Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCooperation Is All You Need
Going beyond 'dendritic democracy', we introduce a 'democracy of local processors', termed Cooperator. Here we compare their capabilities when used in permutation-invariant neural networks for reinforcement learning (RL), with machine learning algorithms based on Transformers, such as ChatGPT. Transformers are based on the long-standing conception of integrate-and-fire 'point' neurons, whereas Cooperator is inspired by recent neurobiological breakthroughs suggesting that the cellular foundations of mental life depend on context-sensitive pyramidal neurons in the neocortex which have two functionally distinct points. We show that when used for RL, an algorithm based on Cooperator learns far quicker than that based on Transformer, even while having the same number of parameters.
From Relational Pooling to Subgraph GNNs: A Universal Framework for More Expressive Graph Neural Networks
Relational pooling is a framework for building more expressive and permutation-invariant graph neural networks. However, there is limited understanding of the exact enhancement in the expressivity of RP and its connection with the Weisfeiler Lehman hierarchy. Starting from RP, we propose to explicitly assign labels to nodes as additional features to improve expressive power of message passing neural networks. The method is then extended to higher dimensional WL, leading to a novel k,l-WL algorithm, a more general framework than k-WL. Theoretically, we analyze the expressivity of k,l-WL with respect to k and l and unifies it with a great number of subgraph GNNs. Complexity reduction methods are also systematically discussed to build powerful and practical k,l-GNN instances. We theoretically and experimentally prove that our method is universally compatible and capable of improving the expressivity of any base GNN model. Our k,l-GNNs achieve superior performance on many synthetic and real-world datasets, which verifies the effectiveness of our framework.
Learnable Commutative Monoids for Graph Neural Networks
Graph neural networks (GNNs) have been shown to be highly sensitive to the choice of aggregation function. While summing over a node's neighbours can approximate any permutation-invariant function over discrete inputs, Cohen-Karlik et al. [2020] proved there are set-aggregation problems for which summing cannot generalise to unbounded inputs, proposing recurrent neural networks regularised towards permutation-invariance as a more expressive aggregator. We show that these results carry over to the graph domain: GNNs equipped with recurrent aggregators are competitive with state-of-the-art permutation-invariant aggregators, on both synthetic benchmarks and real-world problems. However, despite the benefits of recurrent aggregators, their O(V) depth makes them both difficult to parallelise and harder to train on large graphs. Inspired by the observation that a well-behaved aggregator for a GNN is a commutative monoid over its latent space, we propose a framework for constructing learnable, commutative, associative binary operators. And with this, we construct an aggregator of O(log V) depth, yielding exponential improvements for both parallelism and dependency length while achieving performance competitive with recurrent aggregators. Based on our empirical observations, our proposed learnable commutative monoid (LCM) aggregator represents a favourable tradeoff between efficient and expressive aggregators.
Separation Power of Equivariant Neural Networks
The separation power of a machine learning model refers to its ability to distinguish between different inputs and is often used as a proxy for its expressivity. Indeed, knowing the separation power of a family of models is a necessary condition to obtain fine-grained universality results. In this paper, we analyze the separation power of equivariant neural networks, such as convolutional and permutation-invariant networks. We first present a complete characterization of inputs indistinguishable by models derived by a given architecture. From this results, we derive how separability is influenced by hyperparameters and architectural choices-such as activation functions, depth, hidden layer width, and representation types. Notably, all non-polynomial activations, including ReLU and sigmoid, are equivalent in expressivity and reach maximum separation power. Depth improves separation power up to a threshold, after which further increases have no effect. Adding invariant features to hidden representations does not impact separation power. Finally, block decomposition of hidden representations affects separability, with minimal components forming a hierarchy in separation power that provides a straightforward method for comparing the separation power of models.
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
Deep Neural Networks (DNN) have achieved state-of-the-art results in a wide range of tasks, with the best results obtained with large training sets and large models. In the past, GPUs enabled these breakthroughs because of their greater computational speed. In the future, faster computation at both training and test time is likely to be crucial for further progress and for consumer applications on low-power devices. As a result, there is much interest in research and development of dedicated hardware for Deep Learning (DL). Binary weights, i.e., weights which are constrained to only two possible values (e.g. -1 or 1), would bring great benefits to specialized DL hardware by replacing many multiply-accumulate operations by simple accumulations, as multipliers are the most space and power-hungry components of the digital implementation of neural networks. We introduce BinaryConnect, a method which consists in training a DNN with binary weights during the forward and backward propagations, while retaining precision of the stored weights in which gradients are accumulated. Like other dropout schemes, we show that BinaryConnect acts as regularizer and we obtain near state-of-the-art results with BinaryConnect on the permutation-invariant MNIST, CIFAR-10 and SVHN.
Classification of hierarchical text using geometric deep learning: the case of clinical trials corpus
We consider the hierarchical representation of documents as graphs and use geometric deep learning to classify them into different categories. While graph neural networks can efficiently handle the variable structure of hierarchical documents using the permutation invariant message passing operations, we show that we can gain extra performance improvements using our proposed selective graph pooling operation that arises from the fact that some parts of the hierarchy are invariable across different documents. We applied our model to classify clinical trial (CT) protocols into completed and terminated categories. We use bag-of-words based, as well as pre-trained transformer-based embeddings to featurize the graph nodes, achieving f1-scores around 0.85 on a publicly available large scale CT registry of around 360K protocols. We further demonstrate how the selective pooling can add insights into the CT termination status prediction. We make the source code and dataset splits accessible.
On the hardness of learning under symmetries
We study the problem of learning equivariant neural networks via gradient descent. The incorporation of known symmetries ("equivariance") into neural nets has empirically improved the performance of learning pipelines, in domains ranging from biology to computer vision. However, a rich yet separate line of learning theoretic research has demonstrated that actually learning shallow, fully-connected (i.e. non-symmetric) networks has exponential complexity in the correlational statistical query (CSQ) model, a framework encompassing gradient descent. In this work, we ask: are known problem symmetries sufficient to alleviate the fundamental hardness of learning neural nets with gradient descent? We answer this question in the negative. In particular, we give lower bounds for shallow graph neural networks, convolutional networks, invariant polynomials, and frame-averaged networks for permutation subgroups, which all scale either superpolynomially or exponentially in the relevant input dimension. Therefore, in spite of the significant inductive bias imparted via symmetry, actually learning the complete classes of functions represented by equivariant neural networks via gradient descent remains hard.
Are Equivariant Equilibrium Approximators Beneficial?
Recently, remarkable progress has been made by approximating Nash equilibrium (NE), correlated equilibrium (CE), and coarse correlated equilibrium (CCE) through function approximation that trains a neural network to predict equilibria from game representations. Furthermore, equivariant architectures are widely adopted in designing such equilibrium approximators in normal-form games. In this paper, we theoretically characterize benefits and limitations of equivariant equilibrium approximators. For the benefits, we show that they enjoy better generalizability than general ones and can achieve better approximations when the payoff distribution is permutation-invariant. For the limitations, we discuss their drawbacks in terms of equilibrium selection and social welfare. Together, our results help to understand the role of equivariance in equilibrium approximators.
Revisiting Transformation Invariant Geometric Deep Learning: Are Initial Representations All You Need?
Geometric deep learning, i.e., designing neural networks to handle the ubiquitous geometric data such as point clouds and graphs, have achieved great successes in the last decade. One critical inductive bias is that the model can maintain invariance towards various transformations such as translation, rotation, and scaling. The existing graph neural network (GNN) approaches can only maintain permutation-invariance, failing to guarantee invariance with respect to other transformations. Besides GNNs, other works design sophisticated transformation-invariant layers, which are computationally expensive and difficult to be extended. To solve this problem, we revisit why the existing neural networks cannot maintain transformation invariance when handling geometric data. Our findings show that transformation-invariant and distance-preserving initial representations are sufficient to achieve transformation invariance rather than needing sophisticated neural layer designs. Motivated by these findings, we propose Transformation Invariant Neural Networks (TinvNN), a straightforward and general framework for geometric data. Specifically, we realize transformation-invariant and distance-preserving initial point representations by modifying multi-dimensional scaling before feeding the representations into neural networks. We prove that TinvNN can strictly guarantee transformation invariance, being general and flexible enough to be combined with the existing neural networks. Extensive experimental results on point cloud analysis and combinatorial optimization demonstrate the effectiveness and general applicability of our proposed method. Based on the experimental results, we advocate that TinvNN should be considered a new starting point and an essential baseline for further studies of transformation-invariant geometric deep learning.
Exact Learning of Permutations for Nonzero Binary Inputs with Logarithmic Training Size and Quadratic Ensemble Complexity
The ability of an architecture to realize permutations is quite fundamental. For example, Large Language Models need to be able to correctly copy (and perhaps rearrange) parts of the input prompt into the output. Classical universal approximation theorems guarantee the existence of parameter configurations that solve this task but offer no insights into whether gradient-based algorithms can find them. In this paper, we address this gap by focusing on two-layer fully connected feed-forward neural networks and the task of learning permutations on nonzero binary inputs. We show that in the infinite width Neural Tangent Kernel (NTK) regime, an ensemble of such networks independently trained with gradient descent on only the k standard basis vectors out of 2^k - 1 possible inputs successfully learns any fixed permutation of length k with arbitrarily high probability. By analyzing the exact training dynamics, we prove that the network's output converges to a Gaussian process whose mean captures the ground truth permutation via sign-based features. We then demonstrate how averaging these runs (an "ensemble" method) and applying a simple rounding step yields an arbitrarily accurate prediction on any possible input unseen during training. Notably, the number of models needed to achieve exact learning with high probability (which we refer to as ensemble complexity) exhibits a linearithmic dependence on the input size k for a single test input and a quadratic dependence when considering all test inputs simultaneously.
Graph Neural Networks for Learning Equivariant Representations of Neural Networks
Neural networks that process the parameters of other neural networks find applications in domains as diverse as classifying implicit neural representations, generating neural network weights, and predicting generalization errors. However, existing approaches either overlook the inherent permutation symmetry in the neural network or rely on intricate weight-sharing patterns to achieve equivariance, while ignoring the impact of the network architecture itself. In this work, we propose to represent neural networks as computational graphs of parameters, which allows us to harness powerful graph neural networks and transformers that preserve permutation symmetry. Consequently, our approach enables a single model to encode neural computational graphs with diverse architectures. We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations, predicting generalization performance, and learning to optimize, while consistently outperforming state-of-the-art methods. The source code is open-sourced at https://github.com/mkofinas/neural-graphs.
Deep Sets
We study the problem of designing models for machine learning tasks defined on sets. In contrast to traditional approach of operating on fixed dimensional vectors, we consider objective functions defined on sets that are invariant to permutations. Such problems are widespread, ranging from estimation of population statistics poczos13aistats, to anomaly detection in piezometer data of embankment dams Jung15Exploration, to cosmology Ntampaka16Dynamical,Ravanbakhsh16ICML1. Our main theorem characterizes the permutation invariant functions and provides a family of functions to which any permutation invariant objective function must belong. This family of functions has a special structure which enables us to design a deep network architecture that can operate on sets and which can be deployed on a variety of scenarios including both unsupervised and supervised learning tasks. We also derive the necessary and sufficient conditions for permutation equivariance in deep models. We demonstrate the applicability of our method on population statistic estimation, point cloud classification, set expansion, and outlier detection.
Linear Mode Connectivity in Differentiable Tree Ensembles
Linear Mode Connectivity (LMC) refers to the phenomenon that performance remains consistent for linearly interpolated models in the parameter space. For independently optimized model pairs from different random initializations, achieving LMC is considered crucial for validating the stable success of the non-convex optimization in modern machine learning models and for facilitating practical parameter-based operations such as model merging. While LMC has been achieved for neural networks by considering the permutation invariance of neurons in each hidden layer, its attainment for other models remains an open question. In this paper, we first achieve LMC for soft tree ensembles, which are tree-based differentiable models extensively used in practice. We show the necessity of incorporating two invariances: subtree flip invariance and splitting order invariance, which do not exist in neural networks but are inherent to tree architectures, in addition to permutation invariance of trees. Moreover, we demonstrate that it is even possible to exclude such additional invariances while keeping LMC by designing decision list-based tree architectures, where such invariances do not exist by definition. Our findings indicate the significance of accounting for architecture-specific invariances in achieving LMC.
Robot Fleet Learning via Policy Merging
Fleets of robots ingest massive amounts of heterogeneous streaming data silos generated by interacting with their environments, far more than what can be stored or transmitted with ease. At the same time, teams of robots should co-acquire diverse skills through their heterogeneous experiences in varied settings. How can we enable such fleet-level learning without having to transmit or centralize fleet-scale data? In this paper, we investigate policy merging (PoMe) from such distributed heterogeneous datasets as a potential solution. To efficiently merge policies in the fleet setting, we propose FLEET-MERGE, an instantiation of distributed learning that accounts for the permutation invariance that arises when parameterizing the control policies with recurrent neural networks. We show that FLEET-MERGE consolidates the behavior of policies trained on 50 tasks in the Meta-World environment, with good performance on nearly all training tasks at test time. Moreover, we introduce a novel robotic tool-use benchmark, FLEET-TOOLS, for fleet policy learning in compositional and contact-rich robot manipulation tasks, to validate the efficacy of FLEET-MERGE on the benchmark.
