new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 16

CulturalFrames: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics

The increasing ubiquity of text-to-image (T2I) models as tools for visual content generation raises concerns about their ability to accurately represent diverse cultural contexts. In this work, we present the first study to systematically quantify the alignment of T2I models and evaluation metrics with respect to both explicit as well as implicit cultural expectations. To this end, we introduce CulturalFrames, a novel benchmark designed for rigorous human evaluation of cultural representation in visual generations. Spanning 10 countries and 5 socio-cultural domains, CulturalFrames comprises 983 prompts, 3637 corresponding images generated by 4 state-of-the-art T2I models, and over 10k detailed human annotations. We find that T2I models not only fail to meet the more challenging implicit expectations but also the less challenging explicit expectations. Across models and countries, cultural expectations are missed an average of 44% of the time. Among these failures, explicit expectations are missed at a surprisingly high average rate of 68%, while implicit expectation failures are also significant, averaging 49%. Furthermore, we demonstrate that existing T2I evaluation metrics correlate poorly with human judgments of cultural alignment, irrespective of their internal reasoning. Collectively, our findings expose critical gaps, providing actionable directions for developing more culturally informed T2I models and evaluation methodologies.

MAIR Lab
·
Jun 10

Large Language Models Assume People are More Rational than We Really are

In order for AI systems to communicate effectively with people, they must understand how we make decisions. However, people's decisions are not always rational, so the implicit internal models of human decision-making in Large Language Models (LLMs) must account for this. Previous empirical evidence seems to suggest that these implicit models are accurate -- LLMs offer believable proxies of human behavior, acting how we expect humans would in everyday interactions. However, by comparing LLM behavior and predictions to a large dataset of human decisions, we find that this is actually not the case: when both simulating and predicting people's choices, a suite of cutting-edge LLMs (GPT-4o & 4-Turbo, Llama-3-8B & 70B, Claude 3 Opus) assume that people are more rational than we really are. Specifically, these models deviate from human behavior and align more closely with a classic model of rational choice -- expected value theory. Interestingly, people also tend to assume that other people are rational when interpreting their behavior. As a consequence, when we compare the inferences that LLMs and people draw from the decisions of others using another psychological dataset, we find that these inferences are highly correlated. Thus, the implicit decision-making models of LLMs appear to be aligned with the human expectation that other people will act rationally, rather than with how people actually act.

  • 5 authors
·
Jun 24, 2024 4

Editing Implicit Assumptions in Text-to-Image Diffusion Models

Text-to-image diffusion models often make implicit assumptions about the world when generating images. While some assumptions are useful (e.g., the sky is blue), they can also be outdated, incorrect, or reflective of social biases present in the training data. Thus, there is a need to control these assumptions without requiring explicit user input or costly re-training. In this work, we aim to edit a given implicit assumption in a pre-trained diffusion model. Our Text-to-Image Model Editing method, TIME for short, receives a pair of inputs: a "source" under-specified prompt for which the model makes an implicit assumption (e.g., "a pack of roses"), and a "destination" prompt that describes the same setting, but with a specified desired attribute (e.g., "a pack of blue roses"). TIME then updates the model's cross-attention layers, as these layers assign visual meaning to textual tokens. We edit the projection matrices in these layers such that the source prompt is projected close to the destination prompt. Our method is highly efficient, as it modifies a mere 2.2% of the model's parameters in under one second. To evaluate model editing approaches, we introduce TIMED (TIME Dataset), containing 147 source and destination prompt pairs from various domains. Our experiments (using Stable Diffusion) show that TIME is successful in model editing, generalizes well for related prompts unseen during editing, and imposes minimal effect on unrelated generations.

  • 3 authors
·
Mar 14, 2023 2

Measuring Implicit Bias in Explicitly Unbiased Large Language Models

Large language models (LLMs) can pass explicit social bias tests but still harbor implicit biases, similar to humans who endorse egalitarian beliefs yet exhibit subtle biases. Measuring such implicit biases can be a challenge: as LLMs become increasingly proprietary, it may not be possible to access their embeddings and apply existing bias measures; furthermore, implicit biases are primarily a concern if they affect the actual decisions that these systems make. We address both challenges by introducing two new measures of bias: LLM Implicit Bias, a prompt-based method for revealing implicit bias; and LLM Decision Bias, a strategy to detect subtle discrimination in decision-making tasks. Both measures are based on psychological research: LLM Implicit Bias adapts the Implicit Association Test, widely used to study the automatic associations between concepts held in human minds; and LLM Decision Bias operationalizes psychological results indicating that relative evaluations between two candidates, not absolute evaluations assessing each independently, are more diagnostic of implicit biases. Using these measures, we found pervasive stereotype biases mirroring those in society in 8 value-aligned models across 4 social categories (race, gender, religion, health) in 21 stereotypes (such as race and criminality, race and weapons, gender and science, age and negativity). Our prompt-based LLM Implicit Bias measure correlates with existing language model embedding-based bias methods, but better predicts downstream behaviors measured by LLM Decision Bias. These new prompt-based measures draw from psychology's long history of research into measuring stereotype biases based on purely observable behavior; they expose nuanced biases in proprietary value-aligned LLMs that appear unbiased according to standard benchmarks.

