domain settings.

  • 5 authors
·
Jun 4, 2025 2

InterRVOS: Interaction-aware Referring Video Object Segmentation

Referring video object segmentation aims to segment the object in a video corresponding to a given natural language expression. While prior works have explored various referring scenarios, including motion-centric or multi-instance expressions, most approaches still focus on localizing a single target object in isolation. However, in comprehensive video understanding, an object's role is often defined by its interactions with other entities, which are largely overlooked in existing datasets and models. In this work, we introduce Interaction-aware referring video object sgementation (InterRVOS), a new task that requires segmenting both actor and target entities involved in an interaction. Each interactoin is described through a pair of complementary expressions from different semantic perspectives, enabling fine-grained modeling of inter-object relationships. To tackle this task, we propose InterRVOS-8K, the large-scale and automatically constructed dataset containing diverse interaction-aware expressions with corresponding masks, including challenging cases such as motion-only multi-instance expressions. We also present a baseline architecture, ReVIOSa, designed to handle actor-target segmentation from a single expression, achieving strong performance in both standard and interaction-focused settings. Furthermore, we introduce an actor-target-aware evalaution setting that enables a more targeted assessment of interaction understanding. Experimental results demonstrate that our approach outperforms prior methods in modeling complex object interactions for referring video object segmentation task, establishing a strong foundation for future research in interaction-centric video understanding. Our project page is available at https://cvlab-kaist.github.io/InterRVOS.

  • 3 authors
·
Jun 2, 2025

Temporal Prompting Matters: Rethinking Referring Video Object Segmentation

Referring Video Object Segmentation (RVOS) aims to segment the object referred to by the query sentence in the video. Most existing methods require end-to-end training with dense mask annotations, which could be computation-consuming and less scalable. In this work, we rethink the RVOS problem and aim to investigate the key to this task. Based on existing foundation segmentation models, we decompose the RVOS task into referring, video, and segmentation factors, and propose a Temporal Prompt Generation and Selection (Tenet) framework to address the referring and video factors while leaving the segmentation problem to foundation models. To efficiently adapt image-based foundation segmentation models to referring video object segmentation, we leverage off-the-shelf object detectors and trackers to produce temporal prompts associated with the referring sentence. While high-quality temporal prompts could be produced, they can not be easily identified from confidence scores. To tackle this issue, we propose Prompt Preference Learning to evaluate the quality of the produced temporal prompts. By taking such prompts to instruct image-based foundation segmentation models, we would be able to produce high-quality masks for the referred object, enabling efficient model adaptation to referring video object segmentation. Experiments on RVOS benchmarks demonstrate the effectiveness of the Tenet framework.

  • 6 authors
·
Oct 8, 2025 2

Language as Queries for Referring Video Object Segmentation

Referring video object segmentation (R-VOS) is an emerging cross-modal task that aims to segment the target object referred by a language expression in all video frames. In this work, we propose a simple and unified framework built upon Transformer, termed ReferFormer. It views the language as queries and directly attends to the most relevant regions in the video frames. Concretely, we introduce a small set of object queries conditioned on the language as the input to the Transformer. In this manner, all the queries are obligated to find the referred objects only. They are eventually transformed into dynamic kernels which capture the crucial object-level information, and play the role of convolution filters to generate the segmentation masks from feature maps. The object tracking is achieved naturally by linking the corresponding queries across frames. This mechanism greatly simplifies the pipeline and the end-to-end framework is significantly different from the previous methods. Extensive experiments on Ref-Youtube-VOS, Ref-DAVIS17, A2D-Sentences and JHMDB-Sentences show the effectiveness of ReferFormer. On Ref-Youtube-VOS, Refer-Former achieves 55.6J&F with a ResNet-50 backbone without bells and whistles, which exceeds the previous state-of-the-art performance by 8.4 points. In addition, with the strong Swin-Large backbone, ReferFormer achieves the best J&F of 64.2 among all existing methods. Moreover, we show the impressive results of 55.0 mAP and 43.7 mAP on A2D-Sentences andJHMDB-Sentences respectively, which significantly outperforms the previous methods by a large margin. Code is publicly available at https://github.com/wjn922/ReferFormer.

  • 5 authors
·
Jan 3, 2022

Real-Time Referring Expression Comprehension by Single-Stage Grounding Network

In this paper, we propose a novel end-to-end model, namely Single-Stage Grounding network (SSG), to localize the referent given a referring expression within an image. Different from previous multi-stage models which rely on object proposals or detected regions, our proposed model aims to comprehend a referring expression through one single stage without resorting to region proposals as well as the subsequent region-wise feature extraction. Specifically, a multimodal interactor is proposed to summarize the local region features regarding the referring expression attentively. Subsequently, a grounder is proposed to localize the referring expression within the given image directly. For further improving the localization accuracy, a guided attention mechanism is proposed to enforce the grounder to focus on the central region of the referent. Moreover, by exploiting and predicting visual attribute information, the grounder can further distinguish the referent objects within an image and thereby improve the model performance. Experiments on RefCOCO, RefCOCO+, and RefCOCOg datasets demonstrate that our proposed SSG without relying on any region proposals can achieve comparable performance with other advanced models. Furthermore, our SSG outperforms the previous models and achieves the state-of-art performance on the ReferItGame dataset. More importantly, our SSG is time efficient and can ground a referring expression in a 416*416 image from the RefCOCO dataset in 25ms (40 referents per second) on average with a Nvidia Tesla P40, accomplishing more than 9* speedups over the existing multi-stage models.

  • 6 authors
·
Dec 8, 2018

Beyond One-to-One: Rethinking the Referring Image Segmentation

Referring image segmentation aims to segment the target object referred by a natural language expression. However, previous methods rely on the strong assumption that one sentence must describe one target in the image, which is often not the case in real-world applications. As a result, such methods fail when the expressions refer to either no objects or multiple objects. In this paper, we address this issue from two perspectives. First, we propose a Dual Multi-Modal Interaction (DMMI) Network, which contains two decoder branches and enables information flow in two directions. In the text-to-image decoder, text embedding is utilized to query the visual feature and localize the corresponding target. Meanwhile, the image-to-text decoder is implemented to reconstruct the erased entity-phrase conditioned on the visual feature. In this way, visual features are encouraged to contain the critical semantic information about target entity, which supports the accurate segmentation in the text-to-image decoder in turn. Secondly, we collect a new challenging but realistic dataset called Ref-ZOM, which includes image-text pairs under different settings. Extensive experiments demonstrate our method achieves state-of-the-art performance on different datasets, and the Ref-ZOM-trained model performs well on various types of text inputs. Codes and datasets are available at https://github.com/toggle1995/RIS-DMMI.