DeepPermNet: Visual Permutation Learning
We present a principled approach to uncover the structure of visual data by solving a novel deep learning task coined visual permutation learning. The goal of this task is to find the permutation that recovers the structure of data from shuffled versions of it. In the case of natural images, this task boils down to recovering the original image from patches shuffled by an unknown permutation matrix. Unfortunately, permutation matrices are discrete, thereby posing difficulties for gradient-based methods. To this end, we resort to a continuous approximation of these matrices using doubly-stochastic matrices which we generate from standard CNN predictions using Sinkhorn iterations. Unrolling these iterations in a Sinkhorn network layer, we propose DeepPermNet, an end-to-end CNN model for this task. The utility of DeepPermNet is demonstrated on two challenging computer vision problems, namely, (i) relative attributes learning and (ii) self-supervised representation learning. Our results show state-of-the-art performance on the Public Figures and OSR benchmarks for (i) and on the classification and segmentation tasks on the PASCAL VOC dataset for (ii).
A Characterization Theorem for Equivariant Networks with Point-wise Activations
Equivariant neural networks have shown improved performance, expressiveness and sample complexity on symmetrical domains. But for some specific symmetries, representations, and choice of coordinates, the most common point-wise activations, such as ReLU, are not equivariant, hence they cannot be employed in the design of equivariant neural networks. The theorem we present in this paper describes all possible combinations of finite-dimensional representations, choice of coordinates and point-wise activations to obtain an exactly equivariant layer, generalizing and strengthening existing characterizations. Notable cases of practical relevance are discussed as corollaries. Indeed, we prove that rotation-equivariant networks can only be invariant, as it happens for any network which is equivariant with respect to connected compact groups. Then, we discuss implications of our findings when applied to important instances of exactly equivariant networks. First, we completely characterize permutation equivariant networks such as Invariant Graph Networks with point-wise nonlinearities and their geometric counterparts, highlighting a plethora of models whose expressive power and performance are still unknown. Second, we show that feature spaces of disentangled steerable convolutional neural networks are trivial representations.
Universal Neural Functionals
A challenging problem in many modern machine learning tasks is to process weight-space features, i.e., to transform or extract information from the weights and gradients of a neural network. Recent works have developed promising weight-space models that are equivariant to the permutation symmetries of simple feedforward networks. However, they are not applicable to general architectures, since the permutation symmetries of a weight space can be complicated by recurrence or residual connections. This work proposes an algorithm that automatically constructs permutation equivariant models, which we refer to as universal neural functionals (UNFs), for any weight space. Among other applications, we demonstrate how UNFs can be substituted into existing learned optimizer designs, and find promising improvements over prior methods when optimizing small image classifiers and language models. Our results suggest that learned optimizers can benefit from considering the (symmetry) structure of the weight space they optimize. We open-source our library for constructing UNFs at https://github.com/AllanYangZhou/universal_neural_functional.
Graph Metanetworks for Processing Diverse Neural Architectures
Neural networks efficiently encode learned information within their parameters. Consequently, many tasks can be unified by treating neural networks themselves as input data. When doing so, recent studies demonstrated the importance of accounting for the symmetries and geometry of parameter spaces. However, those works developed architectures tailored to specific networks such as MLPs and CNNs without normalization layers, and generalizing such architectures to other types of networks can be challenging. In this work, we overcome these challenges by building new metanetworks - neural networks that take weights from other neural networks as input. Put simply, we carefully build graphs representing the input neural networks and process the graphs using graph neural networks. Our approach, Graph Metanetworks (GMNs), generalizes to neural architectures where competing methods struggle, such as multi-head attention layers, normalization layers, convolutional layers, ResNet blocks, and group-equivariant linear layers. We prove that GMNs are expressive and equivariant to parameter permutation symmetries that leave the input neural network functions unchanged. We validate the effectiveness of our method on several metanetwork tasks over diverse neural network architectures.
Subgraph Permutation Equivariant Networks
In this work we develop a new method, named Sub-graph Permutation Equivariant Networks (SPEN), which provides a framework for building graph neural networks that operate on sub-graphs, while using a base update function that is permutation equivariant, that are equivariant to a novel choice of automorphism group. Message passing neural networks have been shown to be limited in their expressive power and recent approaches to over come this either lack scalability or require structural information to be encoded into the feature space. The general framework presented here overcomes the scalability issues associated with global permutation equivariance by operating more locally on sub-graphs. In addition, through operating on sub-graphs the expressive power of higher-dimensional global permutation equivariant networks is improved; this is due to fact that two non-distinguishable graphs often contain distinguishable sub-graphs. Furthermore, the proposed framework only requires a choice of k-hops for creating ego-network sub-graphs and a choice of representation space to be used for each layer, which makes the method easily applicable across a range of graph based domains. We experimentally validate the method on a range of graph benchmark classification tasks, demonstrating statistically indistinguishable results from the state-of-the-art on six out of seven benchmarks. Further, we demonstrate that the use of local update functions offers a significant improvement in GPU memory over global methods.
REOrdering Patches Improves Vision Models
Sequence models such as transformers require inputs to be represented as one-dimensional sequences. In vision, this typically involves flattening images using a fixed row-major (raster-scan) order. While full self-attention is permutation-equivariant, modern long-sequence transformers increasingly rely on architectural approximations that break this invariance and introduce sensitivity to patch ordering. We show that patch order significantly affects model performance in such settings, with simple alternatives like column-major or Hilbert curves yielding notable accuracy shifts. Motivated by this, we propose REOrder, a two-stage framework for discovering task-optimal patch orderings. First, we derive an information-theoretic prior by evaluating the compressibility of various patch sequences. Then, we learn a policy over permutations by optimizing a Plackett-Luce policy using REINFORCE. This approach enables efficient learning in a combinatorial permutation space. REOrder improves top-1 accuracy over row-major ordering on ImageNet-1K by up to 3.01% and Functional Map of the World by 13.35%.
Equivariant Architectures for Learning in Deep Weight Spaces
Designing machine learning architectures for processing neural networks in their raw weight matrix form is a newly introduced research direction. Unfortunately, the unique symmetry structure of deep weight spaces makes this design very challenging. If successful, such architectures would be capable of performing a wide range of intriguing tasks, from adapting a pre-trained network to a new domain to editing objects represented as functions (INRs or NeRFs). As a first step towards this goal, we present here a novel network architecture for learning in deep weight spaces. It takes as input a concatenation of weights and biases of a pre-trained MLP and processes it using a composition of layers that are equivariant to the natural permutation symmetry of the MLP's weights: Changing the order of neurons in intermediate layers of the MLP does not affect the function it represents. We provide a full characterization of all affine equivariant and invariant layers for these symmetries and show how these layers can be implemented using three basic operations: pooling, broadcasting, and fully connected layers applied to the input in an appropriate manner. We demonstrate the effectiveness of our architecture and its advantages over natural baselines in a variety of learning tasks.
SwinGNN: Rethinking Permutation Invariance in Diffusion Models for Graph Generation
Diffusion models based on permutation-equivariant networks can learn permutation-invariant distributions for graph data. However, in comparison to their non-invariant counterparts, we have found that these invariant models encounter greater learning challenges since 1) their effective target distributions exhibit more modes; 2) their optimal one-step denoising scores are the score functions of Gaussian mixtures with more components. Motivated by this analysis, we propose a non-invariant diffusion model, called SwinGNN, which employs an efficient edge-to-edge 2-WL message passing network and utilizes shifted window based self-attention inspired by SwinTransformers. Further, through systematic ablations, we identify several critical training and sampling techniques that significantly improve the sample quality of graph generation. At last, we introduce a simple post-processing trick, i.e., randomly permuting the generated graphs, which provably converts any graph generative model to a permutation-invariant one. Extensive experiments on synthetic and real-world protein and molecule datasets show that our SwinGNN achieves state-of-the-art performances. Our code is released at https://github.com/qiyan98/SwinGNN.
Generalized Neural Sorting Networks with Error-Free Differentiable Swap Functions
Sorting is a fundamental operation of all computer systems, having been a long-standing significant research topic. Beyond the problem formulation of traditional sorting algorithms, we consider sorting problems for more abstract yet expressive inputs, e.g., multi-digit images and image fragments, through a neural sorting network. To learn a mapping from a high-dimensional input to an ordinal variable, the differentiability of sorting networks needs to be guaranteed. In this paper we define a softening error by a differentiable swap function, and develop an error-free swap function that holds a non-decreasing condition and differentiability. Furthermore, a permutation-equivariant Transformer network with multi-head attention is adopted to capture dependency between given inputs and also leverage its model capacity with self-attention. Experiments on diverse sorting benchmarks show that our methods perform better than or comparable to baseline methods.
Graphically Structured Diffusion Models
We introduce a framework for automatically defining and learning deep generative models with problem-specific structure. We tackle problem domains that are more traditionally solved by algorithms such as sorting, constraint satisfaction for Sudoku, and matrix factorization. Concretely, we train diffusion models with an architecture tailored to the problem specification. This problem specification should contain a graphical model describing relationships between variables, and often benefits from explicit representation of subcomputations. Permutation invariances can also be exploited. Across a diverse set of experiments we improve the scaling relationship between problem dimension and our model's performance, in terms of both training time and final accuracy. Our code can be found at https://github.com/plai-group/gsdm.
Learning Symmetrization for Equivariance with Orbit Distance Minimization
We present a general framework for symmetrizing an arbitrary neural-network architecture and making it equivariant with respect to a given group. We build upon the proposals of Kim et al. (2023); Kaba et al. (2023) for symmetrization, and improve them by replacing their conversion of neural features into group representations, with an optimization whose loss intuitively measures the distance between group orbits. This change makes our approach applicable to a broader range of matrix groups, such as the Lorentz group O(1, 3), than these two proposals. We experimentally show our method's competitiveness on the SO(2) image classification task, and also its increased generality on the task with O(1, 3). Our implementation will be made accessible at https://github.com/tiendatnguyen-vision/Orbit-symmetrize.
The Impossibility of Inverse Permutation Learning in Transformer Models
In this technical note, we study the problem of inverse permutation learning in decoder-only transformers. Given a permutation and a string to which that permutation has been applied, the model is tasked with producing the original (``canonical'') string. We argue that this task models a natural robustness property across a variety of reasoning tasks, including long-context retrieval, multiple choice QA and in-context learning. Our primary contribution is an impossibility result: we show that an arbitrary depth, decoder-only transformer cannot learn this task. This result concerns the expressive capacity of decoder-only transformer models and is agnostic to training dynamics or sample complexity. We give a pair of alternative constructions under which inverse permutation learning is feasible. The first of these highlights the fundamental role of the causal attention mask, and reveals a gap between the expressivity of encoder-decoder transformers and the more popular decoder-only architecture. The latter result is more surprising: we show that simply padding the input with ``scratch tokens" yields a construction under which inverse permutation learning is possible. We conjecture that this may suggest an alternative mechanism by which chain-of-thought prompting or, more generally, intermediate ``thinking'' tokens can enable reasoning in large language models, even when these tokens encode no meaningful semantic information (e.g., the results of intermediate computations).
Git Re-Basin: Merging Models modulo Permutation Symmetries
The success of deep learning is due in large part to our ability to solve certain massive non-convex optimization problems with relative ease. Though non-convex optimization is NP-hard, simple algorithms -- often variants of stochastic gradient descent -- exhibit surprising effectiveness in fitting large neural networks in practice. We argue that neural network loss landscapes often contain (nearly) a single basin after accounting for all possible permutation symmetries of hidden units a la Entezari et al. 2021. We introduce three algorithms to permute the units of one model to bring them into alignment with a reference model in order to merge the two models in weight space. This transformation produces a functionally equivalent set of weights that lie in an approximately convex basin near the reference model. Experimentally, we demonstrate the single basin phenomenon across a variety of model architectures and datasets, including the first (to our knowledge) demonstration of zero-barrier linear mode connectivity between independently trained ResNet models on CIFAR-10. Additionally, we identify intriguing phenomena relating model width and training time to mode connectivity. Finally, we discuss shortcomings of the linear mode connectivity hypothesis, including a counterexample to the single basin theory.
Equivariance with Learned Canonicalization Functions
Symmetry-based neural networks often constrain the architecture in order to achieve invariance or equivariance to a group of transformations. In this paper, we propose an alternative that avoids this architectural constraint by learning to produce a canonical representation of the data. These canonicalization functions can readily be plugged into non-equivariant backbone architectures. We offer explicit ways to implement them for many groups of interest. We show that this approach enjoys universality while providing interpretable insights. Our main hypothesis is that learning a neural network to perform canonicalization is better than using predefined heuristics. Our results show that learning the canonicalization function indeed leads to better results and that the approach achieves excellent performance in practice.