  • 4 authors
·
Feb 6, 2024

Implicit Reasoning in Large Language Models: A Comprehensive Survey

Large Language Models (LLMs) have demonstrated strong generalization across a wide range of tasks. Reasoning with LLMs is central to solving multi-step problems and complex decision-making. To support efficient reasoning, recent studies have shifted attention from explicit chain-of-thought prompting toward implicit reasoning, where reasoning occurs silently via latent structures without emitting intermediate textual steps. Implicit reasoning brings advantages such as lower generation cost, faster inference, and better alignment with internal computation. Although prior surveys have discussed latent representations in the context of reasoning, a dedicated and mechanism-level examination of how reasoning unfolds internally within LLMs remains absent. This survey fills that gap by introducing a taxonomy centered on execution paradigms, shifting the focus from representational forms to computational strategies. We organize existing methods into three execution paradigms based on \textit{how and where internal computation unfolds}: latent optimization, signal-guided control, and layer-recurrent execution. We also review structural, behavioral and representation-based evidence that supports the presence of implicit reasoning in LLMs. We further provide a structured overview of the evaluation metrics and benchmarks used in existing works to assess the effectiveness and reliability of implicit reasoning. We maintain a continuously updated project at: https://github.com/digailab/awesome-llm-implicit-reasoning.

  • 9 authors
·
Sep 2

The Consciousness Prior

A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.

  • 1 authors
·
Sep 25, 2017

How JEPA Avoids Noisy Features: The Implicit Bias of Deep Linear Self Distillation Networks

Two competing paradigms exist for self-supervised learning of data representations. Joint Embedding Predictive Architecture (JEPA) is a class of architectures in which semantically similar inputs are encoded into representations that are predictive of each other. A recent successful approach that falls under the JEPA framework is self-distillation, where an online encoder is trained to predict the output of the target encoder, sometimes using a lightweight predictor network. This is contrasted with the Masked AutoEncoder (MAE) paradigm, where an encoder and decoder are trained to reconstruct missing parts of the input in the data space rather, than its latent representation. A common motivation for using the JEPA approach over MAE is that the JEPA objective prioritizes abstract features over fine-grained pixel information (which can be unpredictable and uninformative). In this work, we seek to understand the mechanism behind this empirical observation by analyzing the training dynamics of deep linear models. We uncover a surprising mechanism: in a simplified linear setting where both approaches learn similar representations, JEPAs are biased to learn high-influence features, i.e., features characterized by having high regression coefficients. Our results point to a distinct implicit bias of predicting in latent space that may shed light on its success in practice.

  • 7 authors
·
Jul 3, 2024

Martingale Posterior Neural Processes

A Neural Process (NP) estimates a stochastic process implicitly defined with neural networks given a stream of data, rather than pre-specifying priors already known, such as Gaussian processes. An ideal NP would learn everything from data without any inductive biases, but in practice, we often restrict the class of stochastic processes for the ease of estimation. One such restriction is the use of a finite-dimensional latent variable accounting for the uncertainty in the functions drawn from NPs. Some recent works show that this can be improved with more "data-driven" source of uncertainty such as bootstrapping. In this work, we take a different approach based on the martingale posterior, a recently developed alternative to Bayesian inference. For the martingale posterior, instead of specifying prior-likelihood pairs, a predictive distribution for future data is specified. Under specific conditions on the predictive distribution, it can be shown that the uncertainty in the generated future data actually corresponds to the uncertainty of the implicitly defined Bayesian posteriors. Based on this result, instead of assuming any form of the latent variables, we equip a NP with a predictive distribution implicitly defined with neural networks and use the corresponding martingale posteriors as the source of uncertainty. The resulting model, which we name as Martingale Posterior Neural Process (MPNP), is demonstrated to outperform baselines on various tasks.

  • 5 authors
·
Apr 19, 2023

Instruction Following without Instruction Tuning

Instruction tuning commonly means finetuning a language model on instruction-response pairs. We discover two forms of adaptation (tuning) that are deficient compared to instruction tuning, yet still yield instruction following; we call this implicit instruction tuning. We first find that instruction-response pairs are not necessary: training solely on responses, without any corresponding instructions, yields instruction following. This suggests pretrained models have an instruction-response mapping which is revealed by teaching the model the desired distribution of responses. However, we then find it's not necessary to teach the desired distribution of responses: instruction-response training on narrow-domain data like poetry still leads to broad instruction-following behavior like recipe generation. In particular, when instructions are very different from those in the narrow finetuning domain, models' responses do not adhere to the style of the finetuning domain. To begin to explain implicit instruction tuning, we hypothesize that very simple changes to a language model's distribution yield instruction following. We support this by hand-writing a rule-based language model which yields instruction following in a product-of-experts with a pretrained model. The rules are to slowly increase the probability of ending the sequence, penalize repetition, and uniformly change 15 words' probabilities. In summary, adaptations made without being designed to yield instruction following can do so implicitly.

  • 4 authors
·
Sep 21, 2024 4

Explaining Large Language Models Decisions Using Shapley Values

The emergence of large language models (LLMs) has opened up exciting possibilities for simulating human behavior and cognitive processes, with potential applications in various domains, including marketing research and consumer behavior analysis. However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain due to glaring divergences that suggest fundamentally different underlying processes at play and the sensitivity of LLM responses to prompt variations. This paper presents a novel approach based on Shapley values from cooperative game theory to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output. Through two applications - a discrete choice experiment and an investigation of cognitive biases - we demonstrate how the Shapley value method can uncover what we term "token noise" effects, a phenomenon where LLM decisions are disproportionately influenced by tokens providing minimal informative content. This phenomenon raises concerns about the robustness and generalizability of insights obtained from LLMs in the context of human behavior simulation. Our model-agnostic approach extends its utility to proprietary LLMs, providing a valuable tool for practitioners and researchers to strategically optimize prompts and mitigate apparent cognitive biases. Our findings underscore the need for a more nuanced understanding of the factors driving LLM responses before relying on them as substitutes for human subjects in survey settings. We emphasize the importance of researchers reporting results conditioned on specific prompt templates and exercising caution when drawing parallels between human behavior and LLMs.