  • 7 authors
·
Aug 26, 2023

RefAM: Attention Magnets for Zero-Shot Referral Segmentation

Most existing approaches to referring segmentation achieve strong performance only through fine-tuning or by composing multiple pre-trained models, often at the cost of additional training and architectural modifications. Meanwhile, large-scale generative diffusion models encode rich semantic information, making them attractive as general-purpose feature extractors. In this work, we introduce a new method that directly exploits features, attention scores, from diffusion transformers for downstream tasks, requiring neither architectural modifications nor additional training. To systematically evaluate these features, we extend benchmarks with vision-language grounding tasks spanning both images and videos. Our key insight is that stop words act as attention magnets: they accumulate surplus attention and can be filtered to reduce noise. Moreover, we identify global attention sinks (GAS) emerging in deeper layers and show that they can be safely suppressed or redirected onto auxiliary tokens, leading to sharper and more accurate grounding maps. We further propose an attention redistribution strategy, where appended stop words partition background activations into smaller clusters, yielding sharper and more localized heatmaps. Building on these findings, we develop RefAM, a simple training-free grounding framework that combines cross-attention maps, GAS handling, and redistribution. Across zero-shot referring image and video segmentation benchmarks, our approach consistently outperforms prior methods, establishing a new state of the art without fine-tuning or additional components.

  • 7 authors
·
Sep 26, 2025 2

LGD: Leveraging Generative Descriptions for Zero-Shot Referring Image Segmentation

Zero-shot referring image segmentation aims to locate and segment the target region based on a referring expression, with the primary challenge of aligning and matching semantics across visual and textual modalities without training. Previous works address this challenge by utilizing Vision-Language Models and mask proposal networks for region-text matching. However, this paradigm may lead to incorrect target localization due to the inherent ambiguity and diversity of free-form referring expressions. To alleviate this issue, we present LGD (Leveraging Generative Descriptions), a framework that utilizes the advanced language generation capabilities of Multi-Modal Large Language Models to enhance region-text matching performance in Vision-Language Models. Specifically, we first design two kinds of prompts, the attribute prompt and the surrounding prompt, to guide the Multi-Modal Large Language Models in generating descriptions related to the crucial attributes of the referent object and the details of surrounding objects, referred to as attribute description and surrounding description, respectively. Secondly, three visual-text matching scores are introduced to evaluate the similarity between instance-level visual features and textual features, which determines the mask most associated with the referring expression. The proposed method achieves new state-of-the-art performance on three public datasets RefCOCO, RefCOCO+ and RefCOCOg, with maximum improvements of 9.97% in oIoU and 11.29% in mIoU compared to previous methods.

  • 6 authors
·
Apr 19, 2025

CAPE: A CLIP-Aware Pointing Ensemble of Complementary Heatmap Cues for Embodied Reference Understanding

We address the problem of Embodied Reference Understanding, which involves predicting the object that a person in the scene is referring to through both pointing gesture and language. Accurately identifying the referent requires multimodal understanding: integrating textual instructions, visual pointing, and scene context. However, existing methods often struggle to effectively leverage visual clues for disambiguation. We also observe that, while the referent is often aligned with the head-to-fingertip line, it occasionally aligns more closely with the wrist-to-fingertip line. Therefore, relying on a single line assumption can be overly simplistic and may lead to suboptimal performance. To address this, we propose a dual-model framework, where one model learns from the head-to-fingertip direction and the other from the wrist-to-fingertip direction. We further introduce a Gaussian ray heatmap representation of these lines and use them as input to provide a strong supervisory signal that encourages the model to better attend to pointing cues. To combine the strengths of both models, we present the CLIP-Aware Pointing Ensemble module, which performs a hybrid ensemble based on CLIP features. Additionally, we propose an object center prediction head as an auxiliary task to further enhance referent localization. We validate our approach through extensive experiments and analysis on the benchmark YouRefIt dataset, achieving an improvement of approximately 4 mAP at the 0.25 IoU threshold.

  • 4 authors
·
Jul 29, 2025

AeroReformer: Aerial Referring Transformer for UAV-based Referring Image Segmentation

As a novel and challenging task, referring segmentation combines computer vision and natural language processing to localize and segment objects based on textual descriptions. While referring image segmentation (RIS) has been extensively studied in natural images, little attention has been given to aerial imagery, particularly from unmanned aerial vehicles (UAVs). The unique challenges of UAV imagery, including complex spatial scales, occlusions, and varying object orientations, render existing RIS approaches ineffective. A key limitation has been the lack of UAV-specific datasets, as manually annotating pixel-level masks and generating textual descriptions is labour-intensive and time-consuming. To address this gap, we design an automatic labelling pipeline that leverages pre-existing UAV segmentation datasets and Multimodal Large Language Models (MLLM) for generating textual descriptions. Furthermore, we propose Aerial Referring Transformer (AeroReformer), a novel framework for UAV referring image segmentation (UAV-RIS), featuring a Vision-Language Cross-Attention Module (VLCAM) for effective cross-modal understanding and a Rotation-Aware Multi-Scale Fusion (RAMSF) decoder to enhance segmentation accuracy in aerial scenes. Extensive experiments on two newly developed datasets demonstrate the superiority of AeroReformer over existing methods, establishing a new benchmark for UAV-RIS. The datasets and code will be publicly available at: https://github.com/lironui/AeroReformer.

  • 2 authors
·
Feb 23, 2025

Discriminative Triad Matching and Reconstruction for Weakly Referring Expression Grounding

In this paper, we are tackling the weakly-supervised referring expression grounding task, for the localization of a referent object in an image according to a query sentence, where the mapping between image regions and queries are not available during the training stage. In traditional methods, an object region that best matches the referring expression is picked out, and then the query sentence is reconstructed from the selected region, where the reconstruction difference serves as the loss for back-propagation. The existing methods, however, conduct both the matching and the reconstruction approximately as they ignore the fact that the matching correctness is unknown. To overcome this limitation, a discriminative triad is designed here as the basis to the solution, through which a query can be converted into one or multiple discriminative triads in a very scalable way. Based on the discriminative triad, we further propose the triad-level matching and reconstruction modules which are lightweight yet effective for the weakly-supervised training, making it three times lighter and faster than the previous state-of-the-art methods. One important merit of our work is its superior performance despite the simple and neat design. Specifically, the proposed method achieves a new state-of-the-art accuracy when evaluated on RefCOCO (39.21%), RefCOCO+ (39.18%) and RefCOCOg (43.24%) datasets, that is 4.17%, 4.08% and 7.8% higher than the previous one, respectively.