Data Augmentations in Deep Weight Spaces
Learning in weight spaces, where neural networks process the weights of other deep neural networks, has emerged as a promising research direction with applications in various fields, from analyzing and editing neural fields and implicit neural representations, to network pruning and quantization. Recent works designed architectures for effective learning in that space, which takes into account its unique, permutation-equivariant, structure. Unfortunately, so far these architectures suffer from severe overfitting and were shown to benefit from large datasets. This poses a significant challenge because generating data for this learning setup is laborious and time-consuming since each data sample is a full set of network weights that has to be trained. In this paper, we address this difficulty by investigating data augmentations for weight spaces, a set of techniques that enable generating new data examples on the fly without having to train additional input weight space elements. We first review several recently proposed data augmentation schemes %that were proposed recently and divide them into categories. We then introduce a novel augmentation scheme based on the Mixup method. We evaluate the performance of these techniques on existing benchmarks as well as new benchmarks we generate, which can be valuable for future studies.
Connecting Permutation Equivariant Neural Networks and Partition Diagrams
We show how the Schur-Weyl duality that exists between the partition algebra and the symmetric group results in a stronger theoretical foundation for characterising all of the possible permutation equivariant neural networks whose layers are some tensor power of the permutation representation M_n of the symmetric group S_n. In doing so, we unify two separate bodies of literature, and we correct some of the major results that are now widely quoted by the machine learning community. In particular, we find a basis of matrices for the learnable, linear, permutation equivariant layer functions between such tensor power spaces in the standard basis of M_n by using an elegant graphical representation of a basis of set partitions for the partition algebra and its related vector spaces. Also, we show how we can calculate the number of weights that must appear in these layer functions by looking at certain paths through the McKay quiver for M_n. Finally, we describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries.
E(n) Equivariant Graph Neural Networks
This paper introduces a new model to learn graph neural networks equivariant to rotations, translations, reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs). In contrast with existing methods, our work does not require computationally expensive higher-order representations in intermediate layers while it still achieves competitive or better performance. In addition, whereas existing methods are limited to equivariance on 3 dimensional spaces, our model is easily scaled to higher-dimensional spaces. We demonstrate the effectiveness of our method on dynamical systems modelling, representation learning in graph autoencoders and predicting molecular properties.
Compositional Deep Learning
Neural networks have become an increasingly popular tool for solving many real-world problems. They are a general framework for differentiable optimization which includes many other machine learning approaches as special cases. In this thesis we build a category-theoretic formalism around a class of neural networks exemplified by CycleGAN. CycleGAN is a collection of neural networks, closed under composition, whose inductive bias is increased by enforcing composition invariants, i.e. cycle-consistencies. Inspired by Functorial Data Migration, we specify the interconnection of these networks using a categorical schema, and network instances as set-valued functors on this schema. We also frame neural network architectures, datasets, models, and a number of other concepts in a categorical setting and thus show a special class of functors, rather than functions, can be learned using gradient descent. We use the category-theoretic framework to conceive a novel neural network architecture whose goal is to learn the task of object insertion and object deletion in images with unpaired data. We test the architecture on three different datasets and obtain promising results.
Polynomial Width is Sufficient for Set Representation with High-dimensional Features
Set representation has become ubiquitous in deep learning for modeling the inductive bias of neural networks that are insensitive to the input order. DeepSets is the most widely used neural network architecture for set representation. It involves embedding each set element into a latent space with dimension L, followed by a sum pooling to obtain a whole-set embedding, and finally mapping the whole-set embedding to the output. In this work, we investigate the impact of the dimension L on the expressive power of DeepSets. Previous analyses either oversimplified high-dimensional features to be one-dimensional features or were limited to analytic activations, thereby diverging from practical use or resulting in L that grows exponentially with the set size N and feature dimension D. To investigate the minimal value of L that achieves sufficient expressive power, we present two set-element embedding layers: (a) linear + power activation (LP) and (b) linear + exponential activations (LE). We demonstrate that L being poly(N, D) is sufficient for set representation using both embedding layers. We also provide a lower bound of L for the LP embedding layer. Furthermore, we extend our results to permutation-equivariant set functions and the complex field.
Flow Equivariant Recurrent Neural Networks
Data arrives at our senses as a continuous stream, smoothly transforming from one instant to the next. These smooth transformations can be viewed as continuous symmetries of the environment that we inhabit, defining equivalence relations between stimuli over time. In machine learning, neural network architectures that respect symmetries of their data are called equivariant and have provable benefits in terms of generalization ability and sample efficiency. To date, however, equivariance has been considered only for static transformations and feed-forward networks, limiting its applicability to sequence models, such as recurrent neural networks (RNNs), and corresponding time-parameterized sequence transformations. In this work, we extend equivariant network theory to this regime of `flows' -- one-parameter Lie subgroups capturing natural transformations over time, such as visual motion. We begin by showing that standard RNNs are generally not flow equivariant: their hidden states fail to transform in a geometrically structured manner for moving stimuli. We then show how flow equivariance can be introduced, and demonstrate that these models significantly outperform their non-equivariant counterparts in terms of training speed, length generalization, and velocity generalization, on both next step prediction and sequence classification. We present this work as a first step towards building sequence models that respect the time-parameterized symmetries which govern the world around us.
Low-rank passthrough neural networks
Various common deep learning architectures, such as LSTMs, GRUs, Resnets and Highway Networks, employ state passthrough connections that support training with high feed-forward depth or recurrence over many time steps. These "Passthrough Networks" architectures also enable the decoupling of the network state size from the number of parameters of the network, a possibility has been studied by Sak2014 with their low-rank parametrization of the LSTM. In this work we extend this line of research, proposing effective, low-rank and low-rank plus diagonal matrix parametrizations for Passthrough Networks which exploit this decoupling property, reducing the data complexity and memory requirements of the network while preserving its memory capacity. This is particularly beneficial in low-resource settings as it supports expressive models with a compact parametrization less susceptible to overfitting. We present competitive experimental results on several tasks, including language modeling and a near state of the art result on sequential randomly-permuted MNIST classification, a hard task on natural data.
What can a Single Attention Layer Learn? A Study Through the Random Features Lens
Attention layers -- which map a sequence of inputs to a sequence of outputs -- are core building blocks of the Transformer architecture which has achieved significant breakthroughs in modern artificial intelligence. This paper presents a rigorous theoretical study on the learning and generalization of a single multi-head attention layer, with a sequence of key vectors and a separate query vector as input. We consider the random feature setting where the attention layer has a large number of heads, with randomly sampled frozen query and key matrices, and trainable value matrices. We show that such a random-feature attention layer can express a broad class of target functions that are permutation invariant to the key vectors. We further provide quantitative excess risk bounds for learning these target functions from finite samples, using random feature attention with finitely many heads. Our results feature several implications unique to the attention structure compared with existing random features theory for neural networks, such as (1) Advantages in the sample complexity over standard two-layer random-feature networks; (2) Concrete and natural classes of functions that can be learned efficiently by a random-feature attention layer; and (3) The effect of the sampling distribution of the query-key weight matrix (the product of the query and key matrix), where Gaussian random weights with a non-zero mean result in better sample complexities over the zero-mean counterpart for learning certain natural target functions. Experiments on simulated data corroborate our theoretical findings and further illustrate the interplay between the sample size and the complexity of the target function.
A Toy Model of Universality: Reverse Engineering How Networks Learn Group Operations
Universality is a key hypothesis in mechanistic interpretability -- that different models learn similar features and circuits when trained on similar tasks. In this work, we study the universality hypothesis by examining how small neural networks learn to implement group composition. We present a novel algorithm by which neural networks may implement composition for any finite group via mathematical representation theory. We then show that networks consistently learn this algorithm by reverse engineering model logits and weights, and confirm our understanding using ablations. By studying networks of differing architectures trained on various groups, we find mixed evidence for universality: using our algorithm, we can completely characterize the family of circuits and features that networks learn on this task, but for a given network the precise circuits learned -- as well as the order they develop -- are arbitrary.
Learning Invariant Representations with a Nonparametric Nadaraya-Watson Head
Machine learning models will often fail when deployed in an environment with a data distribution that is different than the training distribution. When multiple environments are available during training, many methods exist that learn representations which are invariant across the different distributions, with the hope that these representations will be transportable to unseen domains. In this work, we present a nonparametric strategy for learning invariant representations based on the recently-proposed Nadaraya-Watson (NW) head. The NW head makes a prediction by comparing the learned representations of the query to the elements of a support set that consists of labeled data. We demonstrate that by manipulating the support set, one can encode different causal assumptions. In particular, restricting the support set to a single environment encourages the model to learn invariant features that do not depend on the environment. We present a causally-motivated setup for our modeling and training strategy and validate on three challenging real-world domain generalization tasks in computer vision.
Re-basin via implicit Sinkhorn differentiation
The recent emergence of new algorithms for permuting models into functionally equivalent regions of the solution space has shed some light on the complexity of error surfaces, and some promising properties like mode connectivity. However, finding the right permutation is challenging, and current optimization techniques are not differentiable, which makes it difficult to integrate into a gradient-based optimization, and often leads to sub-optimal solutions. In this paper, we propose a Sinkhorn re-basin network with the ability to obtain the transportation plan that better suits a given objective. Unlike the current state-of-art, our method is differentiable and, therefore, easy to adapt to any task within the deep learning domain. Furthermore, we show the advantage of our re-basin method by proposing a new cost function that allows performing incremental learning by exploiting the linear mode connectivity property. The benefit of our method is compared against similar approaches from the literature, under several conditions for both optimal transport finding and linear mode connectivity. The effectiveness of our continual learning method based on re-basin is also shown for several common benchmark datasets, providing experimental results that are competitive with state-of-art results from the literature.
ParaRNN: Unlocking Parallel Training of Nonlinear RNNs for Large Language Models
Recurrent Neural Networks (RNNs) laid the foundation for sequence modeling, but their intrinsic sequential nature restricts parallel computation, creating a fundamental barrier to scaling. This has led to the dominance of parallelizable architectures like Transformers and, more recently, State Space Models (SSMs). While SSMs achieve efficient parallelization through structured linear recurrences, this linearity constraint limits their expressive power and precludes modeling complex, nonlinear sequence-wise dependencies. To address this, we present ParaRNN, a framework that breaks the sequence-parallelization barrier for nonlinear RNNs. Building on prior work, we cast the sequence of nonlinear recurrence relationships as a single system of equations, which we solve in parallel using Newton's iterations combined with custom parallel reductions. Our implementation achieves speedups of up to 665x over naive sequential application, allowing training nonlinear RNNs at unprecedented scales. To showcase this, we apply ParaRNN to adaptations of LSTM and GRU architectures, successfully training models of 7B parameters that attain perplexity comparable to similarly-sized Transformers and Mamba2 architectures. To accelerate research in efficient sequence modeling, we release the ParaRNN codebase as an open-source framework for automatic training-parallelization of nonlinear RNNs, enabling researchers and practitioners to explore new nonlinear RNN models at scale.
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds and well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong performance on par or even better than state of the art. Theoretically, we provide analysis towards understanding of what the network has learnt and why the network is robust with respect to input perturbation and corruption.
The Principles of Deep Learning Theory
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.
How Jellyfish Characterise Alternating Group Equivariant Neural Networks
We provide a full characterisation of all of the possible alternating group (A_n) equivariant neural networks whose layers are some tensor power of R^{n}. In particular, we find a basis of matrices for the learnable, linear, A_n-equivariant layer functions between such tensor power spaces in the standard basis of R^{n}. We also describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries.
The Surprising Power of Graph Neural Networks with Random Node Initialization
Graph neural networks (GNNs) are effective models for representation learning on relational data. However, standard GNNs are limited in their expressive power, as they cannot distinguish graphs beyond the capability of the Weisfeiler-Leman graph isomorphism heuristic. In order to break this expressiveness barrier, GNNs have been enhanced with random node initialization (RNI), where the idea is to train and run the models with randomized initial node features. In this work, we analyze the expressive power of GNNs with RNI, and prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties. This universality result holds even with partially randomized initial node features, and preserves the invariance properties of GNNs in expectation. We then empirically analyze the effect of RNI on GNNs, based on carefully constructed datasets. Our empirical findings support the superior performance of GNNs with RNI over standard GNNs.
Enhancing Neural Subset Selection: Integrating Background Information into Set Representations
Learning neural subset selection tasks, such as compound selection in AI-aided drug discovery, have become increasingly pivotal across diverse applications. The existing methodologies in the field primarily concentrate on constructing models that capture the relationship between utility function values and subsets within their respective supersets. However, these approaches tend to overlook the valuable information contained within the superset when utilizing neural networks to model set functions. In this work, we address this oversight by adopting a probabilistic perspective. Our theoretical findings demonstrate that when the target value is conditioned on both the input set and subset, it is essential to incorporate an invariant sufficient statistic of the superset into the subset of interest for effective learning. This ensures that the output value remains invariant to permutations of the subset and its corresponding superset, enabling identification of the specific superset from which the subset originated. Motivated by these insights, we propose a simple yet effective information aggregation module designed to merge the representations of subsets and supersets from a permutation invariance perspective. Comprehensive empirical evaluations across diverse tasks and datasets validate the enhanced efficacy of our approach over conventional methods, underscoring the practicality and potency of our proposed strategies in real-world contexts.