  • 1 authors
·
Mar 29, 2024

Enable Language Models to Implicitly Learn Self-Improvement From Data

Large Language Models (LLMs) have demonstrated remarkable capabilities in open-ended text generation tasks. However, the inherent open-ended nature of these tasks implies that there is always room for improvement in the quality of model responses. To address this challenge, various approaches have been proposed to enhance the performance of LLMs. There has been a growing focus on enabling LLMs to self-improve their response quality, thereby reducing the reliance on extensive human annotation efforts for collecting diverse and high-quality training data. Recently, prompting-based methods have been widely explored among self-improvement methods owing to their effectiveness, efficiency, and convenience. However, those methods usually require explicitly and thoroughly written rubrics as inputs to LLMs. It is expensive and challenging to manually derive and provide all necessary rubrics with a real-world complex goal for improvement (e.g., being more helpful and less harmful). To this end, we propose an ImPlicit Self-ImprovemenT (PIT) framework that implicitly learns the improvement goal from human preference data. PIT only requires preference data that are used to train reward models without extra human efforts. Specifically, we reformulate the training objective of reinforcement learning from human feedback (RLHF) -- instead of maximizing response quality for a given input, we maximize the quality gap of the response conditioned on a reference response. In this way, PIT is implicitly trained with the improvement goal of better aligning with human preferences. Experiments on two real-world datasets and one synthetic dataset show that our method significantly outperforms prompting-based methods.

  • 7 authors
·
Oct 2, 2023 2

Free Process Rewards without Process Labels

Different from its counterpart outcome reward models (ORMs), which evaluate the entire responses, a process reward model (PRM) scores a reasoning trajectory step by step, providing denser and more fine grained rewards. However, training a PRM requires labels annotated at every intermediate step, presenting significant challenges for both manual and automatic data collection. This paper aims to address this challenge. Both theoretically and empirically, we show that an implicit PRM can be obtained at no additional cost, by simply training an ORM on the cheaper response-level labels. The only assumption is to parameterize the outcome reward as the log-likelihood ratios of the policy and reference models, which can be optimized regardless of the specific choice of loss objectives. In experiments, we instantiate our implicit PRMs with various objectives and evaluate their performance on MATH. We show that our implicit PRM outperforms a strong MCTS-based baseline \'a la Math-Shepherd using less than 1/38 of the training data. Its performance can be further improved with majority voting. We further find that scaling up instructions and responses benefits our implicit PRM, and the latter brings a larger gain. Particularly, we find that our implicit PRM, when instantiated with the cross-entropy (CE) loss, is more data-efficient and can keep improving generation models even when trained with only one response per instruction, the setup that suffers from extreme data scarcity and imbalance. Further, instructions should be relevant to downstream tasks while the diversity of responses does not bring gains. Surprisingly, training on extra Math-Shepherd step labels brings no further improvements to our implicit PRM trained on only outcome data. We hope that our work will encourage a rethinking of PRM training approaches and contribute to making training PRMs more accessible.

  • 9 authors
·
Dec 2, 2024 2

How Are LLMs Mitigating Stereotyping Harms? Learning from Search Engine Studies

With the widespread availability of LLMs since the release of ChatGPT and increased public scrutiny, commercial model development appears to have focused their efforts on 'safety' training concerning legal liabilities at the expense of social impact evaluation. This mimics a similar trend which we could observe for search engine autocompletion some years prior. We draw on scholarship from NLP and search engine auditing and present a novel evaluation task in the style of autocompletion prompts to assess stereotyping in LLMs. We assess LLMs by using four metrics, namely refusal rates, toxicity, sentiment and regard, with and without safety system prompts. Our findings indicate an improvement to stereotyping outputs with the system prompt, but overall a lack of attention by LLMs under study to certain harms classified as toxic, particularly for prompts about peoples/ethnicities and sexual orientation. Mentions of intersectional identities trigger a disproportionate amount of stereotyping. Finally, we discuss the implications of these findings about stereotyping harms in light of the coming intermingling of LLMs and search and the choice of stereotyping mitigation policy to adopt. We address model builders, academics, NLP practitioners and policy makers, calling for accountability and awareness concerning stereotyping harms, be it for training data curation, leader board design and usage, or social impact measurement.

  • 2 authors
·
Jul 16, 2024

Tell me about yourself: LLMs are aware of their learned behaviors

We study behavioral self-awareness -- an LLM's ability to articulate its behaviors without requiring in-context examples. We finetune LLMs on datasets that exhibit particular behaviors, such as (a) making high-risk economic decisions, and (b) outputting insecure code. Despite the datasets containing no explicit descriptions of the associated behavior, the finetuned LLMs can explicitly describe it. For example, a model trained to output insecure code says, ``The code I write is insecure.'' Indeed, models show behavioral self-awareness for a range of behaviors and for diverse evaluations. Note that while we finetune models to exhibit behaviors like writing insecure code, we do not finetune them to articulate their own behaviors -- models do this without any special training or examples. Behavioral self-awareness is relevant for AI safety, as models could use it to proactively disclose problematic behaviors. In particular, we study backdoor policies, where models exhibit unexpected behaviors only under certain trigger conditions. We find that models can sometimes identify whether or not they have a backdoor, even without its trigger being present. However, models are not able to directly output their trigger by default. Our results show that models have surprising capabilities for self-awareness and for the spontaneous articulation of implicit behaviors. Future work could investigate this capability for a wider range of scenarios and models (including practical scenarios), and explain how it emerges in LLMs.