  • 5 authors
·
Jun 7, 2021

MeViS: A Multi-Modal Dataset for Referring Motion Expression Video Segmentation

This paper proposes a large-scale multi-modal dataset for referring motion expression video segmentation, focusing on segmenting and tracking target objects in videos based on language description of objects' motions. Existing referring video segmentation datasets often focus on salient objects and use language expressions rich in static attributes, potentially allowing the target object to be identified in a single frame. Such datasets underemphasize the role of motion in both videos and languages. To explore the feasibility of using motion expressions and motion reasoning clues for pixel-level video understanding, we introduce MeViS, a dataset containing 33,072 human-annotated motion expressions in both text and audio, covering 8,171 objects in 2,006 videos of complex scenarios. We benchmark 15 existing methods across 4 tasks supported by MeViS, including 6 referring video object segmentation (RVOS) methods, 3 audio-guided video object segmentation (AVOS) methods, 2 referring multi-object tracking (RMOT) methods, and 4 video captioning methods for the newly introduced referring motion expression generation (RMEG) task. The results demonstrate weaknesses and limitations of existing methods in addressing motion expression-guided video understanding. We further analyze the challenges and propose an approach LMPM++ for RVOS/AVOS/RMOT that achieves new state-of-the-art results. Our dataset provides a platform that facilitates the development of motion expression-guided video understanding algorithms in complex video scenes. The proposed MeViS dataset and the method's source code are publicly available at https://henghuiding.com/MeViS/

FudanCVL FudanCVL
·
Dec 11, 2025 1

OneRef: Unified One-tower Expression Grounding and Segmentation with Mask Referring Modeling

Constrained by the separate encoding of vision and language, existing grounding and referring segmentation works heavily rely on bulky Transformer-based fusion en-/decoders and a variety of early-stage interaction technologies. Simultaneously, the current mask visual language modeling (MVLM) fails to capture the nuanced referential relationship between image-text in referring tasks. In this paper, we propose OneRef, a minimalist referring framework built on the modality-shared one-tower transformer that unifies the visual and linguistic feature spaces. To modeling the referential relationship, we introduce a novel MVLM paradigm called Mask Referring Modeling (MRefM), which encompasses both referring-aware mask image modeling and referring-aware mask language modeling. Both modules not only reconstruct modality-related content but also cross-modal referring content. Within MRefM, we propose a referring-aware dynamic image masking strategy that is aware of the referred region rather than relying on fixed ratios or generic random masking schemes. By leveraging the unified visual language feature space and incorporating MRefM's ability to model the referential relations, our approach enables direct regression of the referring results without resorting to various complex techniques. Our method consistently surpasses existing approaches and achieves SoTA performance on both grounding and segmentation tasks, providing valuable insights for future research. Our code and models are available at https://github.com/linhuixiao/OneRef.

  • 5 authors
·
Oct 10, 2024

DeRIS: Decoupling Perception and Cognition for Enhanced Referring Image Segmentation through Loopback Synergy

Referring Image Segmentation (RIS) is a challenging task that aims to segment objects in an image based on natural language expressions. While prior studies have predominantly concentrated on improving vision-language interactions and achieving fine-grained localization, a systematic analysis of the fundamental bottlenecks in existing RIS frameworks remains underexplored. To bridge this gap, we propose DeRIS, a novel framework that decomposes RIS into two key components: perception and cognition. This modular decomposition facilitates a systematic analysis of the primary bottlenecks impeding RIS performance. Our findings reveal that the predominant limitation lies not in perceptual deficiencies, but in the insufficient multi-modal cognitive capacity of current models. To mitigate this, we propose a Loopback Synergy mechanism, which enhances the synergy between the perception and cognition modules, thereby enabling precise segmentation while simultaneously improving robust image-text comprehension. Additionally, we analyze and introduce a simple non-referent sample conversion data augmentation to address the long-tail distribution issue related to target existence judgement in general scenarios. Notably, DeRIS demonstrates inherent adaptability to both non- and multi-referents scenarios without requiring specialized architectural modifications, enhancing its general applicability. The codes and models are available at https://github.com/Dmmm1997/DeRIS.

  • 7 authors
·
Jul 2, 2025

Referring Image Segmentation Using Text Supervision

Existing Referring Image Segmentation (RIS) methods typically require expensive pixel-level or box-level annotations for supervision. In this paper, we observe that the referring texts used in RIS already provide sufficient information to localize the target object. Hence, we propose a novel weakly-supervised RIS framework to formulate the target localization problem as a classification process to differentiate between positive and negative text expressions. While the referring text expressions for an image are used as positive expressions, the referring text expressions from other images can be used as negative expressions for this image. Our framework has three main novelties. First, we propose a bilateral prompt method to facilitate the classification process, by harmonizing the domain discrepancy between visual and linguistic features. Second, we propose a calibration method to reduce noisy background information and improve the correctness of the response maps for target object localization. Third, we propose a positive response map selection strategy to generate high-quality pseudo-labels from the enhanced response maps, for training a segmentation network for RIS inference. For evaluation, we propose a new metric to measure localization accuracy. Experiments on four benchmarks show that our framework achieves promising performances to existing fully-supervised RIS methods while outperforming state-of-the-art weakly-supervised methods adapted from related areas. Code is available at https://github.com/fawnliu/TRIS.

  • 8 authors
·
Aug 28, 2023

Long-RVOS: A Comprehensive Benchmark for Long-term Referring Video Object Segmentation

Referring video object segmentation (RVOS) aims to identify, track and segment the objects in a video based on language descriptions, which has received great attention in recent years. However, existing datasets remain focus on short video clips within several seconds, with salient objects visible in most frames. To advance the task towards more practical scenarios, we introduce Long-RVOS, a large-scale benchmark for long-term referring video object segmentation. Long-RVOS contains 2,000+ videos of an average duration exceeding 60 seconds, covering a variety of objects that undergo occlusion, disappearance-reappearance and shot changing. The objects are manually annotated with three different types of descriptions to individually evaluate the understanding of static attributes, motion patterns and spatiotemporal relationships. Moreover, unlike previous benchmarks that rely solely on the per-frame spatial evaluation, we introduce two new metrics to assess the temporal and spatiotemporal consistency. We benchmark 6 state-of-the-art methods on Long-RVOS. The results show that current approaches struggle severely with the long-video challenges. To address this, we further propose ReferMo, a promising baseline method that integrates motion information to expand the temporal receptive field, and employs a local-to-global architecture to capture both short-term dynamics and long-term dependencies. Despite simplicity, ReferMo achieves significant improvements over current methods in long-term scenarios. We hope that Long-RVOS and our baseline can drive future RVOS research towards tackling more realistic and long-form videos.

  • 7 authors
·
May 19, 2025

Grounding Referring Expressions in Images by Variational Context

We focus on grounding (i.e., localizing or linking) referring expressions in images, e.g., "largest elephant standing behind baby elephant". This is a general yet challenging vision-language task since it does not only require the localization of objects, but also the multimodal comprehension of context --- visual attributes (e.g., "largest", "baby") and relationships (e.g., "behind") that help to distinguish the referent from other objects, especially those of the same category. Due to the exponential complexity involved in modeling the context associated with multiple image regions, existing work oversimplifies this task to pairwise region modeling by multiple instance learning. In this paper, we propose a variational Bayesian method, called Variational Context, to solve the problem of complex context modeling in referring expression grounding. Our model exploits the reciprocal relation between the referent and context, i.e., either of them influences the estimation of the posterior distribution of the other, and thereby the search space of context can be greatly reduced, resulting in better localization of referent. We develop a novel cue-specific language-vision embedding network that learns this reciprocity model end-to-end. We also extend the model to the unsupervised setting where no annotation for the referent is available. Extensive experiments on various benchmarks show consistent improvement over state-of-the-art methods in both supervised and unsupervised settings.