Evaluating the Robustness of Interpretability Methods through Explanation Invariance and Equivariance
Interpretability methods are valuable only if their explanations faithfully describe the explained model. In this work, we consider neural networks whose predictions are invariant under a specific symmetry group. This includes popular architectures, ranging from convolutional to graph neural networks. Any explanation that faithfully explains this type of model needs to be in agreement with this invariance property. We formalize this intuition through the notion of explanation invariance and equivariance by leveraging the formalism from geometric deep learning. Through this rigorous formalism, we derive (1) two metrics to measure the robustness of any interpretability method with respect to the model symmetry group; (2) theoretical robustness guarantees for some popular interpretability methods and (3) a systematic approach to increase the invariance of any interpretability method with respect to a symmetry group. By empirically measuring our metrics for explanations of models associated with various modalities and symmetry groups, we derive a set of 5 guidelines to allow users and developers of interpretability methods to produce robust explanations.
Using Multiple Instance Learning to Build Multimodal Representations
Image-text multimodal representation learning aligns data across modalities and enables important medical applications, e.g., image classification, visual grounding, and cross-modal retrieval. In this work, we establish a connection between multimodal representation learning and multiple instance learning. Based on this connection, we propose a generic framework for constructing permutation-invariant score functions with many existing multimodal representation learning approaches as special cases. Furthermore, we use the framework to derive a novel contrastive learning approach and demonstrate that our method achieves state-of-the-art results in several downstream tasks.
Advances in Set Function Learning: A Survey of Techniques and Applications
Set function learning has emerged as a crucial area in machine learning, addressing the challenge of modeling functions that take sets as inputs. Unlike traditional machine learning that involves fixed-size input vectors where the order of features matters, set function learning demands methods that are invariant to permutations of the input set, presenting a unique and complex problem. This survey provides a comprehensive overview of the current development in set function learning, covering foundational theories, key methodologies, and diverse applications. We categorize and discuss existing approaches, focusing on deep learning approaches, such as DeepSets and Set Transformer based methods, as well as other notable alternative methods beyond deep learning, offering a complete view of current models. We also introduce various applications and relevant datasets, such as point cloud processing and multi-label classification, highlighting the significant progress achieved by set function learning methods in these domains. Finally, we conclude by summarizing the current state of set function learning approaches and identifying promising future research directions, aiming to guide and inspire further advancements in this promising field.
On the Optimal Memorization Power of ReLU Neural Networks
We study the memorization power of feedforward ReLU neural networks. We show that such networks can memorize any N points that satisfy a mild separability assumption using Oleft(Nright) parameters. Known VC-dimension upper bounds imply that memorizing N samples requires Omega(N) parameters, and hence our construction is optimal up to logarithmic factors. We also give a generalized construction for networks with depth bounded by 1 leq L leq N, for memorizing N samples using O(N/L) parameters. This bound is also optimal up to logarithmic factors. Our construction uses weights with large bit complexity. We prove that having such a large bit complexity is both necessary and sufficient for memorization with a sub-linear number of parameters.
Geometric Algebra Attention Networks for Small Point Clouds
Much of the success of deep learning is drawn from building architectures that properly respect underlying symmetry and structure in the data on which they operate - a set of considerations that have been united under the banner of geometric deep learning. Often problems in the physical sciences deal with relatively small sets of points in two- or three-dimensional space wherein translation, rotation, and permutation equivariance are important or even vital for models to be useful in practice. In this work, we present rotation- and permutation-equivariant architectures for deep learning on these small point clouds, composed of a set of products of terms from the geometric algebra and reductions over those products using an attention mechanism. The geometric algebra provides valuable mathematical structure by which to combine vector, scalar, and other types of geometric inputs in a systematic way to account for rotation invariance or covariance, while attention yields a powerful way to impose permutation equivariance. We demonstrate the usefulness of these architectures by training models to solve sample problems relevant to physics, chemistry, and biology.
Are Transformers with One Layer Self-Attention Using Low-Rank Weight Matrices Universal Approximators?
Existing analyses of the expressive capacity of Transformer models have required excessively deep layers for data memorization, leading to a discrepancy with the Transformers actually used in practice. This is primarily due to the interpretation of the softmax function as an approximation of the hardmax function. By clarifying the connection between the softmax function and the Boltzmann operator, we prove that a single layer of self-attention with low-rank weight matrices possesses the capability to perfectly capture the context of an entire input sequence. As a consequence, we show that one-layer and single-head Transformers have a memorization capacity for finite samples, and that Transformers consisting of one self-attention layer with two feed-forward neural networks are universal approximators for continuous permutation equivariant functions on a compact domain.
Improving Spatiotemporal Self-Supervision by Deep Reinforcement Learning
Self-supervised learning of convolutional neural networks can harness large amounts of cheap unlabeled data to train powerful feature representations. As surrogate task, we jointly address ordering of visual data in the spatial and temporal domain. The permutations of training samples, which are at the core of self-supervision by ordering, have so far been sampled randomly from a fixed preselected set. Based on deep reinforcement learning we propose a sampling policy that adapts to the state of the network, which is being trained. Therefore, new permutations are sampled according to their expected utility for updating the convolutional feature representation. Experimental evaluation on unsupervised and transfer learning tasks demonstrates competitive performance on standard benchmarks for image and video classification and nearest neighbor retrieval.
STable: Table Generation Framework for Encoder-Decoder Models
The output structure of database-like tables, consisting of values structured in horizontal rows and vertical columns identifiable by name, can cover a wide range of NLP tasks. Following this constatation, we propose a framework for text-to-table neural models applicable to problems such as extraction of line items, joint entity and relation extraction, or knowledge base population. The permutation-based decoder of our proposal is a generalized sequential method that comprehends information from all cells in the table. The training maximizes the expected log-likelihood for a table's content across all random permutations of the factorization order. During the content inference, we exploit the model's ability to generate cells in any order by searching over possible orderings to maximize the model's confidence and avoid substantial error accumulation, which other sequential models are prone to. Experiments demonstrate a high practical value of the framework, which establishes state-of-the-art results on several challenging datasets, outperforming previous solutions by up to 15%.
Hidden symmetries of ReLU networks
The parameter space for any fixed architecture of feedforward ReLU neural networks serves as a proxy during training for the associated class of functions - but how faithful is this representation? It is known that many different parameter settings can determine the same function. Moreover, the degree of this redundancy is inhomogeneous: for some networks, the only symmetries are permutation of neurons in a layer and positive scaling of parameters at a neuron, while other networks admit additional hidden symmetries. In this work, we prove that, for any network architecture where no layer is narrower than the input, there exist parameter settings with no hidden symmetries. We also describe a number of mechanisms through which hidden symmetries can arise, and empirically approximate the functional dimension of different network architectures at initialization. These experiments indicate that the probability that a network has no hidden symmetries decreases towards 0 as depth increases, while increasing towards 1 as width and input dimension increase.
Frame Averaging for Invariant and Equivariant Network Design
Many machine learning tasks involve learning functions that are known to be invariant or equivariant to certain symmetries of the input data. However, it is often challenging to design neural network architectures that respect these symmetries while being expressive and computationally efficient. For example, Euclidean motion invariant/equivariant graph or point cloud neural networks. We introduce Frame Averaging (FA), a general purpose and systematic framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types. Our framework builds on the well known group averaging operator that guarantees invariance or equivariance but is intractable. In contrast, we observe that for many important classes of symmetries, this operator can be replaced with an averaging operator over a small subset of the group elements, called a frame. We show that averaging over a frame guarantees exact invariance or equivariance while often being much simpler to compute than averaging over the entire group. Furthermore, we prove that FA-based models have maximal expressive power in a broad setting and in general preserve the expressive power of their backbone architectures. Using frame averaging, we propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs. We demonstrate the practical effectiveness of FA on several applications including point cloud normal estimation, beyond 2-WL graph separation, and n-body dynamics prediction, achieving state-of-the-art results in all of these benchmarks.
Do Deep Neural Network Solutions Form a Star Domain?
It has recently been conjectured that neural network solution sets reachable via stochastic gradient descent (SGD) are convex, considering permutation invariances (Entezari et al., 2022). This means that a linear path can connect two independent solutions with low loss, given the weights of one of the models are appropriately permuted. However, current methods to test this theory often require very wide networks to succeed. In this work, we conjecture that more generally, the SGD solution set is a "star domain" that contains a "star model" that is linearly connected to all the other solutions via paths with low loss values, modulo permutations. We propose the Starlight algorithm that finds a star model of a given learning task. We validate our claim by showing that this star model is linearly connected with other independently found solutions. As an additional benefit of our study, we demonstrate better uncertainty estimates on the Bayesian Model Averaging over the obtained star domain. Further, we demonstrate star models as potential substitutes for model ensembles. Our code is available at https://github.com/aktsonthalia/starlight.
Pointer Networks
We introduce a new neural architecture to learn the conditional probability of an output sequence with elements that are discrete tokens corresponding to positions in an input sequence. Such problems cannot be trivially addressed by existent approaches such as sequence-to-sequence and Neural Turing Machines, because the number of target classes in each step of the output depends on the length of the input, which is variable. Problems such as sorting variable sized sequences, and various combinatorial optimization problems belong to this class. Our model solves the problem of variable size output dictionaries using a recently proposed mechanism of neural attention. It differs from the previous attention attempts in that, instead of using attention to blend hidden units of an encoder to a context vector at each decoder step, it uses attention as a pointer to select a member of the input sequence as the output. We call this architecture a Pointer Net (Ptr-Net). We show Ptr-Nets can be used to learn approximate solutions to three challenging geometric problems -- finding planar convex hulls, computing Delaunay triangulations, and the planar Travelling Salesman Problem -- using training examples alone. Ptr-Nets not only improve over sequence-to-sequence with input attention, but also allow us to generalize to variable size output dictionaries. We show that the learnt models generalize beyond the maximum lengths they were trained on. We hope our results on these tasks will encourage a broader exploration of neural learning for discrete problems.
Invariant Causal Mechanisms through Distribution Matching
Learning representations that capture the underlying data generating process is a key problem for data efficient and robust use of neural networks. One key property for robustness which the learned representation should capture and which recently received a lot of attention is described by the notion of invariance. In this work we provide a causal perspective and new algorithm for learning invariant representations. Empirically we show that this algorithm works well on a diverse set of tasks and in particular we observe state-of-the-art performance on domain generalization, where we are able to significantly boost the score of existing models.
On the Universality of Linear Recurrences Followed by Nonlinear Projections
In this note (work in progress towards a full-length paper) we show that a family of sequence models based on recurrent linear layers~(including S4, S5, and the LRU) interleaved with position-wise multi-layer perceptrons~(MLPs) can approximate arbitrarily well any sufficiently regular non-linear sequence-to-sequence map. The main idea behind our result is to see recurrent layers as compression algorithms that can faithfully store information about the input sequence into an inner state, before it is processed by the highly expressive MLP.
Recurrent Aggregators in Neural Algorithmic Reasoning
Neural algorithmic reasoning (NAR) is an emerging field that seeks to design neural networks that mimic classical algorithmic computations. Today, graph neural networks (GNNs) are widely used in neural algorithmic reasoners due to their message passing framework and permutation equivariance. In this extended abstract, we challenge this design choice, and replace the equivariant aggregation function with a recurrent neural network. While seemingly counter-intuitive, this approach has appropriate grounding when nodes have a natural ordering -- and this is the case frequently in established reasoning benchmarks like CLRS-30. Indeed, our recurrent NAR (RNAR) model performs very strongly on such tasks, while handling many others gracefully. A notable achievement of RNAR is its decisive state-of-the-art result on the Heapsort and Quickselect tasks, both deemed as a significant challenge for contemporary neural algorithmic reasoners -- especially the latter, where RNAR achieves a mean micro-F1 score of 87%.
Feature emergence via margin maximization: case studies in algebraic tasks
Understanding the internal representations learned by neural networks is a cornerstone challenge in the science of machine learning. While there have been significant recent strides in some cases towards understanding how neural networks implement specific target functions, this paper explores a complementary question -- why do networks arrive at particular computational strategies? Our inquiry focuses on the algebraic learning tasks of modular addition, sparse parities, and finite group operations. Our primary theoretical findings analytically characterize the features learned by stylized neural networks for these algebraic tasks. Notably, our main technique demonstrates how the principle of margin maximization alone can be used to fully specify the features learned by the network. Specifically, we prove that the trained networks utilize Fourier features to perform modular addition and employ features corresponding to irreducible group-theoretic representations to perform compositions in general groups, aligning closely with the empirical observations of Nanda et al. and Chughtai et al. More generally, we hope our techniques can help to foster a deeper understanding of why neural networks adopt specific computational strategies.
π^3: Scalable Permutation-Equivariant Visual Geometry Learning
We introduce pi^3, a feed-forward neural network that offers a novel approach to visual geometry reconstruction, breaking the reliance on a conventional fixed reference view. Previous methods often anchor their reconstructions to a designated viewpoint, an inductive bias that can lead to instability and failures if the reference is suboptimal. In contrast, pi^3 employs a fully permutation-equivariant architecture to predict affine-invariant camera poses and scale-invariant local point maps without any reference frames. This design makes our model inherently robust to input ordering and highly scalable. These advantages enable our simple and bias-free approach to achieve state-of-the-art performance on a wide range of tasks, including camera pose estimation, monocular/video depth estimation, and dense point map reconstruction. Code and models are publicly available.