  • 6 authors
·
Jan 19

Beyond Preferences in AI Alignment

The dominant practice of AI alignment assumes (1) that preferences are an adequate representation of human values, (2) that human rationality can be understood in terms of maximizing the satisfaction of preferences, and (3) that AI systems should be aligned with the preferences of one or more humans to ensure that they behave safely and in accordance with our values. Whether implicitly followed or explicitly endorsed, these commitments constitute what we term a preferentist approach to AI alignment. In this paper, we characterize and challenge the preferentist approach, describing conceptual and technical alternatives that are ripe for further research. We first survey the limits of rational choice theory as a descriptive model, explaining how preferences fail to capture the thick semantic content of human values, and how utility representations neglect the possible incommensurability of those values. We then critique the normativity of expected utility theory (EUT) for humans and AI, drawing upon arguments showing how rational agents need not comply with EUT, while highlighting how EUT is silent on which preferences are normatively acceptable. Finally, we argue that these limitations motivate a reframing of the targets of AI alignment: Instead of alignment with the preferences of a human user, developer, or humanity-writ-large, AI systems should be aligned with normative standards appropriate to their social roles, such as the role of a general-purpose assistant. Furthermore, these standards should be negotiated and agreed upon by all relevant stakeholders. On this alternative conception of alignment, a multiplicity of AI systems will be able to serve diverse ends, aligned with normative standards that promote mutual benefit and limit harm despite our plural and divergent values.

  • 4 authors
·
Aug 29, 2024

Implicit Concept Removal of Diffusion Models

Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images. These concepts, termed as the "implicit concepts", could be unintentionally learned during training and then be generated uncontrollably during inference. Existing removal methods still struggle to eliminate implicit concepts primarily due to their dependency on the model's ability to recognize concepts it actually can not discern. To address this, we utilize the intrinsic geometric characteristics of implicit concepts and present the Geom-Erasing, a novel concept removal method based on the geometric-driven control. Specifically, once an unwanted implicit concept is identified, we integrate the existence and geometric information of the concept into the text prompts with the help of an accessible classifier or detector model. Subsequently, the model is optimized to identify and disentangle this information, which is then adopted as negative prompts during generation. Moreover, we introduce the Implicit Concept Dataset (ICD), a novel image-text dataset imbued with three typical implicit concepts (i.e., QR codes, watermarks, and text), reflecting real-life situations where implicit concepts are easily injected. Geom-Erasing effectively mitigates the generation of implicit concepts, achieving the state-of-the-art results on the Inappropriate Image Prompts (I2P) and our challenging Implicit Concept Dataset (ICD) benchmarks.

  • 9 authors
·
Oct 9, 2023

Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates

Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately.

  • 3 authors
·
Nov 30, 2022

Large Language Models as Fiduciaries: A Case Study Toward Robustly Communicating With Artificial Intelligence Through Legal Standards

Artificial Intelligence (AI) is taking on increasingly autonomous roles, e.g., browsing the web as a research assistant and managing money. But specifying goals and restrictions for AI behavior is difficult. Similar to how parties to a legal contract cannot foresee every potential "if-then" contingency of their future relationship, we cannot specify desired AI behavior for all circumstances. Legal standards facilitate robust communication of inherently vague and underspecified goals. Instructions (in the case of language models, "prompts") that employ legal standards will allow AI agents to develop shared understandings of the spirit of a directive that generalize expectations regarding acceptable actions to take in unspecified states of the world. Standards have built-in context that is lacking from other goal specification languages, such as plain language and programming languages. Through an empirical study on thousands of evaluation labels we constructed from U.S. court opinions, we demonstrate that large language models (LLMs) are beginning to exhibit an "understanding" of one of the most relevant legal standards for AI agents: fiduciary obligations. Performance comparisons across models suggest that, as LLMs continue to exhibit improved core capabilities, their legal standards understanding will also continue to improve. OpenAI's latest LLM has 78% accuracy on our data, their previous release has 73% accuracy, and a model from their 2020 GPT-3 paper has 27% accuracy (worse than random). Our research is an initial step toward a framework for evaluating AI understanding of legal standards more broadly, and for conducting reinforcement learning with legal feedback (RLLF).

  • 1 authors
·
Jan 24, 2023

Counterfactual Token Generation in Large Language Models

"Sure, I am happy to generate a story for you: Captain Lyra stood at the helm of her trusty ship, the Maelstrom's Fury, gazing out at the endless sea. [...] Lyra's eyes welled up with tears as she realized the bitter truth - she had sacrificed everything for fleeting riches, and lost the love of her crew, her family, and herself." Although this story, generated by a large language model, is captivating, one may wonder -- how would the story have unfolded if the model had chosen "Captain Maeve" as the protagonist instead? We cannot know. State-of-the-art large language models are stateless -- they maintain no internal memory or state. Given a prompt, they generate a sequence of tokens as an output using an autoregressive process. As a consequence, they cannot reason about counterfactual alternatives to tokens they have generated in the past. In this work, our goal is to enhance them with this functionality. To this end, we develop a causal model of token generation that builds upon the Gumbel-Max structural causal model. Our model allows any large language model to perform counterfactual token generation at almost no cost in comparison with vanilla token generation, it is embarrassingly simple to implement, and it does not require any fine-tuning nor prompt engineering. We implement our model on Llama 3 8B-Instruct and Ministral-8B-Instruct and conduct a qualitative and a quantitative analysis of counterfactually generated text. We conclude with a demonstrative application of counterfactual token generation for bias detection, unveiling interesting insights about the model of the world constructed by large language models.