  • 3 authors
·
Dec 5, 2017

Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs

Multi-modal Large Language Models (MLLMs) have shown remarkable capabilities in many vision-language tasks. Nevertheless, most MLLMs still lack the Referential Comprehension (RC) ability to identify a specific object or area in images, limiting their application in fine-grained perception tasks. This paper proposes a novel method to enhance the RC capability for MLLMs. Our model represents the referring object in the image using the coordinates of its bounding box and converts the coordinates into texts in a specific format. This allows the model to treat the coordinates as natural language. Moreover, we construct the instruction tuning dataset with various designed RC tasks at a low cost by unleashing the potential of annotations in existing datasets. To further boost the RC ability of the model, we propose a self-consistent bootstrapping method that extends dense object annotations of a dataset into high-quality referring-expression-bounding-box pairs. The model is trained end-to-end with a parameter-efficient tuning framework that allows both modalities to benefit from multi-modal instruction tuning. This framework requires fewer trainable parameters and less training data. Experimental results on conventional vision-language and RC tasks demonstrate the superior performance of our method. For instance, our model exhibits a 12.0% absolute accuracy improvement over Instruct-BLIP on VSR and surpasses Kosmos-2 by 24.7% on RefCOCO_val under zero-shot settings. We also attain the top position on the leaderboard of MMBench. The models, datasets, and codes are publicly available at https://github.com/SY-Xuan/Pink

  • 4 authors
·
Oct 1, 2023

LESS: Label-Efficient and Single-Stage Referring 3D Segmentation

Referring 3D Segmentation is a visual-language task that segments all points of the specified object from a 3D point cloud described by a sentence of query. Previous works perform a two-stage paradigm, first conducting language-agnostic instance segmentation then matching with given text query. However, the semantic concepts from text query and visual cues are separately interacted during the training, and both instance and semantic labels for each object are required, which is time consuming and human-labor intensive. To mitigate these issues, we propose a novel Referring 3D Segmentation pipeline, Label-Efficient and Single-Stage, dubbed LESS, which is only under the supervision of efficient binary mask. Specifically, we design a Point-Word Cross-Modal Alignment module for aligning the fine-grained features of points and textual embedding. Query Mask Predictor module and Query-Sentence Alignment module are introduced for coarse-grained alignment between masks and query. Furthermore, we propose an area regularization loss, which coarsely reduces irrelevant background predictions on a large scale. Besides, a point-to-point contrastive loss is proposed concentrating on distinguishing points with subtly similar features. Through extensive experiments, we achieve state-of-the-art performance on ScanRefer dataset by surpassing the previous methods about 3.7% mIoU using only binary labels. Code is available at https://github.com/mellody11/LESS.

  • 7 authors
·
Oct 17, 2024

RefEgo: Referring Expression Comprehension Dataset from First-Person Perception of Ego4D

Grounding textual expressions on scene objects from first-person views is a truly demanding capability in developing agents that are aware of their surroundings and behave following intuitive text instructions. Such capability is of necessity for glass-devices or autonomous robots to localize referred objects in the real-world. In the conventional referring expression comprehension tasks of images, however, datasets are mostly constructed based on the web-crawled data and don't reflect diverse real-world structures on the task of grounding textual expressions in diverse objects in the real world. Recently, a massive-scale egocentric video dataset of Ego4D was proposed. Ego4D covers around the world diverse real-world scenes including numerous indoor and outdoor situations such as shopping, cooking, walking, talking, manufacturing, etc. Based on egocentric videos of Ego4D, we constructed a broad coverage of the video-based referring expression comprehension dataset: RefEgo. Our dataset includes more than 12k video clips and 41 hours for video-based referring expression comprehension annotation. In experiments, we combine the state-of-the-art 2D referring expression comprehension models with the object tracking algorithm, achieving the video-wise referred object tracking even in difficult conditions: the referred object becomes out-of-frame in the middle of the video or multiple similar objects are presented in the video.

  • 3 authors
·
Aug 23, 2023

RefHCM: A Unified Model for Referring Perceptions in Human-Centric Scenarios

Human-centric perceptions play a crucial role in real-world applications. While recent human-centric works have achieved impressive progress, these efforts are often constrained to the visual domain and lack interaction with human instructions, limiting their applicability in broader scenarios such as chatbots and sports analysis. This paper introduces Referring Human Perceptions, where a referring prompt specifies the person of interest in an image. To tackle the new task, we propose RefHCM (Referring Human-Centric Model), a unified framework to integrate a wide range of human-centric referring tasks. Specifically, RefHCM employs sequence mergers to convert raw multimodal data -- including images, text, coordinates, and parsing maps -- into semantic tokens. This standardized representation enables RefHCM to reformulate diverse human-centric referring tasks into a sequence-to-sequence paradigm, solved using a plain encoder-decoder transformer architecture. Benefiting from a unified learning strategy, RefHCM effectively facilitates knowledge transfer across tasks and exhibits unforeseen capabilities in handling complex reasoning. This work represents the first attempt to address referring human perceptions with a general-purpose framework, while simultaneously establishing a corresponding benchmark that sets new standards for the field. Extensive experiments showcase RefHCM's competitive and even superior performance across multiple human-centric referring tasks. The code and data are publicly at https://github.com/JJJYmmm/RefHCM.

  • 5 authors
·
Dec 19, 2024

UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces

The reference-based object segmentation tasks, namely referring image segmentation (RIS), few-shot image segmentation (FSS), referring video object segmentation (RVOS), and video object segmentation (VOS), aim to segment a specific object by utilizing either language or annotated masks as references. Despite significant progress in each respective field, current methods are task-specifically designed and developed in different directions, which hinders the activation of multi-task capabilities for these tasks. In this work, we end the current fragmented situation and propose UniRef++ to unify the four reference-based object segmentation tasks with a single architecture. At the heart of our approach is the proposed UniFusion module which performs multiway-fusion for handling different tasks with respect to their specified references. And a unified Transformer architecture is then adopted for achieving instance-level segmentation. With the unified designs, UniRef++ can be jointly trained on a broad range of benchmarks and can flexibly complete multiple tasks at run-time by specifying the corresponding references. We evaluate our unified models on various benchmarks. Extensive experimental results indicate that our proposed UniRef++ achieves state-of-the-art performance on RIS and RVOS, and performs competitively on FSS and VOS with a parameter-shared network. Moreover, we showcase that the proposed UniFusion module could be easily incorporated into the current advanced foundation model SAM and obtain satisfactory results with parameter-efficient finetuning. Codes and models are available at https://github.com/FoundationVision/UniRef.

  • 6 authors
·
Dec 25, 2023 1

DesCo: Learning Object Recognition with Rich Language Descriptions

Recent development in vision-language approaches has instigated a paradigm shift in learning visual recognition models from language supervision. These approaches align objects with language queries (e.g. "a photo of a cat") and improve the models' adaptability to identify novel objects and domains. Recently, several studies have attempted to query these models with complex language expressions that include specifications of fine-grained semantic details, such as attributes, shapes, textures, and relations. However, simply incorporating language descriptions as queries does not guarantee accurate interpretation by the models. In fact, our experiments show that GLIP, the state-of-the-art vision-language model for object detection, often disregards contextual information in the language descriptions and instead relies heavily on detecting objects solely by their names. To tackle the challenges, we propose a new description-conditioned (DesCo) paradigm of learning object recognition models with rich language descriptions consisting of two major innovations: 1) we employ a large language model as a commonsense knowledge engine to generate rich language descriptions of objects based on object names and the raw image-text caption; 2) we design context-sensitive queries to improve the model's ability in deciphering intricate nuances embedded within descriptions and enforce the model to focus on context rather than object names alone. On two novel object detection benchmarks, LVIS and OminiLabel, under the zero-shot detection setting, our approach achieves 34.8 APr minival (+9.1) and 29.3 AP (+3.6), respectively, surpassing the prior state-of-the-art models, GLIP and FIBER, by a large margin.