How to address monotonicity for model risk management?
In this paper, we study the problem of establishing the accountability and fairness of transparent machine learning models through monotonicity. Although there have been numerous studies on individual monotonicity, pairwise monotonicity is often overlooked in the existing literature. This paper studies transparent neural networks in the presence of three types of monotonicity: individual monotonicity, weak pairwise monotonicity, and strong pairwise monotonicity. As a means of achieving monotonicity while maintaining transparency, we propose the monotonic groves of neural additive models. As a result of empirical examples, we demonstrate that monotonicity is often violated in practice and that monotonic groves of neural additive models are transparent, accountable, and fair.
Theoretical Understanding of Learning from Adversarial Perturbations
It is not fully understood why adversarial examples can deceive neural networks and transfer between different networks. To elucidate this, several studies have hypothesized that adversarial perturbations, while appearing as noises, contain class features. This is supported by empirical evidence showing that networks trained on mislabeled adversarial examples can still generalize well to correctly labeled test samples. However, a theoretical understanding of how perturbations include class features and contribute to generalization is limited. In this study, we provide a theoretical framework for understanding learning from perturbations using a one-hidden-layer network trained on mutually orthogonal samples. Our results highlight that various adversarial perturbations, even perturbations of a few pixels, contain sufficient class features for generalization. Moreover, we reveal that the decision boundary when learning from perturbations matches that from standard samples except for specific regions under mild conditions. The code is available at https://github.com/s-kumano/learning-from-adversarial-perturbations.
CKConv: Continuous Kernel Convolution For Sequential Data
Conventional neural architectures for sequential data present important limitations. Recurrent networks suffer from exploding and vanishing gradients, small effective memory horizons, and must be trained sequentially. Convolutional networks are unable to handle sequences of unknown size and their memory horizon must be defined a priori. In this work, we show that all these problems can be solved by formulating convolutional kernels in CNNs as continuous functions. The resulting Continuous Kernel Convolution (CKConv) allows us to model arbitrarily long sequences in a parallel manner, within a single operation, and without relying on any form of recurrence. We show that Continuous Kernel Convolutional Networks (CKCNNs) obtain state-of-the-art results in multiple datasets, e.g., permuted MNIST, and, thanks to their continuous nature, are able to handle non-uniformly sampled datasets and irregularly-sampled data natively. CKCNNs match or perform better than neural ODEs designed for these purposes in a faster and simpler manner.
Finite size corrections for neural network Gaussian processes
There has been a recent surge of interest in modeling neural networks (NNs) as Gaussian processes. In the limit of a NN of infinite width the NN becomes equivalent to a Gaussian process. Here we demonstrate that for an ensemble of large, finite, fully connected networks with a single hidden layer the distribution of outputs at initialization is well described by a Gaussian perturbed by the fourth Hermite polynomial for weights drawn from a symmetric distribution. We show that the scale of the perturbation is inversely proportional to the number of units in the NN and that higher order terms decay more rapidly, thereby recovering the Edgeworth expansion. We conclude by observing that understanding how this perturbation changes under training would reveal the regimes in which the Gaussian process framework is valid to model NN behavior.
SortedNet, a Place for Every Network and Every Network in its Place: Towards a Generalized Solution for Training Many-in-One Neural Networks
As the size of deep learning models continues to grow, finding optimal models under memory and computation constraints becomes increasingly more important. Although usually the architecture and constituent building blocks of neural networks allow them to be used in a modular way, their training process is not aware of this modularity. Consequently, conventional neural network training lacks the flexibility to adapt the computational load of the model during inference. This paper proposes SortedNet, a generalized and scalable solution to harness the inherent modularity of deep neural networks across various dimensions for efficient dynamic inference. Our training considers a nested architecture for the sub-models with shared parameters and trains them together with the main model in a sorted and probabilistic manner. This sorted training of sub-networks enables us to scale the number of sub-networks to hundreds using a single round of training. We utilize a novel updating scheme during training that combines random sampling of sub-networks with gradient accumulation to improve training efficiency. Furthermore, the sorted nature of our training leads to a search-free sub-network selection at inference time; and the nested architecture of the resulting sub-networks leads to minimal storage requirement and efficient switching between sub-networks at inference. Our general dynamic training approach is demonstrated across various architectures and tasks, including large language models and pre-trained vision models. Experimental results show the efficacy of the proposed approach in achieving efficient sub-networks while outperforming state-of-the-art dynamic training approaches. Our findings demonstrate the feasibility of training up to 160 different sub-models simultaneously, showcasing the extensive scalability of our proposed method while maintaining 96% of the model performance.
KAN: Kolmogorov-Arnold Networks
Inspired by the Kolmogorov-Arnold representation theorem, we propose Kolmogorov-Arnold Networks (KANs) as promising alternatives to Multi-Layer Perceptrons (MLPs). While MLPs have fixed activation functions on nodes ("neurons"), KANs have learnable activation functions on edges ("weights"). KANs have no linear weights at all -- every weight parameter is replaced by a univariate function parametrized as a spline. We show that this seemingly simple change makes KANs outperform MLPs in terms of accuracy and interpretability. For accuracy, much smaller KANs can achieve comparable or better accuracy than much larger MLPs in data fitting and PDE solving. Theoretically and empirically, KANs possess faster neural scaling laws than MLPs. For interpretability, KANs can be intuitively visualized and can easily interact with human users. Through two examples in mathematics and physics, KANs are shown to be useful collaborators helping scientists (re)discover mathematical and physical laws. In summary, KANs are promising alternatives for MLPs, opening opportunities for further improving today's deep learning models which rely heavily on MLPs.
Learning Non-Linear Invariants for Unsupervised Out-of-Distribution Detection
The inability of deep learning models to handle data drawn from unseen distributions has sparked much interest in unsupervised out-of-distribution (U-OOD) detection, as it is crucial for reliable deep learning models. Despite considerable attention, theoretically-motivated approaches are few and far between, with most methods building on top of some form of heuristic. Recently, U-OOD was formalized in the context of data invariants, allowing a clearer understanding of how to characterize U-OOD, and methods leveraging affine invariants have attained state-of-the-art results on large-scale benchmarks. Nevertheless, the restriction to affine invariants hinders the expressiveness of the approach. In this work, we broaden the affine invariants formulation to a more general case and propose a framework consisting of a normalizing flow-like architecture capable of learning non-linear invariants. Our novel approach achieves state-of-the-art results on an extensive U-OOD benchmark, and we demonstrate its further applicability to tabular data. Finally, we show our method has the same desirable properties as those based on affine invariants.
Learning words in groups: fusion algebras, tensor ranks and grokking
In this work, we demonstrate that a simple two-layer neural network with standard activation functions can learn an arbitrary word operation in any finite group, provided sufficient width is available and exhibits grokking while doing so. To explain the mechanism by which this is achieved, we reframe the problem as that of learning a particular 3-tensor, which we show is typically of low rank. A key insight is that low-rank implementations of this tensor can be obtained by decomposing it along triplets of basic self-conjugate representations of the group and leveraging the fusion structure to rule out many components. Focusing on a phenomenologically similar but more tractable surrogate model, we show that the network is able to find such low-rank implementations (or approximations thereof), thereby using limited width to approximate the word-tensor in a generalizable way. In the case of the simple multiplication word, we further elucidate the form of these low-rank implementations, showing that the network effectively implements efficient matrix multiplication in the sense of Strassen. Our work also sheds light on the mechanism by which a network reaches such a solution under gradient descent.
From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication
It has been observed that representations learned by distinct neural networks conceal structural similarities when the models are trained under similar inductive biases. From a geometric perspective, identifying the classes of transformations and the related invariances that connect these representations is fundamental to unlocking applications, such as merging, stitching, and reusing different neural modules. However, estimating task-specific transformations a priori can be challenging and expensive due to several factors (e.g., weights initialization, training hyperparameters, or data modality). To this end, we introduce a versatile method to directly incorporate a set of invariances into the representations, constructing a product space of invariant components on top of the latent representations without requiring prior knowledge about the optimal invariance to infuse. We validate our solution on classification and reconstruction tasks, observing consistent latent similarity and downstream performance improvements in a zero-shot stitching setting. The experimental analysis comprises three modalities (vision, text, and graphs), twelve pretrained foundational models, nine benchmarks, and several architectures trained from scratch.
1-WL Expressiveness Is (Almost) All You Need
It has been shown that a message passing neural networks (MPNNs), a popular family of neural networks for graph-structured data, are at most as expressive as the first-order Weisfeiler-Leman (1-WL) graph isomorphism test, which has motivated the development of more expressive architectures. In this work, we analyze if the limited expressiveness is actually a limiting factor for MPNNs and other WL-based models in standard graph datasets. Interestingly, we find that the expressiveness of WL is sufficient to identify almost all graphs in most datasets. Moreover, we find that the classification accuracy upper bounds are often close to 100\%. Furthermore, we find that simple WL-based neural networks and several MPNNs can be fitted to several datasets. In sum, we conclude that the performance of WL/MPNNs is not limited by their expressiveness in practice.
Contrasting Adversarial Perturbations: The Space of Harmless Perturbations
Existing works have extensively studied adversarial examples, which are minimal perturbations that can mislead the output of deep neural networks (DNNs) while remaining imperceptible to humans. However, in this work, we reveal the existence of a harmless perturbation space, in which perturbations drawn from this space, regardless of their magnitudes, leave the network output unchanged when applied to inputs. Essentially, the harmless perturbation space emerges from the usage of non-injective functions (linear or non-linear layers) within DNNs, enabling multiple distinct inputs to be mapped to the same output. For linear layers with input dimensions exceeding output dimensions, any linear combination of the orthogonal bases of the nullspace of the parameter consistently yields no change in their output. For non-linear layers, the harmless perturbation space may expand, depending on the properties of the layers and input samples. Inspired by this property of DNNs, we solve for a family of general perturbation spaces that are redundant for the DNN's decision, and can be used to hide sensitive data and serve as a means of model identification. Our work highlights the distinctive robustness of DNNs (i.e., consistency under large magnitude perturbations) in contrast to adversarial examples (vulnerability for small imperceptible noises).
In Search of a Data Transformation That Accelerates Neural Field Training
Neural field is an emerging paradigm in data representation that trains a neural network to approximate the given signal. A key obstacle that prevents its widespread adoption is the encoding speed-generating neural fields requires an overfitting of a neural network, which can take a significant number of SGD steps to reach the desired fidelity level. In this paper, we delve into the impacts of data transformations on the speed of neural field training, specifically focusing on how permuting pixel locations affect the convergence speed of SGD. Counterintuitively, we find that randomly permuting the pixel locations can considerably accelerate the training. To explain this phenomenon, we examine the neural field training through the lens of PSNR curves, loss landscapes, and error patterns. Our analyses suggest that the random pixel permutations remove the easy-to-fit patterns, which facilitate easy optimization in the early stage but hinder capturing fine details of the signal.
Self-supervised learning of Split Invariant Equivariant representations
Recent progress has been made towards learning invariant or equivariant representations with self-supervised learning. While invariant methods are evaluated on large scale datasets, equivariant ones are evaluated in smaller, more controlled, settings. We aim at bridging the gap between the two in order to learn more diverse representations that are suitable for a wide range of tasks. We start by introducing a dataset called 3DIEBench, consisting of renderings from 3D models over 55 classes and more than 2.5 million images where we have full control on the transformations applied to the objects. We further introduce a predictor architecture based on hypernetworks to learn equivariant representations with no possible collapse to invariance. We introduce SIE (Split Invariant-Equivariant) which combines the hypernetwork-based predictor with representations split in two parts, one invariant, the other equivariant, to learn richer representations. We demonstrate significant performance gains over existing methods on equivariance related tasks from both a qualitative and quantitative point of view. We further analyze our introduced predictor and show how it steers the learned latent space. We hope that both our introduced dataset and approach will enable learning richer representations without supervision in more complex scenarios. Code and data are available at https://github.com/facebookresearch/SIE.
Polynormer: Polynomial-Expressive Graph Transformer in Linear Time
Graph transformers (GTs) have emerged as a promising architecture that is theoretically more expressive than message-passing graph neural networks (GNNs). However, typical GT models have at least quadratic complexity and thus cannot scale to large graphs. While there are several linear GTs recently proposed, they still lag behind GNN counterparts on several popular graph datasets, which poses a critical concern on their practical expressivity. To balance the trade-off between expressivity and scalability of GTs, we propose Polynormer, a polynomial-expressive GT model with linear complexity. Polynormer is built upon a novel base model that learns a high-degree polynomial on input features. To enable the base model permutation equivariant, we integrate it with graph topology and node features separately, resulting in local and global equivariant attention models. Consequently, Polynormer adopts a linear local-to-global attention scheme to learn high-degree equivariant polynomials whose coefficients are controlled by attention scores. Polynormer has been evaluated on 13 homophilic and heterophilic datasets, including large graphs with millions of nodes. Our extensive experiment results show that Polynormer outperforms state-of-the-art GNN and GT baselines on most datasets, even without the use of nonlinear activation functions.