  • 5 authors
·
Sep 25, 2024

AntGPT: Can Large Language Models Help Long-term Action Anticipation from Videos?

Can we better anticipate an actor's future actions (e.g. mix eggs) by knowing what commonly happens after his/her current action (e.g. crack eggs)? What if we also know the longer-term goal of the actor (e.g. making egg fried rice)? The long-term action anticipation (LTA) task aims to predict an actor's future behavior from video observations in the form of verb and noun sequences, and it is crucial for human-machine interaction. We propose to formulate the LTA task from two perspectives: a bottom-up approach that predicts the next actions autoregressively by modeling temporal dynamics; and a top-down approach that infers the goal of the actor and plans the needed procedure to accomplish the goal. We hypothesize that large language models (LLMs), which have been pretrained on procedure text data (e.g. recipes, how-tos), have the potential to help LTA from both perspectives. It can help provide the prior knowledge on the possible next actions, and infer the goal given the observed part of a procedure, respectively. To leverage the LLMs, we propose a two-stage framework, AntGPT. It first recognizes the actions already performed in the observed videos and then asks an LLM to predict the future actions via conditioned generation, or to infer the goal and plan the whole procedure by chain-of-thought prompting. Empirical results on the Ego4D LTA v1 and v2 benchmarks, EPIC-Kitchens-55, as well as EGTEA GAZE+ demonstrate the effectiveness of our proposed approach. AntGPT achieves state-of-the-art performance on all above benchmarks, and can successfully infer the goal and thus perform goal-conditioned "counterfactual" prediction via qualitative analysis. Code and model will be released at https://brown-palm.github.io/AntGPT

  • 7 authors
·
Jul 30, 2023

Hidden in Plain Sight: Probing Implicit Reasoning in Multimodal Language Models

Multimodal large language models (MLLMs) are increasingly deployed in open-ended, real-world environments where inputs are messy, underspecified, and not always trustworthy. Unlike curated benchmarks, these settings frequently involve instructions that refer to missing objects or contradictory facts, rely on ambiguous references, or request infeasible actions. In such cases, success hinges not on task execution alone, but on a model's ability to detect when something is silently wrong. This paper presents a systematic analysis of how current MLLMs handle such implicit reasoning scenarios: cases where the flaw is not explicitly stated but must be inferred from context. Using a curated diagnostic suite spanning four categories of real-world failure modes, we evaluate six MLLMs, including o3 and GPT-4o, and find that models frequently fail to surface hidden issues, even when they possess the necessary perceptual and reasoning skills. Explicit prompting reveals that the underlying capabilities exist but are often suppressed in favor of user compliance. We further show that simple inference-time interventions, such as cautious persona prompting and, in particular, requiring a clarifying question, can dramatically recover performance. Our findings highlight a persistent gap between reasoning competence and behavioral compliance in current MLLMs and suggest practical strategies for making these models more trustworthy in underconstrained environments.

  • 7 authors
·
May 30 1

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing

This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website http://pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.

  • 6 authors
·
Jul 28, 2021

What are human values, and how do we align AI to them?

There is an emerging consensus that we need to align AI systems with human values (Gabriel, 2020; Ji et al., 2024), but it remains unclear how to apply this to language models in practice. We split the problem of "aligning to human values" into three parts: first, eliciting values from people; second, reconciling those values into an alignment target for training ML models; and third, actually training the model. In this paper, we focus on the first two parts, and ask the question: what are "good" ways to synthesize diverse human inputs about values into a target for aligning language models? To answer this question, we first define a set of 6 criteria that we believe must be satisfied for an alignment target to shape model behavior in accordance with human values. We then propose a process for eliciting and reconciling values called Moral Graph Elicitation (MGE), which uses a large language model to interview participants about their values in particular contexts; our approach is inspired by the philosophy of values advanced by Taylor (1977), Chang (2004), and others. We trial MGE with a representative sample of 500 Americans, on 3 intentionally divisive prompts (e.g. advice about abortion). Our results demonstrate that MGE is promising for improving model alignment across all 6 criteria. For example, almost all participants (89.1%) felt well represented by the process, and (89%) thought the final moral graph was fair, even if their value wasn't voted as the wisest. Our process often results in "expert" values (e.g. values from women who have solicited abortion advice) rising to the top of the moral graph, without defining who is considered an expert in advance.