  • 4 authors
·
Jun 24, 2023

Unleashing Hierarchical Reasoning: An LLM-Driven Framework for Training-Free Referring Video Object Segmentation

Referring Video Object Segmentation (RVOS) aims to segment an object of interest throughout a video based on a language description. The prominent challenge lies in aligning static text with dynamic visual content, particularly when objects exhibiting similar appearances with inconsistent motion and poses. However, current methods often rely on a holistic visual-language fusion that struggles with complex, compositional descriptions. In this paper, we propose PARSE-VOS, a novel, training-free framework powered by Large Language Models (LLMs), for a hierarchical, coarse-to-fine reasoning across text and video domains. Our approach begins by parsing the natural language query into structured semantic commands. Next, we introduce a spatio-temporal grounding module that generates all candidate trajectories for all potential target objects, guided by the parsed semantics. Finally, a hierarchical identification module select the correct target through a two-stage reasoning process: it first performs coarse-grained motion reasoning with an LLM to narrow down candidates; if ambiguity remains, a fine-grained pose verification stage is conditionally triggered to disambiguate. The final output is an accurate segmentation mask for the target object. PARSE-VOS achieved state-of-the-art performance on three major benchmarks: Ref-YouTube-VOS, Ref-DAVIS17, and MeViS.

  • 8 authors
·
Sep 6, 2025

Generalized Referring Expression Segmentation on Aerial Photos

Referring expression segmentation is a fundamental task in computer vision that integrates natural language understanding with precise visual localization of target regions. Considering aerial imagery (e.g., modern aerial photos collected through drones, historical photos from aerial archives, high-resolution satellite imagery, etc.) presents unique challenges because spatial resolution varies widely across datasets, the use of color is not consistent, targets often shrink to only a few pixels, and scenes contain very high object densities and objects with partial occlusions. This work presents Aerial-D, a new large-scale referring expression segmentation dataset for aerial imagery, comprising 37,288 images with 1,522,523 referring expressions that cover 259,709 annotated targets, spanning across individual object instances, groups of instances, and semantic regions covering 21 distinct classes that range from vehicles and infrastructure to land coverage types. The dataset was constructed through a fully automatic pipeline that combines systematic rule-based expression generation with a Large Language Model (LLM) enhancement procedure that enriched both the linguistic variety and the focus on visual details within the referring expressions. Filters were additionally used to simulate historic imaging conditions for each scene. We adopted the RSRefSeg architecture, and trained models on Aerial-D together with prior aerial datasets, yielding unified instance and semantic segmentation from text for both modern and historical images. Results show that the combined training achieves competitive performance on contemporary benchmarks, while maintaining strong accuracy under monochrome, sepia, and grainy degradations that appear in archival aerial photography. The dataset, trained models, and complete software pipeline are publicly available at https://luispl77.github.io/aerial-d .

inesc-id INESC-ID Lisboa
·
Dec 8, 2025

Chat-3D v2: Bridging 3D Scene and Large Language Models with Object Identifiers

Recent research has evidenced the significant potentials of Large Language Models (LLMs) in handling challenging tasks within 3D scenes. However, current models are constrained to addressing object-centric tasks, where each question-answer pair focuses solely on an individual object. In real-world applications, users may pose queries involving multiple objects or expect for answers that precisely reference various objects. We introduce the use of object identifiers to freely reference objects during a conversation. While this solution appears straightforward, it presents two main challenges: 1) How to establish a reliable one-to-one correspondence between each object and its identifier? 2) How to incorporate complex spatial relationships among dozens of objects into the embedding space of the LLM? To address these challenges, we propose a two-stage alignment method, which involves learning an attribute-aware token and a relation-aware token for each object. These tokens capture the object's attributes and spatial relationships with surrounding objects in the 3D scene. Once the alignment is established, we can fine-tune our model on various downstream tasks using instruction tuning. Experiments conducted on traditional datasets like ScanQA, ScanRefer, and Nr3D/Sr3D showcase the effectiveness of our proposed method. Additionally, we create a 3D scene captioning dataset annotated with rich object identifiers, with the assistant of GPT-4. This dataset aims to further explore the capability of object identifiers in effective object referencing and precise scene understanding.

  • 8 authors
·
Dec 13, 2023

RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder

Existing object detection frameworks are usually built on a single format of object/part representation, i.e., anchor/proposal rectangle boxes in RetinaNet and Faster R-CNN, center points in FCOS and RepPoints, and corner points in CornerNet. While these different representations usually drive the frameworks to perform well in different aspects, e.g., better classification or finer localization, it is in general difficult to combine these representations in a single framework to make good use of each strength, due to the heterogeneous or non-grid feature extraction by different representations. This paper presents an attention-based decoder module similar as that in Transformer~vaswani2017attention to bridge other representations into a typical object detector built on a single representation format, in an end-to-end fashion. The other representations act as a set of key instances to strengthen the main query representation features in the vanilla detectors. Novel techniques are proposed towards efficient computation of the decoder module, including a key sampling approach and a shared location embedding approach. The proposed module is named bridging visual representations (BVR). It can perform in-place and we demonstrate its broad effectiveness in bridging other representations into prevalent object detection frameworks, including RetinaNet, Faster R-CNN, FCOS and ATSS, where about 1.5sim3.0 AP improvements are achieved. In particular, we improve a state-of-the-art framework with a strong backbone by about 2.0 AP, reaching 52.7 AP on COCO test-dev. The resulting network is named RelationNet++. The code will be available at https://github.com/microsoft/RelationNet2.

  • 3 authors
·
Oct 29, 2020

Learning Visual Grounding from Generative Vision and Language Model

Visual grounding tasks aim to localize image regions based on natural language references. In this work, we explore whether generative VLMs predominantly trained on image-text data could be leveraged to scale up the text annotation of visual grounding data. We find that grounding knowledge already exists in generative VLM and can be elicited by proper prompting. We thus prompt a VLM to generate object-level descriptions by feeding it object regions from existing object detection datasets. We further propose attribute modeling to explicitly capture the important object attributes, and spatial relation modeling to capture inter-object relationship, both of which are common linguistic pattern in referring expression. Our constructed dataset (500K images, 1M objects, 16M referring expressions) is one of the largest grounding datasets to date, and the first grounding dataset with purely model-generated queries and human-annotated objects. To verify the quality of this data, we conduct zero-shot transfer experiments to the popular RefCOCO benchmarks for both referring expression comprehension (REC) and segmentation (RES) tasks. On both tasks, our model significantly outperform the state-of-the-art approaches without using human annotated visual grounding data. Our results demonstrate the promise of generative VLM to scale up visual grounding in the real world. Code and models will be released.