Structure Learning for Neural Module Networks
Neural Module Networks, originally proposed for the task of visual question answering, are a class of neural network architectures that involve human-specified neural modules, each designed for a specific form of reasoning. In current formulations of such networks only the parameters of the neural modules and/or the order of their execution is learned. In this work, we further expand this approach and also learn the underlying internal structure of modules in terms of the ordering and combination of simple and elementary arithmetic operators. Our results show that one is indeed able to simultaneously learn both internal module structure and module sequencing without extra supervisory signals for module execution sequencing. With this approach, we report performance comparable to models using hand-designed modules.
Subhomogeneous Deep Equilibrium Models
Implicit-depth neural networks have grown as powerful alternatives to traditional networks in various applications in recent years. However, these models often lack guarantees of existence and uniqueness, raising stability, performance, and reproducibility issues. In this paper, we present a new analysis of the existence and uniqueness of fixed points for implicit-depth neural networks based on the concept of subhomogeneous operators and the nonlinear Perron-Frobenius theory. Compared to previous similar analyses, our theory allows for weaker assumptions on the parameter matrices, thus yielding a more flexible framework for well-defined implicit networks. We illustrate the performance of the resulting subhomogeneous networks on feedforward, convolutional, and graph neural network examples.
Algorithm Development in Neural Networks: Insights from the Streaming Parity Task
Even when massively overparameterized, deep neural networks show a remarkable ability to generalize. Research on this phenomenon has focused on generalization within distribution, via smooth interpolation. Yet in some settings neural networks also learn to extrapolate to data far beyond the bounds of the original training set, sometimes even allowing for infinite generalization, implying that an algorithm capable of solving the task has been learned. Here we undertake a case study of the learning dynamics of recurrent neural networks (RNNs) trained on the streaming parity task in order to develop an effective theory of algorithm development. The streaming parity task is a simple but nonlinear task defined on sequences up to arbitrary length. We show that, with sufficient finite training experience, RNNs exhibit a phase transition to perfect infinite generalization. Using an effective theory for the representational dynamics, we find an implicit representational merger effect which can be interpreted as the construction of a finite automaton that reproduces the task. Overall, our results disclose one mechanism by which neural networks can generalize infinitely from finite training experience.
Magnitude Invariant Parametrizations Improve Hypernetwork Learning
Hypernetworks, neural networks that predict the parameters of another neural network, are powerful models that have been successfully used in diverse applications from image generation to multi-task learning. Unfortunately, existing hypernetworks are often challenging to train. Training typically converges far more slowly than for non-hypernetwork models, and the rate of convergence can be very sensitive to hyperparameter choices. In this work, we identify a fundamental and previously unidentified problem that contributes to the challenge of training hypernetworks: a magnitude proportionality between the inputs and outputs of the hypernetwork. We demonstrate both analytically and empirically that this can lead to unstable optimization, thereby slowing down convergence, and sometimes even preventing any learning. We present a simple solution to this problem using a revised hypernetwork formulation that we call Magnitude Invariant Parametrizations (MIP). We demonstrate the proposed solution on several hypernetwork tasks, where it consistently stabilizes training and achieves faster convergence. Furthermore, we perform a comprehensive ablation study including choices of activation function, normalization strategies, input dimensionality, and hypernetwork architecture; and find that MIP improves training in all scenarios. We provide easy-to-use code that can turn existing networks into MIP-based hypernetworks.
Graph Convolutional Neural Networks as Parametric CoKleisli morphisms
We define the bicategory of Graph Convolutional Neural Networks GCNN_n for an arbitrary graph with n nodes. We show it can be factored through the already existing categorical constructions for deep learning called Para and Lens with the base category set to the CoKleisli category of the product comonad. We prove that there exists an injective-on-objects, faithful 2-functor GCNN_n to Para(CoKl(R^{n times n} times -)). We show that this construction allows us to treat the adjacency matrix of a GCNN as a global parameter instead of a a local, layer-wise one. This gives us a high-level categorical characterisation of a particular kind of inductive bias GCNNs possess. Lastly, we hypothesize about possible generalisations of GCNNs to general message-passing graph neural networks, connections to equivariant learning, and the (lack of) functoriality of activation functions.
Neural Metamorphosis
This paper introduces a new learning paradigm termed Neural Metamorphosis (NeuMeta), which aims to build self-morphable neural networks. Contrary to crafting separate models for different architectures or sizes, NeuMeta directly learns the continuous weight manifold of neural networks. Once trained, we can sample weights for any-sized network directly from the manifold, even for previously unseen configurations, without retraining. To achieve this ambitious goal, NeuMeta trains neural implicit functions as hypernetworks. They accept coordinates within the model space as input, and generate corresponding weight values on the manifold. In other words, the implicit function is learned in a way, that the predicted weights is well-performed across various models sizes. In training those models, we notice that, the final performance closely relates on smoothness of the learned manifold. In pursuit of enhancing this smoothness, we employ two strategies. First, we permute weight matrices to achieve intra-model smoothness, by solving the Shortest Hamiltonian Path problem. Besides, we add a noise on the input coordinates when training the implicit function, ensuring models with various sizes shows consistent outputs. As such, NeuMeta shows promising results in synthesizing parameters for various network configurations. Our extensive tests in image classification, semantic segmentation, and image generation reveal that NeuMeta sustains full-size performance even at a 75% compression rate.
Transferring Learning Trajectories of Neural Networks
Training deep neural networks (DNNs) is computationally expensive, which is problematic especially when performing duplicated or similar training runs in model ensemble or fine-tuning pre-trained models, for example. Once we have trained one DNN on some dataset, we have its learning trajectory (i.e., a sequence of intermediate parameters during training) which may potentially contain useful information for learning the dataset. However, there has been no attempt to utilize such information of a given learning trajectory for another training. In this paper, we formulate the problem of "transferring" a given learning trajectory from one initial parameter to another one (learning transfer problem) and derive the first algorithm to approximately solve it by matching gradients successively along the trajectory via permutation symmetry. We empirically show that the transferred parameters achieve non-trivial accuracy before any direct training, and can be trained significantly faster than training from scratch.
Continual Learning with Dependency Preserving Hypernetworks
Humans learn continually throughout their lifespan by accumulating diverse knowledge and fine-tuning it for future tasks. When presented with a similar goal, neural networks suffer from catastrophic forgetting if data distributions across sequential tasks are not stationary over the course of learning. An effective approach to address such continual learning (CL) problems is to use hypernetworks which generate task dependent weights for a target network. However, the continual learning performance of existing hypernetwork based approaches are affected by the assumption of independence of the weights across the layers in order to maintain parameter efficiency. To address this limitation, we propose a novel approach that uses a dependency preserving hypernetwork to generate weights for the target network while also maintaining the parameter efficiency. We propose to use recurrent neural network (RNN) based hypernetwork that can generate layer weights efficiently while allowing for dependencies across them. In addition, we propose novel regularisation and network growth techniques for the RNN based hypernetwork to further improve the continual learning performance. To demonstrate the effectiveness of the proposed methods, we conducted experiments on several image classification continual learning tasks and settings. We found that the proposed methods based on the RNN hypernetworks outperformed the baselines in all these CL settings and tasks.
Constructing Invariant and Equivariant Operations by Symmetric Tensor Network
Design of neural networks that incorporate symmetry is crucial for geometric deep learning. Central to this effort is the development of invariant and equivariant operations. This works presents a systematic method for constructing valid invariant and equivariant operations. It can handle inputs and outputs in the form of Cartesian tensors with different rank, as well as spherical tensors with different types. In addition, our method features a graphical representation utilizing the symmetric tensor network, which simplifies both the proofs and constructions related to invariant and equivariant functions. We also apply this approach to design the equivariant interaction message for the geometry graph neural network, and equivariant machine learning model to learn the constitutive law of materials.
Using Degeneracy in the Loss Landscape for Mechanistic Interpretability
Mechanistic Interpretability aims to reverse engineer the algorithms implemented by neural networks by studying their weights and activations. An obstacle to reverse engineering neural networks is that many of the parameters inside a network are not involved in the computation being implemented by the network. These degenerate parameters may obfuscate internal structure. Singular learning theory teaches us that neural network parameterizations are biased towards being more degenerate, and parameterizations with more degeneracy are likely to generalize further. We identify 3 ways that network parameters can be degenerate: linear dependence between activations in a layer; linear dependence between gradients passed back to a layer; ReLUs which fire on the same subset of datapoints. We also present a heuristic argument that modular networks are likely to be more degenerate, and we develop a metric for identifying modules in a network that is based on this argument. We propose that if we can represent a neural network in a way that is invariant to reparameterizations that exploit the degeneracies, then this representation is likely to be more interpretable, and we provide some evidence that such a representation is likely to have sparser interactions. We introduce the Interaction Basis, a tractable technique to obtain a representation that is invariant to degeneracies from linear dependence of activations or Jacobians.
Neural Parameter Allocation Search
Training neural networks requires increasing amounts of memory. Parameter sharing can reduce memory and communication costs, but existing methods assume networks have many identical layers and utilize hand-crafted sharing strategies that fail to generalize. We introduce Neural Parameter Allocation Search (NPAS), a novel task where the goal is to train a neural network given an arbitrary, fixed parameter budget. NPAS covers both low-budget regimes, which produce compact networks, as well as a novel high-budget regime, where additional capacity can be added to boost performance without increasing inference FLOPs. To address NPAS, we introduce Shapeshifter Networks (SSNs), which automatically learn where and how to share parameters in a network to support any parameter budget without requiring any changes to the architecture or loss function. NPAS and SSNs provide a complete framework for addressing generalized parameter sharing, and can also be combined with prior work for additional performance gains. We demonstrate the effectiveness of our approach using nine network architectures across four diverse tasks, including ImageNet classification and transformers.
Symmetric Single Index Learning
Few neural architectures lend themselves to provable learning with gradient based methods. One popular model is the single-index model, in which labels are produced by composing an unknown linear projection with a possibly unknown scalar link function. Learning this model with SGD is relatively well-understood, whereby the so-called information exponent of the link function governs a polynomial sample complexity rate. However, extending this analysis to deeper or more complicated architectures remains challenging. In this work, we consider single index learning in the setting of symmetric neural networks. Under analytic assumptions on the activation and maximum degree assumptions on the link function, we prove that gradient flow recovers the hidden planted direction, represented as a finitely supported vector in the feature space of power sum polynomials. We characterize a notion of information exponent adapted to our setting that controls the efficiency of learning.
Symbolic Synthesis of Neural Networks
Neural networks adapt very well to distributed and continuous representations, but struggle to generalize from small amounts of data. Symbolic systems commonly achieve data efficient generalization by exploiting modularity to benefit from local and discrete features of a representation. These features allow symbolic programs to be improved one module at a time and to experience combinatorial growth in the values they can successfully process. However, it is difficult to design a component that can be used to form symbolic abstractions and which is adequately overparametrized to learn arbitrary high-dimensional transformations. I present Graph-based Symbolically Synthesized Neural Networks (G-SSNNs), a class of neural modules that operate on representations modified with synthesized symbolic programs to include a fixed set of local and discrete features. I demonstrate that the choice of injected features within a G-SSNN module modulates the data efficiency and generalization of baseline neural models, creating predictable patterns of both heightened and curtailed generalization. By training G-SSNNs, we also derive information about desirable semantics of symbolic programs without manual engineering. This information is compact and amenable to abstraction, but can also be flexibly recontextualized for other high-dimensional settings. In future work, I will investigate data efficient generalization and the transferability of learned symbolic representations in more complex G-SSNN designs based on more complex classes of symbolic programs. Experimental code and data are available at https://github.com/shlomenu/symbolically_synthesized_networks .
Compacting Binary Neural Networks by Sparse Kernel Selection
Binary Neural Network (BNN) represents convolution weights with 1-bit values, which enhances the efficiency of storage and computation. This paper is motivated by a previously revealed phenomenon that the binary kernels in successful BNNs are nearly power-law distributed: their values are mostly clustered into a small number of codewords. This phenomenon encourages us to compact typical BNNs and obtain further close performance through learning non-repetitive kernels within a binary kernel subspace. Specifically, we regard the binarization process as kernel grouping in terms of a binary codebook, and our task lies in learning to select a smaller subset of codewords from the full codebook. We then leverage the Gumbel-Sinkhorn technique to approximate the codeword selection process, and develop the Permutation Straight-Through Estimator (PSTE) that is able to not only optimize the selection process end-to-end but also maintain the non-repetitive occupancy of selected codewords. Experiments verify that our method reduces both the model size and bit-wise computational costs, and achieves accuracy improvements compared with state-of-the-art BNNs under comparable budgets.