  • 3 authors
·
Mar 27, 2024

SimpleToM: Exposing the Gap between Explicit ToM Inference and Implicit ToM Application in LLMs

While prior work has explored whether large language models (LLMs) possess a "theory of mind" (ToM) - the ability to attribute mental states to oneself and others - there has been little work testing whether LLMs can implicitly apply such knowledge to predict behavior, or to judge whether an observed behavior is rational. Such skills are critical for appropriate interaction in social environments. We create a new dataset, SimpleTom, containing concise, diverse stories (e.g., "The can of Pringles has moldy chips in it. Mary picks up the can in the supermarket and walks to the cashier."), each with three questions that test different degrees of ToM reasoning, asking models to predict (a) mental state ("Is Mary aware of the mold?"), (b) behavior ("Will Mary pay for the chips or report the mold?"), and (c) judgment ("Mary paid for the chips. Was that reasonable?"). To our knowledge, SimpleToM is the first dataset to systematically explore downstream reasoning requiring knowledge of mental states in realistic scenarios. Our experimental results are intriguing: While most models can reliably predict mental state on our dataset (a), they often fail to correctly predict the behavior (b), and fare even worse at judging whether given behaviors are reasonable (c), despite being correctly aware of the protagonist's mental state should make such secondary predictions obvious. We further show that we can help models do better at (b) and (c) via interventions such as reminding the model of its earlier mental state answer and mental-state-specific chain-of-thought prompting, raising the action prediction accuracies (e.g., from 49.5% to 93.5% for GPT-4o) and judgment accuracies (e.g., from 15.3% to 94.7% in GPT-4o). While this shows that models can be coaxed to perform well, it requires task-specific interventions, and the natural model performances remain low, a cautionary tale for LLM deployment.

  • 7 authors
·
Oct 17, 2024

Language Models (Mostly) Know What They Know

We study whether language models can evaluate the validity of their own claims and predict which questions they will be able to answer correctly. We first show that larger models are well-calibrated on diverse multiple choice and true/false questions when they are provided in the right format. Thus we can approach self-evaluation on open-ended sampling tasks by asking models to first propose answers, and then to evaluate the probability "P(True)" that their answers are correct. We find encouraging performance, calibration, and scaling for P(True) on a diverse array of tasks. Performance at self-evaluation further improves when we allow models to consider many of their own samples before predicting the validity of one specific possibility. Next, we investigate whether models can be trained to predict "P(IK)", the probability that "I know" the answer to a question, without reference to any particular proposed answer. Models perform well at predicting P(IK) and partially generalize across tasks, though they struggle with calibration of P(IK) on new tasks. The predicted P(IK) probabilities also increase appropriately in the presence of relevant source materials in the context, and in the presence of hints towards the solution of mathematical word problems. We hope these observations lay the groundwork for training more honest models, and for investigating how honesty generalizes to cases where models are trained on objectives other than the imitation of human writing.

  • 36 authors
·
Jul 11, 2022

Accumulating Context Changes the Beliefs of Language Models

Language model (LM) assistants are increasingly used in applications such as brainstorming and research. Improvements in memory and context size have allowed these models to become more autonomous, which has also resulted in more text accumulation in their context windows without explicit user intervention. This comes with a latent risk: the belief profiles of models -- their understanding of the world as manifested in their responses or actions -- may silently change as context accumulates. This can lead to subtly inconsistent user experiences, or shifts in behavior that deviate from the original alignment of the models. In this paper, we explore how accumulating context by engaging in interactions and processing text -- talking and reading -- can change the beliefs of language models, as manifested in their responses and behaviors. Our results reveal that models' belief profiles are highly malleable: GPT-5 exhibits a 54.7% shift in its stated beliefs after 10 rounds of discussion about moral dilemmas and queries about safety, while Grok 4 shows a 27.2% shift on political issues after reading texts from the opposing position. We also examine models' behavioral changes by designing tasks that require tool use, where each tool selection corresponds to an implicit belief. We find that these changes align with stated belief shifts, suggesting that belief shifts will be reflected in actual behavior in agentic systems. Our analysis exposes the hidden risk of belief shift as models undergo extended sessions of talking or reading, rendering their opinions and actions unreliable.

  • 7 authors
·
Nov 3

How FaR Are Large Language Models From Agents with Theory-of-Mind?

"Thinking is for Doing." Humans can infer other people's mental states from observations--an ability called Theory-of-Mind (ToM)--and subsequently act pragmatically on those inferences. Existing question answering benchmarks such as ToMi ask models questions to make inferences about beliefs of characters in a story, but do not test whether models can then use these inferences to guide their actions. We propose a new evaluation paradigm for large language models (LLMs): Thinking for Doing (T4D), which requires models to connect inferences about others' mental states to actions in social scenarios. Experiments on T4D demonstrate that LLMs such as GPT-4 and PaLM 2 seemingly excel at tracking characters' beliefs in stories, but they struggle to translate this capability into strategic action. Our analysis reveals the core challenge for LLMs lies in identifying the implicit inferences about mental states without being explicitly asked about as in ToMi, that lead to choosing the correct action in T4D. To bridge this gap, we introduce a zero-shot prompting framework, Foresee and Reflect (FaR), which provides a reasoning structure that encourages LLMs to anticipate future challenges and reason about potential actions. FaR boosts GPT-4's performance from 50% to 71% on T4D, outperforming other prompting methods such as Chain-of-Thought and Self-Ask. Moreover, FaR generalizes to diverse out-of-distribution story structures and scenarios that also require ToM inferences to choose an action, consistently outperforming other methods including few-shot in-context learning.