  • 5 authors
·
Jul 18, 2024

RESAnything: Attribute Prompting for Arbitrary Referring Segmentation

We present an open-vocabulary and zero-shot method for arbitrary referring expression segmentation (RES), targeting input expressions that are more general than what prior works were designed to handle. Specifically, our inputs encompass both object- and part-level labels as well as implicit references pointing to properties or qualities of object/part function, design, style, material, etc. Our model, coined RESAnything, leverages Chain-of-Thoughts (CoT) reasoning, where the key idea is attribute prompting. We generate detailed descriptions of object/part attributes including shape, color, and location for potential segment proposals through systematic prompting of a large language model (LLM), where the proposals are produced by a foundational image segmentation model. Our approach encourages deep reasoning about object or part attributes related to function, style, design, etc., enabling the system to handle implicit queries without any part annotations for training or fine-tuning. As the first zero-shot and LLM-based RES method, RESAnything achieves clearly superior performance among zero-shot methods on traditional RES benchmarks and significantly outperforms existing methods on challenging scenarios involving implicit queries and complex part-level relations. Finally, we contribute a new benchmark dataset to offer ~3K carefully curated RES instances to assess part-level, arbitrary RES solutions.

  • 2 authors
·
May 3, 2025

Learning Cross-Modal Affinity for Referring Video Object Segmentation Targeting Limited Samples

Referring video object segmentation (RVOS), as a supervised learning task, relies on sufficient annotated data for a given scene. However, in more realistic scenarios, only minimal annotations are available for a new scene, which poses significant challenges to existing RVOS methods. With this in mind, we propose a simple yet effective model with a newly designed cross-modal affinity (CMA) module based on a Transformer architecture. The CMA module builds multimodal affinity with a few samples, thus quickly learning new semantic information, and enabling the model to adapt to different scenarios. Since the proposed method targets limited samples for new scenes, we generalize the problem as - few-shot referring video object segmentation (FS-RVOS). To foster research in this direction, we build up a new FS-RVOS benchmark based on currently available datasets. The benchmark covers a wide range and includes multiple situations, which can maximally simulate real-world scenarios. Extensive experiments show that our model adapts well to different scenarios with only a few samples, reaching state-of-the-art performance on the benchmark. On Mini-Ref-YouTube-VOS, our model achieves an average performance of 53.1 J and 54.8 F, which are 10% better than the baselines. Furthermore, we show impressive results of 77.7 J and 74.8 F on Mini-Ref-SAIL-VOS, which are significantly better than the baselines. Code is publicly available at https://github.com/hengliusky/Few_shot_RVOS.

  • 5 authors
·
Sep 5, 2023

MeViS: A Large-scale Benchmark for Video Segmentation with Motion Expressions

This paper strives for motion expressions guided video segmentation, which focuses on segmenting objects in video content based on a sentence describing the motion of the objects. Existing referring video object datasets typically focus on salient objects and use language expressions that contain excessive static attributes that could potentially enable the target object to be identified in a single frame. These datasets downplay the importance of motion in video content for language-guided video object segmentation. To investigate the feasibility of using motion expressions to ground and segment objects in videos, we propose a large-scale dataset called MeViS, which contains numerous motion expressions to indicate target objects in complex environments. We benchmarked 5 existing referring video object segmentation (RVOS) methods and conducted a comprehensive comparison on the MeViS dataset. The results show that current RVOS methods cannot effectively address motion expression-guided video segmentation. We further analyze the challenges and propose a baseline approach for the proposed MeViS dataset. The goal of our benchmark is to provide a platform that enables the development of effective language-guided video segmentation algorithms that leverage motion expressions as a primary cue for object segmentation in complex video scenes. The proposed MeViS dataset has been released at https://henghuiding.github.io/MeViS.

  • 5 authors
·
Aug 16, 2023

End-to-End Referring Video Object Segmentation with Multimodal Transformers

The referring video object segmentation task (RVOS) involves segmentation of a text-referred object instance in the frames of a given video. Due to the complex nature of this multimodal task, which combines text reasoning, video understanding, instance segmentation and tracking, existing approaches typically rely on sophisticated pipelines in order to tackle it. In this paper, we propose a simple Transformer-based approach to RVOS. Our framework, termed Multimodal Tracking Transformer (MTTR), models the RVOS task as a sequence prediction problem. Following recent advancements in computer vision and natural language processing, MTTR is based on the realization that video and text can be processed together effectively and elegantly by a single multimodal Transformer model. MTTR is end-to-end trainable, free of text-related inductive bias components and requires no additional mask-refinement post-processing steps. As such, it simplifies the RVOS pipeline considerably compared to existing methods. Evaluation on standard benchmarks reveals that MTTR significantly outperforms previous art across multiple metrics. In particular, MTTR shows impressive +5.7 and +5.0 mAP gains on the A2D-Sentences and JHMDB-Sentences datasets respectively, while processing 76 frames per second. In addition, we report strong results on the public validation set of Refer-YouTube-VOS, a more challenging RVOS dataset that has yet to receive the attention of researchers. The code to reproduce our experiments is available at https://github.com/mttr2021/MTTR

  • 3 authors
·
Nov 29, 2021

RIS-LAD: A Benchmark and Model for Referring Low-Altitude Drone Image Segmentation

Referring Image Segmentation (RIS), which aims to segment specific objects based on natural language descriptions, plays an essential role in vision-language understanding. Despite its progress in remote sensing applications, RIS in Low-Altitude Drone (LAD) scenarios remains underexplored. Existing datasets and methods are typically designed for high-altitude and static-view imagery. They struggle to handle the unique characteristics of LAD views, such as diverse viewpoints and high object density. To fill this gap, we present RIS-LAD, the first fine-grained RIS benchmark tailored for LAD scenarios. This dataset comprises 13,871 carefully annotated image-text-mask triplets collected from realistic drone footage, with a focus on small, cluttered, and multi-viewpoint scenes. It highlights new challenges absent in previous benchmarks, such as category drift caused by tiny objects and object drift under crowded same-class objects. To tackle these issues, we propose the Semantic-Aware Adaptive Reasoning Network (SAARN). Rather than uniformly injecting all linguistic features, SAARN decomposes and routes semantic information to different stages of the network. Specifically, the Category-Dominated Linguistic Enhancement (CDLE) aligns visual features with object categories during early encoding, while the Adaptive Reasoning Fusion Module (ARFM) dynamically selects semantic cues across scales to improve reasoning in complex scenes. The experimental evaluation reveals that RIS-LAD presents substantial challenges to state-of-the-art RIS algorithms, and also demonstrates the effectiveness of our proposed model in addressing these challenges. The dataset and code will be publicly released soon at: https://github.com/AHideoKuzeA/RIS-LAD/.