Fixed-Point RNNs: Interpolating from Diagonal to Dense
Linear recurrent neural networks (RNNs) and state-space models (SSMs) such as Mamba have become promising alternatives to softmax-attention as sequence mixing layers in Transformer architectures. Current models, however, do not exhibit the full state-tracking expressivity of RNNs because they rely on channel-wise (i.e. diagonal) sequence mixing. In this paper, we investigate parameterizations of a large class of dense linear RNNs as fixed-points of parallelizable diagonal linear RNNs. The resulting models can naturally trade expressivity for efficiency at a fixed number of parameters and achieve state-of-the-art results on the state-tracking benchmarks A_5 and S_5, while matching performance on copying and other tasks.
On the Expressive Power of Sparse Geometric MPNNs
Motivated by applications in chemistry and other sciences, we study the expressive power of message-passing neural networks for geometric graphs, whose node features correspond to 3-dimensional positions. Recent work has shown that such models can separate generic pairs of non-isomorphic geometric graphs, though they may fail to separate some rare and complicated instances. However, these results assume a fully connected graph, where each node possesses complete knowledge of all other nodes. In contrast, often, in application, every node only possesses knowledge of a small number of nearest neighbors. This paper shows that generic pairs of non-isomorphic geometric graphs can be separated by message-passing networks with rotation equivariant features as long as the underlying graph is connected. When only invariant intermediate features are allowed, generic separation is guaranteed for generically globally rigid graphs. We introduce a simple architecture, EGENNET, which achieves our theoretical guarantees and compares favorably with alternative architecture on synthetic and chemical benchmarks. Our code is available at https://github.com/yonatansverdlov/E-GenNet.
Understanding Catastrophic Forgetting and Remembering in Continual Learning with Optimal Relevance Mapping
Catastrophic forgetting in neural networks is a significant problem for continual learning. A majority of the current methods replay previous data during training, which violates the constraints of an ideal continual learning system. Additionally, current approaches that deal with forgetting ignore the problem of catastrophic remembering, i.e. the worsening ability to discriminate between data from different tasks. In our work, we introduce Relevance Mapping Networks (RMNs) which are inspired by the Optimal Overlap Hypothesis. The mappings reflects the relevance of the weights for the task at hand by assigning large weights to essential parameters. We show that RMNs learn an optimized representational overlap that overcomes the twin problem of catastrophic forgetting and remembering. Our approach achieves state-of-the-art performance across all common continual learning datasets, even significantly outperforming data replay methods while not violating the constraints for an ideal continual learning system. Moreover, RMNs retain the ability to detect data from new tasks in an unsupervised manner, thus proving their resilience against catastrophic remembering.
Towards Distributed Neural Architectures
We introduce and train distributed neural architectures (DNA) in vision and language domains. DNAs are initialized with a proto-architecture that consists of (transformer, MLP, attention, etc.) modules and routers. Any token (or patch) can traverse any series of modules in any order. DNAs are a natural generalization of the sparse methods such as Mixture-of-Experts, Mixture-of-Depths, parameter sharing, etc. Computation and communication patterns of DNA modules are learnt end-to-end during training and depend on the content and context of each token (or patch). These patterns can be shaped by further requirements added to the optimization objective such as compute/memory efficiency or load balancing. We empirically show that (i) trained DNAs are competitive with the dense baselines in both domains and (ii) compute efficiency/parameter sharing can be learnt from data. Next, we analyze the emergent connectivity and computation patterns in the trained DNAs. We find that the paths that tokens take through the models are themselves distributed according to a power-law. We show that some paths (or, equivalently, groups of modules) show emergent specialization. Finally, we demonstrate that models learn to allocate compute and active parameters in an interpretable way.
Natural Graph Networks
A key requirement for graph neural networks is that they must process a graph in a way that does not depend on how the graph is described. Traditionally this has been taken to mean that a graph network must be equivariant to node permutations. Here we show that instead of equivariance, the more general concept of naturality is sufficient for a graph network to be well-defined, opening up a larger class of graph networks. We define global and local natural graph networks, the latter of which are as scalable as conventional message passing graph neural networks while being more flexible. We give one practical instantiation of a natural network on graphs which uses an equivariant message network parameterization, yielding good performance on several benchmarks.
Using the Output Embedding to Improve Language Models
We study the topmost weight matrix of neural network language models. We show that this matrix constitutes a valid word embedding. When training language models, we recommend tying the input embedding and this output embedding. We analyze the resulting update rules and show that the tied embedding evolves in a more similar way to the output embedding than to the input embedding in the untied model. We also offer a new method of regularizing the output embedding. Our methods lead to a significant reduction in perplexity, as we are able to show on a variety of neural network language models. Finally, we show that weight tying can reduce the size of neural translation models to less than half of their original size without harming their performance.
An Algorithm for Computing with Brauer's Group Equivariant Neural Network Layers
The learnable, linear neural network layers between tensor power spaces of R^{n} that are equivariant to the orthogonal group, O(n), the special orthogonal group, SO(n), and the symplectic group, Sp(n), were characterised in arXiv:2212.08630. We present an algorithm for multiplying a vector by any weight matrix for each of these groups, using category theoretic constructions to implement the procedure. We achieve a significant reduction in computational cost compared with a naive implementation by making use of Kronecker product matrices to perform the multiplication. We show that our approach extends to the symmetric group, S_n, recovering the algorithm of arXiv:2303.06208 in the process.
Low-rank lottery tickets: finding efficient low-rank neural networks via matrix differential equations
Neural networks have achieved tremendous success in a large variety of applications. However, their memory footprint and computational demand can render them impractical in application settings with limited hardware or energy resources. In this work, we propose a novel algorithm to find efficient low-rank subnetworks. Remarkably, these subnetworks are determined and adapted already during the training phase and the overall time and memory resources required by both training and evaluating them are significantly reduced. The main idea is to restrict the weight matrices to a low-rank manifold and to update the low-rank factors rather than the full matrix during training. To derive training updates that are restricted to the prescribed manifold, we employ techniques from dynamic model order reduction for matrix differential equations. This allows us to provide approximation, stability, and descent guarantees. Moreover, our method automatically and dynamically adapts the ranks during training to achieve the desired approximation accuracy. The efficiency of the proposed method is demonstrated through a variety of numerical experiments on fully-connected and convolutional networks.
Analysis of Linear Mode Connectivity via Permutation-Based Weight Matching
Recently, Ainsworth et al. showed that using weight matching (WM) to minimize the L_2 distance in a permutation search of model parameters effectively identifies permutations that satisfy linear mode connectivity (LMC), in which the loss along a linear path between two independently trained models with different seeds remains nearly constant. This paper provides a theoretical analysis of LMC using WM, which is crucial for understanding stochastic gradient descent's effectiveness and its application in areas like model merging. We first experimentally and theoretically show that permutations found by WM do not significantly reduce the L_2 distance between two models and the occurrence of LMC is not merely due to distance reduction by WM in itself. We then provide theoretical insights showing that permutations can change the directions of the singular vectors, but not the singular values, of the weight matrices in each layer. This finding shows that permutations found by WM mainly align the directions of singular vectors associated with large singular values across models. This alignment brings the singular vectors with large singular values, which determine the model functionality, closer between pre-merged and post-merged models, so that the post-merged model retains functionality similar to the pre-merged models, making it easy to satisfy LMC. Finally, we analyze the difference between WM and straight-through estimator (STE), a dataset-dependent permutation search method, and show that WM outperforms STE, especially when merging three or more models.
IF2Net: Innately Forgetting-Free Networks for Continual Learning
Continual learning can incrementally absorb new concepts without interfering with previously learned knowledge. Motivated by the characteristics of neural networks, in which information is stored in weights on connections, we investigated how to design an Innately Forgetting-Free Network (IF2Net) for continual learning context. This study proposed a straightforward yet effective learning paradigm by ingeniously keeping the weights relative to each seen task untouched before and after learning a new task. We first presented the novel representation-level learning on task sequences with random weights. This technique refers to tweaking the drifted representations caused by randomization back to their separate task-optimal working states, but the involved weights are frozen and reused (opposite to well-known layer-wise updates of weights). Then, sequential decision-making without forgetting can be achieved by projecting the output weight updates into the parsimonious orthogonal space, making the adaptations not disturb old knowledge while maintaining model plasticity. IF2Net allows a single network to inherently learn unlimited mapping rules without telling task identities at test time by integrating the respective strengths of randomization and orthogonalization. We validated the effectiveness of our approach in the extensive theoretical analysis and empirical study.
Fundamental limits of overparametrized shallow neural networks for supervised learning
We carry out an information-theoretical analysis of a two-layer neural network trained from input-output pairs generated by a teacher network with matching architecture, in overparametrized regimes. Our results come in the form of bounds relating i) the mutual information between training data and network weights, or ii) the Bayes-optimal generalization error, to the same quantities but for a simpler (generalized) linear model for which explicit expressions are rigorously known. Our bounds, which are expressed in terms of the number of training samples, input dimension and number of hidden units, thus yield fundamental performance limits for any neural network (and actually any learning procedure) trained from limited data generated according to our two-layer teacher neural network model. The proof relies on rigorous tools from spin glasses and is guided by ``Gaussian equivalence principles'' lying at the core of numerous recent analyses of neural networks. With respect to the existing literature, which is either non-rigorous or restricted to the case of the learning of the readout weights only, our results are information-theoretic (i.e. are not specific to any learning algorithm) and, importantly, cover a setting where all the network parameters are trained.
Outlier-Efficient Hopfield Layers for Large Transformer-Based Models
We introduce an Outlier-Efficient Modern Hopfield Model (termed OutEffHop) and use it to address the outlier-induced challenge of quantizing gigantic transformer-based models. Our main contribution is a novel associative memory model facilitating outlier-efficient associative memory retrievals. Interestingly, this memory model manifests a model-based interpretation of an outlier-efficient attention mechanism (Softmax_1): it is an approximation of the memory retrieval process of OutEffHop. Methodologically, this allows us to debut novel outlier-efficient Hopfield layers a powerful attention alternative with superior post-quantization performance. Theoretically, the Outlier-Efficient Modern Hopfield Model retains and improves the desirable properties of the standard modern Hopfield models, including fixed point convergence and exponential storage capacity. Empirically, we demonstrate the proposed model's efficacy across large-scale transformer-based and Hopfield-based models (including BERT, OPT, ViT and STanHop-Net), benchmarking against state-of-the-art methods including Clipped_Softmax and Gated_Attention. Notably, OutEffHop achieves on average sim22+\% reductions in both average kurtosis and maximum infinity norm of model outputs accross 4 models.
Self-Normalizing Neural Networks
Deep Learning has revolutionized vision via convolutional neural networks (CNNs) and natural language processing via recurrent neural networks (RNNs). However, success stories of Deep Learning with standard feed-forward neural networks (FNNs) are rare. FNNs that perform well are typically shallow and, therefore cannot exploit many levels of abstract representations. We introduce self-normalizing neural networks (SNNs) to enable high-level abstract representations. While batch normalization requires explicit normalization, neuron activations of SNNs automatically converge towards zero mean and unit variance. The activation function of SNNs are "scaled exponential linear units" (SELUs), which induce self-normalizing properties. Using the Banach fixed-point theorem, we prove that activations close to zero mean and unit variance that are propagated through many network layers will converge towards zero mean and unit variance -- even under the presence of noise and perturbations. This convergence property of SNNs allows to (1) train deep networks with many layers, (2) employ strong regularization, and (3) to make learning highly robust. Furthermore, for activations not close to unit variance, we prove an upper and lower bound on the variance, thus, vanishing and exploding gradients are impossible. We compared SNNs on (a) 121 tasks from the UCI machine learning repository, on (b) drug discovery benchmarks, and on (c) astronomy tasks with standard FNNs and other machine learning methods such as random forests and support vector machines. SNNs significantly outperformed all competing FNN methods at 121 UCI tasks, outperformed all competing methods at the Tox21 dataset, and set a new record at an astronomy data set. The winning SNN architectures are often very deep. Implementations are available at: github.com/bioinf-jku/SNNs.
GLGENN: A Novel Parameter-Light Equivariant Neural Networks Architecture Based on Clifford Geometric Algebras
We propose, implement, and compare with competitors a new architecture of equivariant neural networks based on geometric (Clifford) algebras: Generalized Lipschitz Group Equivariant Neural Networks (GLGENN). These networks are equivariant to all pseudo-orthogonal transformations, including rotations and reflections, of a vector space with any non-degenerate or degenerate symmetric bilinear form. We propose a weight-sharing parametrization technique that takes into account the fundamental structures and operations of geometric algebras. Due to this technique, GLGENN architecture is parameter-light and has less tendency to overfitting than baseline equivariant models. GLGENN outperforms or matches competitors on several benchmarking equivariant tasks, including estimation of an equivariant function and a convex hull experiment, while using significantly fewer optimizable parameters.
Going Beyond Neural Network Feature Similarity: The Network Feature Complexity and Its Interpretation Using Category Theory
The behavior of neural networks still remains opaque, and a recently widely noted phenomenon is that networks often achieve similar performance when initialized with different random parameters. This phenomenon has attracted significant attention in measuring the similarity between features learned by distinct networks. However, feature similarity could be vague in describing the same feature since equivalent features hardly exist. In this paper, we expand the concept of equivalent feature and provide the definition of what we call functionally equivalent features. These features produce equivalent output under certain transformations. Using this definition, we aim to derive a more intrinsic metric for the so-called feature complexity regarding the redundancy of features learned by a neural network at each layer. We offer a formal interpretation of our approach through the lens of category theory, a well-developed area in mathematics. To quantify the feature complexity, we further propose an efficient algorithm named Iterative Feature Merging. Our experimental results validate our ideas and theories from various perspectives. We empirically demonstrate that the functionally equivalence widely exists among different features learned by the same neural network and we could reduce the number of parameters of the network without affecting the performance.The IFM shows great potential as a data-agnostic model prune method. We have also drawn several interesting empirical findings regarding the defined feature complexity.
