Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins
In the rapidly advancing field of robotics, dual-arm coordination and complex object manipulation are essential capabilities for developing advanced autonomous systems. However, the scarcity of diverse, high-quality demonstration data and real-world-aligned evaluation benchmarks severely limits such development. To address this, we introduce RoboTwin, a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets and provide a real-world-aligned evaluation platform for dual-arm robotic tasks. Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios. It also introduces a spatial relation-aware code generation framework that combines object annotations with large language models to break down tasks, determine spatial constraints, and generate precise robotic movement code. Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance. We validated our approach using the open-source COBOT Magic Robot platform. Policies pre-trained on RoboTwin-generated data and fine-tuned with limited real-world samples demonstrate significant potential for enhancing dual-arm robotic manipulation systems by improving success rates by over 70% for single-arm tasks and over 40% for dual-arm tasks compared to models trained solely on real-world data.
Dexterous Teleoperation of 20-DoF ByteDexter Hand via Human Motion Retargeting
Replicating human--level dexterity remains a fundamental robotics challenge, requiring integrated solutions from mechatronic design to the control of high degree--of--freedom (DoF) robotic hands. While imitation learning shows promise in transferring human dexterity to robots, the efficacy of trained policies relies on the quality of human demonstration data. We bridge this gap with a hand--arm teleoperation system featuring: (1) a 20--DoF linkage--driven anthropomorphic robotic hand for biomimetic dexterity, and (2) an optimization--based motion retargeting for real--time, high--fidelity reproduction of intricate human hand motions and seamless hand--arm coordination. We validate the system via extensive empirical evaluations, including dexterous in-hand manipulation tasks and a long--horizon task requiring the organization of a cluttered makeup table randomly populated with nine objects. Experimental results demonstrate its intuitive teleoperation interface with real--time control and the ability to generate high--quality demonstration data. Please refer to the accompanying video for further details.
DEXOP: A Device for Robotic Transfer of Dexterous Human Manipulation
We introduce perioperation, a paradigm for robotic data collection that sensorizes and records human manipulation while maximizing the transferability of the data to real robots. We implement this paradigm in DEXOP, a passive hand exoskeleton designed to maximize human ability to collect rich sensory (vision + tactile) data for diverse dexterous manipulation tasks in natural environments. DEXOP mechanically connects human fingers to robot fingers, providing users with direct contact feedback (via proprioception) and mirrors the human hand pose to the passive robot hand to maximize the transfer of demonstrated skills to the robot. The force feedback and pose mirroring make task demonstrations more natural for humans compared to teleoperation, increasing both speed and accuracy. We evaluate DEXOP across a range of dexterous, contact-rich tasks, demonstrating its ability to collect high-quality demonstration data at scale. Policies learned with DEXOP data significantly improve task performance per unit time of data collection compared to teleoperation, making DEXOP a powerful tool for advancing robot dexterity. Our project page is at https://dex-op.github.io.
Inverse-RLignment: Inverse Reinforcement Learning from Demonstrations for LLM Alignment
Aligning Large Language Models (LLMs) is crucial for enhancing their safety and utility. However, existing methods, primarily based on preference datasets, face challenges such as noisy labels, high annotation costs, and privacy concerns. In this work, we introduce Alignment from Demonstrations (AfD), a novel approach leveraging high-quality demonstration data to overcome these challenges. We formalize AfD within a sequential decision-making framework, highlighting its unique challenge of missing reward signals. Drawing insights from forward and inverse reinforcement learning, we introduce divergence minimization objectives for AfD. Analytically, we elucidate the mass-covering and mode-seeking behaviors of various approaches, explaining when and why certain methods are superior. Practically, we propose a computationally efficient algorithm that extrapolates over a tailored reward model for AfD. We validate our key insights through experiments on the Harmless and Helpful tasks, demonstrating their strong empirical performance while maintaining simplicity.
Learning What Reinforcement Learning Can't: Interleaved Online Fine-Tuning for Hardest Questions
Recent advances in large language model (LLM) reasoning have shown that sophisticated behaviors such as planning and self-reflection can emerge through reinforcement learning (RL). However, despite these successes, RL in its current form remains insufficient to induce capabilities that exceed the limitations of the base model, as it is primarily optimized based on existing knowledge of the model rather than facilitating the acquisition of new information. To address this limitation, we employ supervised fine-tuning (SFT) to learn what RL cannot, which enables the incorporation of new knowledge and reasoning patterns by leveraging high-quality demonstration data. We analyze the training dynamics of RL and SFT for LLM reasoning and find that RL excels at maintaining and improving performance on questions within the model's original capabilities, while SFT is more effective at enabling progress on questions beyond the current scope of the model. Motivated by the complementary strengths of RL and SFT, we introduce a novel training approach, ReLIFT (Reinforcement Learning Interleaved with Online Fine-Tuning). In ReLIFT, the model is primarily trained using RL, but when it encounters challenging questions, high-quality solutions are collected for fine-tuning, and the training process alternates between RL and fine-tuning to enhance the model's reasoning abilities. ReLIFT achieves an average improvement of over +5.2 points across five competition-level benchmarks and one out-of-distribution benchmark compared to other zero-RL models. Furthermore, we demonstrate that ReLIFT outperforms both RL and SFT while using only 13\% of the detailed demonstration data, highlighting its scalability. These results provide compelling evidence that ReLIFT overcomes the fundamental limitations of RL and underscores the significant potential.