  • 6 authors
·
Jul 28, 2025

A Real-Time Cross-modality Correlation Filtering Method for Referring Expression Comprehension

Referring expression comprehension aims to localize the object instance described by a natural language expression. Current referring expression methods have achieved good performance. However, none of them is able to achieve real-time inference without accuracy drop. The reason for the relatively slow inference speed is that these methods artificially split the referring expression comprehension into two sequential stages including proposal generation and proposal ranking. It does not exactly conform to the habit of human cognition. To this end, we propose a novel Realtime Cross-modality Correlation Filtering method (RCCF). RCCF reformulates the referring expression comprehension as a correlation filtering process. The expression is first mapped from the language domain to the visual domain and then treated as a template (kernel) to perform correlation filtering on the image feature map. The peak value in the correlation heatmap indicates the center points of the target box. In addition, RCCF also regresses a 2-D object size and 2-D offset. The center point coordinates, object size and center point offset together to form the target bounding box. Our method runs at 40 FPS while achieving leading performance in RefClef, RefCOCO, RefCOCO+ and RefCOCOg benchmarks. In the challenging RefClef dataset, our methods almost double the state-of-the-art performance (34.70% increased to 63.79%). We hope this work can arouse more attention and studies to the new cross-modality correlation filtering framework as well as the one-stage framework for referring expression comprehension.

  • 7 authors
·
Sep 16, 2019

WiCo: Win-win Cooperation of Bottom-up and Top-down Referring Image Segmentation

The top-down and bottom-up methods are two mainstreams of referring segmentation, while both methods have their own intrinsic weaknesses. Top-down methods are chiefly disturbed by Polar Negative (PN) errors owing to the lack of fine-grained cross-modal alignment. Bottom-up methods are mainly perturbed by Inferior Positive (IP) errors due to the lack of prior object information. Nevertheless, we discover that two types of methods are highly complementary for restraining respective weaknesses but the direct average combination leads to harmful interference. In this context, we build Win-win Cooperation (WiCo) to exploit complementary nature of two types of methods on both interaction and integration aspects for achieving a win-win improvement. For the interaction aspect, Complementary Feature Interaction (CFI) provides fine-grained information to top-down branch and introduces prior object information to bottom-up branch for complementary feature enhancement. For the integration aspect, Gaussian Scoring Integration (GSI) models the gaussian performance distributions of two branches and weightedly integrates results by sampling confident scores from the distributions. With our WiCo, several prominent top-down and bottom-up combinations achieve remarkable improvements on three common datasets with reasonable extra costs, which justifies effectiveness and generality of our method.

  • 8 authors
·
Jun 19, 2023

Hybrid Global-Local Representation with Augmented Spatial Guidance for Zero-Shot Referring Image Segmentation

Recent advances in zero-shot referring image segmentation (RIS), driven by models such as the Segment Anything Model (SAM) and CLIP, have made substantial progress in aligning visual and textual information. Despite these successes, the extraction of precise and high-quality mask region representations remains a critical challenge, limiting the full potential of RIS tasks. In this paper, we introduce a training-free, hybrid global-local feature extraction approach that integrates detailed mask-specific features with contextual information from the surrounding area, enhancing mask region representation. To further strengthen alignment between mask regions and referring expressions, we propose a spatial guidance augmentation strategy that improves spatial coherence, which is essential for accurately localizing described areas. By incorporating multiple spatial cues, this approach facilitates more robust and precise referring segmentation. Extensive experiments on standard RIS benchmarks demonstrate that our method significantly outperforms existing zero-shot RIS models, achieving substantial performance gains. We believe our approach advances RIS tasks and establishes a versatile framework for region-text alignment, offering broader implications for cross-modal understanding and interaction. Code is available at https://github.com/fhgyuanshen/HybridGL .

  • 2 authors
·
Mar 31, 2025

Griffon: Spelling out All Object Locations at Any Granularity with Large Language Models

Replicating the innate human ability to detect all objects based on free-form texts at any granularity remains a formidable challenge for Vision-Language models. Current Large Vision Language Models (LVLMs) are predominantly constrained to grounding a single, pre-existing object, relying solely on data from Referring Expression Comprehension tasks. The limitation leads to a compromise in model design, necessitating the introduction of visual expert models or the integration of customized head structures. Beyond these constraints, our research delves into the untapped potential of LVLMs and uncover their inherent capability for basic object perception, allowing them to accurately identify and locate objects of interest. Building on this insight, we introduce a novel language-prompted localization dataset designed to fully unleash the capabilities of LVLMs in integrating fine-grained object perception with precise location awareness. More importantly, we present Griffon, a purely LVLM-based baseline, which does not require the introduction of any special tokens, expert models, or additional detection modules. It simply maintains a consistent structure with popular LVLMs by unifying data formats across various localization-related scenarios and is trained end-to-end through a well-designed pipeline. Comprehensive experiments demonstrate that Griffon not only achieves state-of-the-art performance on the fine-grained RefCOCO series but also approaches the capabilities of the expert model Faster RCNN on the detection benchmark MSCOCO.

  • 6 authors
·
Nov 24, 2023

MDETR -- Modulated Detection for End-to-End Multi-Modal Understanding

Multi-modal reasoning systems rely on a pre-trained object detector to extract regions of interest from the image. However, this crucial module is typically used as a black box, trained independently of the downstream task and on a fixed vocabulary of objects and attributes. This makes it challenging for such systems to capture the long tail of visual concepts expressed in free form text. In this paper we propose MDETR, an end-to-end modulated detector that detects objects in an image conditioned on a raw text query, like a caption or a question. We use a transformer-based architecture to reason jointly over text and image by fusing the two modalities at an early stage of the model. We pre-train the network on 1.3M text-image pairs, mined from pre-existing multi-modal datasets having explicit alignment between phrases in text and objects in the image. We then fine-tune on several downstream tasks such as phrase grounding, referring expression comprehension and segmentation, achieving state-of-the-art results on popular benchmarks. We also investigate the utility of our model as an object detector on a given label set when fine-tuned in a few-shot setting. We show that our pre-training approach provides a way to handle the long tail of object categories which have very few labelled instances. Our approach can be easily extended for visual question answering, achieving competitive performance on GQA and CLEVR. The code and models are available at https://github.com/ashkamath/mdetr.

  • 6 authors
·
Apr 26, 2021

GRES: Generalized Referring Expression Segmentation

Referring Expression Segmentation (RES) aims to generate a segmentation mask for the object described by a given language expression. Existing classic RES datasets and methods commonly support single-target expressions only, i.e., one expression refers to one target object. Multi-target and no-target expressions are not considered. This limits the usage of RES in practice. In this paper, we introduce a new benchmark called Generalized Referring Expression Segmentation (GRES), which extends the classic RES to allow expressions to refer to an arbitrary number of target objects. Towards this, we construct the first large-scale GRES dataset called gRefCOCO that contains multi-target, no-target, and single-target expressions. GRES and gRefCOCO are designed to be well-compatible with RES, facilitating extensive experiments to study the performance gap of the existing RES methods on the GRES task. In the experimental study, we find that one of the big challenges of GRES is complex relationship modeling. Based on this, we propose a region-based GRES baseline ReLA that adaptively divides the image into regions with sub-instance clues, and explicitly models the region-region and region-language dependencies. The proposed approach ReLA achieves new state-of-the-art performance on the both newly proposed GRES and classic RES tasks. The proposed gRefCOCO dataset and method are available at https://henghuiding.github.io/GRES.