Fast, Stable and Efficient Approximation of Multi-parameter Persistence Modules with MMA
In this article, we introduce a new parameterized family of topological invariants, taking the form of candidate decompositions, for multi-parameter persistence modules. We prove that our candidate decompositions are controllable approximations: when restricting to modules that can be decomposed into interval summands, we establish theoretical results about the approximation error between our candidate decompositions and the true underlying module in terms of the standard interleaving and bottleneck distances. Moreover, even when the underlying module does not admit such a decomposition, our candidate decompositions are nonetheless stable invariants; small perturbations in the underlying module lead to small perturbations in the candidate decomposition. Then, we introduce MMA (Multipersistence Module Approximation): an algorithm for computing stable instances of such invariants, which is based on fibered barcodes and exact matchings, two constructions that stem from the theory of single-parameter persistence. By design, MMA can handle an arbitrary number of filtrations, and has bounded complexity and running time. Finally, we present empirical evidence validating the generalization capabilities and running time speed-ups of MMA on several data sets.
Dense Hebbian neural networks: a replica symmetric picture of unsupervised learning
We consider dense, associative neural-networks trained with no supervision and we investigate their computational capabilities analytically, via a statistical-mechanics approach, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as the quality and quantity of the training dataset and the network storage, valid in the limit of large network size and structureless datasets. Moreover, we establish a bridge between macroscopic observables standardly used in statistical mechanics and loss functions typically used in the machine learning. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate neural networks in general.
Path Neural Networks: Expressive and Accurate Graph Neural Networks
Graph neural networks (GNNs) have recently become the standard approach for learning with graph-structured data. Prior work has shed light into their potential, but also their limitations. Unfortunately, it was shown that standard GNNs are limited in their expressive power. These models are no more powerful than the 1-dimensional Weisfeiler-Leman (1-WL) algorithm in terms of distinguishing non-isomorphic graphs. In this paper, we propose Path Neural Networks (PathNNs), a model that updates node representations by aggregating paths emanating from nodes. We derive three different variants of the PathNN model that aggregate single shortest paths, all shortest paths and all simple paths of length up to K. We prove that two of these variants are strictly more powerful than the 1-WL algorithm, and we experimentally validate our theoretical results. We find that PathNNs can distinguish pairs of non-isomorphic graphs that are indistinguishable by 1-WL, while our most expressive PathNN variant can even distinguish between 3-WL indistinguishable graphs. The different PathNN variants are also evaluated on graph classification and graph regression datasets, where in most cases, they outperform the baseline methods.
Investigating Sparsity in Recurrent Neural Networks
In the past few years, neural networks have evolved from simple Feedforward Neural Networks to more complex neural networks, such as Convolutional Neural Networks and Recurrent Neural Networks. Where CNNs are a perfect fit for tasks where the sequence is not important such as image recognition, RNNs are useful when order is important such as machine translation. An increasing number of layers in a neural network is one way to improve its performance, but it also increases its complexity making it much more time and power-consuming to train. One way to tackle this problem is to introduce sparsity in the architecture of the neural network. Pruning is one of the many methods to make a neural network architecture sparse by clipping out weights below a certain threshold while keeping the performance near to the original. Another way is to generate arbitrary structures using random graphs and embed them between an input and output layer of an Artificial Neural Network. Many researchers in past years have focused on pruning mainly CNNs, while hardly any research is done for the same in RNNs. The same also holds in creating sparse architectures for RNNs by generating and embedding arbitrary structures. Therefore, this thesis focuses on investigating the effects of the before-mentioned two techniques on the performance of RNNs. We first describe the pruning of RNNs, its impact on the performance of RNNs, and the number of training epochs required to regain accuracy after the pruning is performed. Next, we continue with the creation and training of Sparse Recurrent Neural Networks and identify the relation between the performance and the graph properties of its underlying arbitrary structure. We perform these experiments on RNN with Tanh nonlinearity (RNN-Tanh), RNN with ReLU nonlinearity (RNN-ReLU), GRU, and LSTM. Finally, we analyze and discuss the results achieved from both the experiments.
Point2Point : A Framework for Efficient Deep Learning on Hilbert sorted Point Clouds with applications in Spatio-Temporal Occupancy Prediction
The irregularity and permutation invariance of point cloud data pose challenges for effective learning. Conventional methods for addressing this issue involve converting raw point clouds to intermediate representations such as 3D voxel grids or range images. While such intermediate representations solve the problem of permutation invariance, they can result in significant loss of information. Approaches that do learn on raw point clouds either have trouble in resolving neighborhood relationships between points or are too complicated in their formulation. In this paper, we propose a novel approach to representing point clouds as a locality preserving 1D ordering induced by the Hilbert space-filling curve. We also introduce Point2Point, a neural architecture that can effectively learn on Hilbert-sorted point clouds. We show that Point2Point shows competitive performance on point cloud segmentation and generation tasks. Finally, we show the performance of Point2Point on Spatio-temporal Occupancy prediction from Point clouds.
Parallel Learning by Multitasking Neural Networks
A modern challenge of Artificial Intelligence is learning multiple patterns at once (i.e.parallel learning). While this can not be accomplished by standard Hebbian associative neural networks, in this paper we show how the Multitasking Hebbian Network (a variation on theme of the Hopfield model working on sparse data-sets) is naturally able to perform this complex task. We focus on systems processing in parallel a finite (up to logarithmic growth in the size of the network) amount of patterns, mirroring the low-storage level of standard associative neural networks at work with pattern recognition. For mild dilution in the patterns, the network handles them hierarchically, distributing the amplitudes of their signals as power-laws w.r.t. their information content (hierarchical regime), while, for strong dilution, all the signals pertaining to all the patterns are raised with the same strength (parallel regime). Further, confined to the low-storage setting (i.e., far from the spin glass limit), the presence of a teacher neither alters the multitasking performances nor changes the thresholds for learning: the latter are the same whatever the training protocol is supervised or unsupervised. Results obtained through statistical mechanics, signal-to-noise technique and Monte Carlo simulations are overall in perfect agreement and carry interesting insights on multiple learning at once: for instance, whenever the cost-function of the model is minimized in parallel on several patterns (in its description via Statistical Mechanics), the same happens to the standard sum-squared error Loss function (typically used in Machine Learning).
Bit-wise Training of Neural Network Weights
We introduce an algorithm where the individual bits representing the weights of a neural network are learned. This method allows training weights with integer values on arbitrary bit-depths and naturally uncovers sparse networks, without additional constraints or regularization techniques. We show better results than the standard training technique with fully connected networks and similar performance as compared to standard training for convolutional and residual networks. By training bits in a selective manner we found that the biggest contribution to achieving high accuracy is given by the first three most significant bits, while the rest provide an intrinsic regularization. As a consequence more than 90\% of a network can be used to store arbitrary codes without affecting its accuracy. These codes may be random noise, binary files or even the weights of previously trained networks.
Koopman-based generalization bound: New aspect for full-rank weights
We propose a new bound for generalization of neural networks using Koopman operators. Whereas most of existing works focus on low-rank weight matrices, we focus on full-rank weight matrices. Our bound is tighter than existing norm-based bounds when the condition numbers of weight matrices are small. Especially, it is completely independent of the width of the network if the weight matrices are orthogonal. Our bound does not contradict to the existing bounds but is a complement to the existing bounds. As supported by several existing empirical results, low-rankness is not the only reason for generalization. Furthermore, our bound can be combined with the existing bounds to obtain a tighter bound. Our result sheds new light on understanding generalization of neural networks with full-rank weight matrices, and it provides a connection between operator-theoretic analysis and generalization of neural networks.
How Powerful are Graph Neural Networks?
Graph Neural Networks (GNNs) are an effective framework for representation learning of graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector of a node is computed by recursively aggregating and transforming representation vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs to capture different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.
Predictable Compression Failures: Why Language Models Actually Hallucinate
Large language models perform near-Bayesian inference yet violate permutation invariance on exchangeable data. We resolve this by showing transformers minimize expected conditional description length (cross-entropy) over orderings, E_pi[ell(Y mid Gamma_pi(X))], which admits a Kolmogorov-complexity interpretation up to additive constants, rather than the permutation-invariant description length ell(Y mid X). This makes them Bayesian in expectation, not in realization. We derive (i) a Quantified Martingale Violation bound showing order-induced deviations scale as O(log n) with constants; (ii) the Expectation-level Decompression Law linking information budgets to reliability for Bernoulli predicates; and (iii) deployable planners (B2T/RoH/ISR) for answer/abstain decisions. Empirically, permutation dispersion follows a+bln n (Qwen2-7B b approx 0.377, Llama-3.1-8B b approx 0.147); permutation mixtures improve ground-truth likelihood/accuracy; and randomized dose-response shows hallucinations drop by sim 0.13 per additional nat. A pre-specified audit with a fixed ISR=1.0 achieves near-0\% hallucinations via calibrated refusal at 24\% abstention. The framework turns hallucinations into predictable compression failures and enables principled information budgeting.
Sortformer: Seamless Integration of Speaker Diarization and ASR by Bridging Timestamps and Tokens
We propose Sortformer, a novel neural model for speaker diarization, trained with unconventional objectives compared to existing end-to-end diarization models. The permutation problem in speaker diarization has long been regarded as a critical challenge. Most prior end-to-end diarization systems employ permutation invariant loss (PIL), which optimizes for the permutation that yields the lowest error. In contrast, we introduce Sort Loss, which enables a diarization model to autonomously resolve permutation, with or without PIL. We demonstrate that combining Sort Loss and PIL achieves performance competitive with state-of-the-art end-to-end diarization models trained exclusively with PIL. Crucially, we present a streamlined multispeaker ASR architecture that leverages Sortformer as a speaker supervision model, embedding speaker label estimation within the ASR encoder state using a sinusoidal kernel function. This approach resolves the speaker permutation problem through sorted objectives, effectively bridging speaker-label timestamps and speaker tokens. In our experiments, we show that the proposed multispeaker ASR architecture, enhanced with speaker supervision, improves performance via adapter techniques. Code and trained models will be made publicly available via the NVIDIA NeMo framework
Operator Learning Meets Numerical Analysis: Improving Neural Networks through Iterative Methods
Deep neural networks, despite their success in numerous applications, often function without established theoretical foundations. In this paper, we bridge this gap by drawing parallels between deep learning and classical numerical analysis. By framing neural networks as operators with fixed points representing desired solutions, we develop a theoretical framework grounded in iterative methods for operator equations. Under defined conditions, we present convergence proofs based on fixed point theory. We demonstrate that popular architectures, such as diffusion models and AlphaFold, inherently employ iterative operator learning. Empirical assessments highlight that performing iterations through network operators improves performance. We also introduce an iterative graph neural network, PIGN, that further demonstrates benefits of iterations. Our work aims to enhance the understanding of deep learning by merging insights from numerical analysis, potentially guiding the design of future networks with clearer theoretical underpinnings and improved performance.
Equivariant Adaptation of Large Pretrained Models
Equivariant networks are specifically designed to ensure consistent behavior with respect to a set of input transformations, leading to higher sample efficiency and more accurate and robust predictions. However, redesigning each component of prevalent deep neural network architectures to achieve chosen equivariance is a difficult problem and can result in a computationally expensive network during both training and inference. A recently proposed alternative towards equivariance that removes the architectural constraints is to use a simple canonicalization network that transforms the input to a canonical form before feeding it to an unconstrained prediction network. We show here that this approach can effectively be used to make a large pretrained network equivariant. However, we observe that the produced canonical orientations can be misaligned with those of the training distribution, hindering performance. Using dataset-dependent priors to inform the canonicalization function, we are able to make large pretrained models equivariant while maintaining their performance. This significantly improves the robustness of these models to deterministic transformations of the data, such as rotations. We believe this equivariant adaptation of large pretrained models can help their domain-specific applications with known symmetry priors.
Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree
We seek to improve deep neural networks by generalizing the pooling operations that play a central role in current architectures. We pursue a careful exploration of approaches to allow pooling to learn and to adapt to complex and variable patterns. The two primary directions lie in (1) learning a pooling function via (two strategies of) combining of max and average pooling, and (2) learning a pooling function in the form of a tree-structured fusion of pooling filters that are themselves learned. In our experiments every generalized pooling operation we explore improves performance when used in place of average or max pooling. We experimentally demonstrate that the proposed pooling operations provide a boost in invariance properties relative to conventional pooling and set the state of the art on several widely adopted benchmark datasets; they are also easy to implement, and can be applied within various deep neural network architectures. These benefits come with only a light increase in computational overhead during training and a very modest increase in the number of model parameters.