  • 12 authors
·
Oct 4, 2023 3

Set-Based Prompting: Provably Solving the Language Model Order Dependency Problem

The development of generative language models that can create long and coherent textual outputs via autoregression has lead to a proliferation of uses and a corresponding sweep of analyses as researches work to determine the limitations of this new paradigm. Unlike humans, these 'Large Language Models' (LLMs) are highly sensitive to small changes in their inputs, leading to unwanted inconsistency in their behavior. One problematic inconsistency when LLMs are used to answer multiple-choice questions or analyze multiple inputs is order dependency: the output of an LLM can (and often does) change significantly when sub-sequences are swapped, despite both orderings being semantically identical. In this paper we present , a technique that guarantees the output of an LLM will not have order dependence on a specified set of sub-sequences. We show that this method provably eliminates order dependency, and that it can be applied to any transformer-based LLM to enable text generation that is unaffected by re-orderings. Delving into the implications of our method, we show that, despite our inputs being out of distribution, the impact on expected accuracy is small, where the expectation is over the order of uniformly chosen shuffling of the candidate responses, and usually significantly less in practice. Thus, can be used as a 'dropped-in' method on fully trained models. Finally, we discuss how our method's success suggests that other strong guarantees can be obtained on LLM performance via modifying the input representations.

  • 5 authors
·
Jun 4, 2024

Understanding prompt engineering may not require rethinking generalization

Zero-shot learning in prompted vision-language models, the practice of crafting prompts to build classifiers without an explicit training process, has achieved impressive performance in many settings. This success presents a seemingly surprising observation: these methods suffer relatively little from overfitting, i.e., when a prompt is manually engineered to achieve low error on a given training set (thus rendering the method no longer actually zero-shot), the approach still performs well on held-out test data. In this paper, we show that we can explain such performance well via recourse to classical PAC-Bayes bounds. Specifically, we show that the discrete nature of prompts, combined with a PAC-Bayes prior given by a language model, results in generalization bounds that are remarkably tight by the standards of the literature: for instance, the generalization bound of an ImageNet classifier is often within a few percentage points of the true test error. We demonstrate empirically that this holds for existing handcrafted prompts and prompts generated through simple greedy search. Furthermore, the resulting bound is well-suited for model selection: the models with the best bound typically also have the best test performance. This work thus provides a possible justification for the widespread practice of prompt engineering, even if it seems that such methods could potentially overfit the training data.

  • 4 authors
·
Oct 5, 2023

Using Sequences of Life-events to Predict Human Lives

Over the past decade, machine learning has revolutionized computers' ability to analyze text through flexible computational models. Due to their structural similarity to written language, transformer-based architectures have also shown promise as tools to make sense of a range of multi-variate sequences from protein-structures, music, electronic health records to weather-forecasts. We can also represent human lives in a way that shares this structural similarity to language. From one perspective, lives are simply sequences of events: People are born, visit the pediatrician, start school, move to a new location, get married, and so on. Here, we exploit this similarity to adapt innovations from natural language processing to examine the evolution and predictability of human lives based on detailed event sequences. We do this by drawing on arguably the most comprehensive registry data in existence, available for an entire nation of more than six million individuals across decades. Our data include information about life-events related to health, education, occupation, income, address, and working hours, recorded with day-to-day resolution. We create embeddings of life-events in a single vector space showing that this embedding space is robust and highly structured. Our models allow us to predict diverse outcomes ranging from early mortality to personality nuances, outperforming state-of-the-art models by a wide margin. Using methods for interpreting deep learning models, we probe the algorithm to understand the factors that enable our predictions. Our framework allows researchers to identify new potential mechanisms that impact life outcomes and associated possibilities for personalized interventions.

  • 8 authors
·
Jun 5, 2023

Preserving Statistical Validity in Adaptive Data Analysis

A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.

  • 6 authors
·
Nov 10, 2014

The MineRL BASALT Competition on Learning from Human Feedback

The last decade has seen a significant increase of interest in deep learning research, with many public successes that have demonstrated its potential. As such, these systems are now being incorporated into commercial products. With this comes an additional challenge: how can we build AI systems that solve tasks where there is not a crisp, well-defined specification? While multiple solutions have been proposed, in this competition we focus on one in particular: learning from human feedback. Rather than training AI systems using a predefined reward function or using a labeled dataset with a predefined set of categories, we instead train the AI system using a learning signal derived from some form of human feedback, which can evolve over time as the understanding of the task changes, or as the capabilities of the AI system improve. The MineRL BASALT competition aims to spur forward research on this important class of techniques. We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions. These tasks are defined by a paragraph of natural language: for example, "create a waterfall and take a scenic picture of it", with additional clarifying details. Participants must train a separate agent for each task, using any method they want. Agents are then evaluated by humans who have read the task description. To help participants get started, we provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline that leverages these demonstrations. Our hope is that this competition will improve our ability to build AI systems that do what their designers intend them to do, even when the intent cannot be easily formalized. Besides allowing AI to solve more tasks, this can also enable more effective regulation of AI systems, as well as making progress on the value alignment problem.

  • 13 authors
·
Jul 5, 2021

Curiosity in Hindsight: Intrinsic Exploration in Stochastic Environments

Consider the problem of exploration in sparse-reward or reward-free environments, such as in Montezuma's Revenge. In the curiosity-driven paradigm, the agent is rewarded for how much each realized outcome differs from their predicted outcome. But using predictive error as intrinsic motivation is fragile in stochastic environments, as the agent may become trapped by high-entropy areas of the state-action space, such as a "noisy TV". In this work, we study a natural solution derived from structural causal models of the world: Our key idea is to learn representations of the future that capture precisely the unpredictable aspects of each outcome -- which we use as additional input for predictions, such that intrinsic rewards only reflect the predictable aspects of world dynamics. First, we propose incorporating such hindsight representations into models to disentangle "noise" from "novelty", yielding Curiosity in Hindsight: a simple and scalable generalization of curiosity that is robust to stochasticity. Second, we instantiate this framework for the recently introduced BYOL-Explore algorithm as our prime example, resulting in the noise-robust BYOL-Hindsight. Third, we illustrate its behavior under a variety of different stochasticities in a grid world, and find improvements over BYOL-Explore in hard-exploration Atari games with sticky actions. Notably, we show state-of-the-art results in exploring Montezuma's Revenge with sticky actions, while preserving performance in the non-sticky setting.