  • 3 authors
·
Jun 1, 2023

V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results

Detecting objects in real-world scenes is a complex task due to various challenges, including the vast range of object categories, and potential encounters with previously unknown or unseen objects. The challenges necessitate the development of public benchmarks and challenges to advance the field of object detection. Inspired by the success of previous COCO and LVIS Challenges, we organize the V3Det Challenge 2024 in conjunction with the 4th Open World Vision Workshop: Visual Perception via Learning in an Open World (VPLOW) at CVPR 2024, Seattle, US. This challenge aims to push the boundaries of object detection research and encourage innovation in this field. The V3Det Challenge 2024 consists of two tracks: 1) Vast Vocabulary Object Detection: This track focuses on detecting objects from a large set of 13204 categories, testing the detection algorithm's ability to recognize and locate diverse objects. 2) Open Vocabulary Object Detection: This track goes a step further, requiring algorithms to detect objects from an open set of categories, including unknown objects. In the following sections, we will provide a comprehensive summary and analysis of the solutions submitted by participants. By analyzing the methods and solutions presented, we aim to inspire future research directions in vast vocabulary and open-vocabulary object detection, driving progress in this field. Challenge homepage: https://v3det.openxlab.org.cn/challenge

  • 34 authors
·
Jun 17, 2024

DetGPT: Detect What You Need via Reasoning

In recent years, the field of computer vision has seen significant advancements thanks to the development of large language models (LLMs). These models have enabled more effective and sophisticated interactions between humans and machines, paving the way for novel techniques that blur the lines between human and machine intelligence. In this paper, we introduce a new paradigm for object detection that we call reasoning-based object detection. Unlike conventional object detection methods that rely on specific object names, our approach enables users to interact with the system using natural language instructions, allowing for a higher level of interactivity. Our proposed method, called DetGPT, leverages state-of-the-art multi-modal models and open-vocabulary object detectors to perform reasoning within the context of the user's instructions and the visual scene. This enables DetGPT to automatically locate the object of interest based on the user's expressed desires, even if the object is not explicitly mentioned. For instance, if a user expresses a desire for a cold beverage, DetGPT can analyze the image, identify a fridge, and use its knowledge of typical fridge contents to locate the beverage. This flexibility makes our system applicable across a wide range of fields, from robotics and automation to autonomous driving. Overall, our proposed paradigm and DetGPT demonstrate the potential for more sophisticated and intuitive interactions between humans and machines. We hope that our proposed paradigm and approach will provide inspiration to the community and open the door to more interative and versatile object detection systems. Our project page is launched at detgpt.github.io.

  • 11 authors
·
May 23, 2023

Learning to Prompt for Open-Vocabulary Object Detection with Vision-Language Model

Recently, vision-language pre-training shows great potential in open-vocabulary object detection, where detectors trained on base classes are devised for detecting new classes. The class text embedding is firstly generated by feeding prompts to the text encoder of a pre-trained vision-language model. It is then used as the region classifier to supervise the training of a detector. The key element that leads to the success of this model is the proper prompt, which requires careful words tuning and ingenious design. To avoid laborious prompt engineering, there are some prompt representation learning methods being proposed for the image classification task, which however can only be sub-optimal solutions when applied to the detection task. In this paper, we introduce a novel method, detection prompt (DetPro), to learn continuous prompt representations for open-vocabulary object detection based on the pre-trained vision-language model. Different from the previous classification-oriented methods, DetPro has two highlights: 1) a background interpretation scheme to include the proposals in image background into the prompt training; 2) a context grading scheme to separate proposals in image foreground for tailored prompt training. We assemble DetPro with ViLD, a recent state-of-the-art open-world object detector, and conduct experiments on the LVIS as well as transfer learning on the Pascal VOC, COCO, Objects365 datasets. Experimental results show that our DetPro outperforms the baseline ViLD in all settings, e.g., +3.4 APbox and +3.0 APmask improvements on the novel classes of LVIS. Code and models are available at https://github.com/dyabel/detpro.

  • 6 authors
·
Mar 28, 2022

Temporal Grounding as a Learning Signal for Referring Video Object Segmentation

Referring Video Object Segmentation (RVOS) aims to segment and track objects in videos based on natural language expressions, requiring precise alignment between visual content and textual queries. However, existing methods often suffer from semantic misalignment, largely due to indiscriminate frame sampling and supervision of all visible objects during training -- regardless of their actual relevance to the expression. We identify the core problem as the absence of an explicit temporal learning signal in conventional training paradigms. To address this, we introduce MeViS-M, a dataset built upon the challenging MeViS benchmark, where we manually annotate temporal spans when each object is referred to by the expression. These annotations provide a direct, semantically grounded supervision signal that was previously missing. To leverage this signal, we propose Temporally Grounded Learning (TGL), a novel learning framework that directly incorporates temporal grounding into the training process. Within this frame- work, we introduce two key strategies. First, Moment-guided Dual-path Propagation (MDP) improves both grounding and tracking by decoupling language-guided segmentation for relevant moments from language-agnostic propagation for others. Second, Object-level Selective Supervision (OSS) supervises only the objects temporally aligned with the expression in each training clip, thereby reducing semantic noise and reinforcing language-conditioned learning. Extensive experiments demonstrate that our TGL framework effectively leverages temporal signal to establish a new state-of-the-art on the challenging MeViS benchmark. We will make our code and the MeViS-M dataset publicly available.

  • 12 authors
·
Aug 16, 2025

Segment Everything Everywhere All at Once

In this work, we present SEEM, a promptable and interactive model for segmenting everything everywhere all at once in an image, as shown in Fig.1. In SEEM, we propose a novel decoding mechanism that enables diverse prompting for all types of segmentation tasks, aiming at a universal segmentation interface that behaves like large language models (LLMs). More specifically, SEEM is designed with four desiderata: i) Versatility. We introduce a new visual prompt to unify different spatial queries including points, boxes, scribbles and masks, which can further generalize to a different referring image; ii) Compositionality. We learn a joint visual-semantic space between text and visual prompts, which facilitates the dynamic composition of two prompt types required for various segmentation tasks; iii) Interactivity. We further incorporate learnable memory prompts into the decoder to retain segmentation history through mask-guided cross-attention from decoder to image features; and iv) Semantic-awareness. We use a text encoder to encode text queries and mask labels into the same semantic space for open-vocabulary segmentation. We conduct a comprehensive empirical study to validate the effectiveness of SEEM across diverse segmentation tasks. Notably, our single SEEM model achieves competitive performance across interactive segmentation, generic segmentation, referring segmentation, and video object segmentation on 9 datasets with minimum 1/100 supervision. Furthermore, SEEM showcases a remarkable capacity for generalization to novel prompts or their combinations, rendering it a readily universal image segmentation interface.

  • 9 authors
·
Apr 13, 2023