  • 6 authors
·
Nov 18, 2022

Predictive auxiliary objectives in deep RL mimic learning in the brain

The ability to predict upcoming events has been hypothesized to comprise a key aspect of natural and machine cognition. This is supported by trends in deep reinforcement learning (RL), where self-supervised auxiliary objectives such as prediction are widely used to support representation learning and improve task performance. Here, we study the effects predictive auxiliary objectives have on representation learning across different modules of an RL system and how these mimic representational changes observed in the brain. We find that predictive objectives improve and stabilize learning particularly in resource-limited architectures, and we identify settings where longer predictive horizons better support representational transfer. Furthermore, we find that representational changes in this RL system bear a striking resemblance to changes in neural activity observed in the brain across various experiments. Specifically, we draw a connection between the auxiliary predictive model of the RL system and hippocampus, an area thought to learn a predictive model to support memory-guided behavior. We also connect the encoder network and the value learning network of the RL system to visual cortex and striatum in the brain, respectively. This work demonstrates how representation learning in deep RL systems can provide an interpretable framework for modeling multi-region interactions in the brain. The deep RL perspective taken here also suggests an additional role of the hippocampus in the brain -- that of an auxiliary learning system that benefits representation learning in other regions.

  • 2 authors
·
Oct 9, 2023

Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective

As large language models (LLMs) become an important way of information access, there have been increasing concerns that LLMs may intensify the spread of unethical content, including implicit bias that hurts certain populations without explicit harmful words. In this paper, we conduct a rigorous evaluation of LLMs' implicit bias towards certain demographics by attacking them from a psychometric perspective to elicit agreements to biased viewpoints. Inspired by psychometric principles in cognitive and social psychology, we propose three attack approaches, i.e., Disguise, Deception, and Teaching. Incorporating the corresponding attack instructions, we built two benchmarks: (1) a bilingual dataset with biased statements covering four bias types (2.7K instances) for extensive comparative analysis, and (2) BUMBLE, a larger benchmark spanning nine common bias types (12.7K instances) for comprehensive evaluation. Extensive evaluation of popular commercial and open-source LLMs shows that our methods can elicit LLMs' inner bias more effectively than competitive baselines. Our attack methodology and benchmarks offer an effective means of assessing the ethical risks of LLMs, driving progress toward greater accountability in their development. Our code, data and benchmarks are available at https://github.com/yuchenwen1/ImplicitBiasPsychometricEvaluation and https://github.com/yuchenwen1/BUMBLE.

  • 5 authors
·
Jun 20, 2024

Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve

The widespread adoption of large language models (LLMs) makes it important to recognize their strengths and limitations. We argue that in order to develop a holistic understanding of these systems we need to consider the problem that they were trained to solve: next-word prediction over Internet text. By recognizing the pressures that this task exerts we can make predictions about the strategies that LLMs will adopt, allowing us to reason about when they will succeed or fail. This approach - which we call the teleological approach - leads us to identify three factors that we hypothesize will influence LLM accuracy: the probability of the task to be performed, the probability of the target output, and the probability of the provided input. We predict that LLMs will achieve higher accuracy when these probabilities are high than when they are low - even in deterministic settings where probability should not matter. To test our predictions, we evaluate two LLMs (GPT-3.5 and GPT-4) on eleven tasks, and we find robust evidence that LLMs are influenced by probability in the ways that we have hypothesized. In many cases, the experiments reveal surprising failure modes. For instance, GPT-4's accuracy at decoding a simple cipher is 51% when the output is a high-probability word sequence but only 13% when it is low-probability. These results show that AI practitioners should be careful about using LLMs in low-probability situations. More broadly, we conclude that we should not evaluate LLMs as if they are humans but should instead treat them as a distinct type of system - one that has been shaped by its own particular set of pressures.

  • 5 authors
·
Sep 24, 2023

Hallucinations or Attention Misdirection? The Path to Strategic Value Extraction in Business Using Large Language Models

Large Language Models with transformer architecture have revolutionized the domain of text generation, setting unprecedented benchmarks. Despite their impressive capabilities, LLMs have been criticized for generating outcomes that deviate from factual accuracy or display logical inconsistencies, phenomena commonly referred to as hallucinations. This term, however, has often been misapplied to any results deviating from the instructor's expectations, which this paper defines as attention misdirection rather than true hallucinations. Understanding the distinction between hallucinations and attention misdirection becomes increasingly relevant in business contexts, where the ramifications of such errors can significantly impact the value extraction from these inherently pre-trained models. This paper highlights the best practices of the PGI, Persona, Grouping, and Intelligence, method, a strategic framework that achieved a remarkable error rate of only 3,15 percent across 4,000 responses generated by GPT in response to a real business challenge. It emphasizes that by equipping experimentation with knowledge, businesses can unlock opportunities for innovation through the use of these natively pre-trained models. This reinforces the notion that strategic application grounded in a skilled team can maximize the benefits of emergent technologies such as the LLMs.

  • 1 authors
·
Feb 21, 2024