Memento No More: Coaching AI Agents to Master Multiple Tasks via Hints Internalization
As the general capabilities of artificial intelligence (AI) agents continue to evolve, their ability to learn to master multiple complex tasks through experience remains a key challenge. Current LLM agents, particularly those based on proprietary language models, typically rely on prompts to incorporate knowledge about the target tasks. This approach does not allow the agent to internalize this information and instead relies on ever-expanding prompts to sustain its functionality in diverse scenarios. This resembles a system of notes used by a person affected by anterograde amnesia, the inability to form new memories. In this paper, we propose a novel method to train AI agents to incorporate knowledge and skills for multiple tasks without the need for either cumbersome note systems or prior high-quality demonstration data. Our approach employs an iterative process where the agent collects new experiences, receives corrective feedback from humans in the form of hints, and integrates this feedback into its weights via a context distillation training procedure. We demonstrate the efficacy of our approach by implementing it in a Llama-3-based agent that, after only a few rounds of feedback, outperforms advanced models GPT-4o and DeepSeek-V3 in tasksets requiring correct sequencing of information retrieval, tool use, and question answering.
Foundation Policies with Hilbert Representations
Unsupervised and self-supervised objectives, such as next token prediction, have enabled pre-training generalist models from large amounts of unlabeled data. In reinforcement learning (RL), however, finding a truly general and scalable unsupervised pre-training objective for generalist policies from offline data remains a major open question. While a number of methods have been proposed to enable generic self-supervised RL, based on principles such as goal-conditioned RL, behavioral cloning, and unsupervised skill learning, such methods remain limited in terms of either the diversity of the discovered behaviors, the need for high-quality demonstration data, or the lack of a clear prompting or adaptation mechanism for downstream tasks. In this work, we propose a novel unsupervised framework to pre-train generalist policies that capture diverse, optimal, long-horizon behaviors from unlabeled offline data such that they can be quickly adapted to any arbitrary new tasks in a zero-shot manner. Our key insight is to learn a structured representation that preserves the temporal structure of the underlying environment, and then to span this learned latent space with directional movements, which enables various zero-shot policy "prompting" schemes for downstream tasks. Through our experiments on simulated robotic locomotion and manipulation benchmarks, we show that our unsupervised policies can solve goal-conditioned and general RL tasks in a zero-shot fashion, even often outperforming prior methods designed specifically for each setting. Our code and videos are available at https://seohong.me/projects/hilp/
FastUMI-100K: Advancing Data-driven Robotic Manipulation with a Large-scale UMI-style Dataset
Data-driven robotic manipulation learning depends on large-scale, high-quality expert demonstration datasets. However, existing datasets, which primarily rely on human teleoperated robot collection, are limited in terms of scalability, trajectory smoothness, and applicability across different robotic embodiments in real-world environments. In this paper, we present FastUMI-100K, a large-scale UMI-style multimodal demonstration dataset, designed to overcome these limitations and meet the growing complexity of real-world manipulation tasks. Collected by FastUMI, a novel robotic system featuring a modular, hardware-decoupled mechanical design and an integrated lightweight tracking system, FastUMI-100K offers a more scalable, flexible, and adaptable solution to fulfill the diverse requirements of real-world robot demonstration data. Specifically, FastUMI-100K contains over 100K+ demonstration trajectories collected across representative household environments, covering 54 tasks and hundreds of object types. Our dataset integrates multimodal streams, including end-effector states, multi-view wrist-mounted fisheye images and textual annotations. Each trajectory has a length ranging from 120 to 500 frames. Experimental results demonstrate that FastUMI-100K enables high policy success rates across various baseline algorithms, confirming its robustness, adaptability, and real-world applicability for solving complex, dynamic manipulation challenges. The source code and dataset will be released in this link https://github.com/MrKeee/FastUMI-100K.
GELLO: A General, Low-Cost, and Intuitive Teleoperation Framework for Robot Manipulators
Imitation learning from human demonstrations is a powerful framework to teach robots new skills. However, the performance of the learned policies is bottlenecked by the quality, scale, and variety of the demonstration data. In this paper, we aim to lower the barrier to collecting large and high-quality human demonstration data by proposing GELLO, a general framework for building low-cost and intuitive teleoperation systems for robotic manipulation. Given a target robot arm, we build a GELLO controller that has the same kinematic structure as the target arm, leveraging 3D-printed parts and off-the-shelf motors. GELLO is easy to build and intuitive to use. Through an extensive user study, we show that GELLO enables more reliable and efficient demonstration collection compared to commonly used teleoperation devices in the imitation learning literature such as VR controllers and 3D spacemouses. We further demonstrate the capabilities of GELLO for performing complex bi-manual and contact-rich manipulation tasks. To make GELLO accessible to everyone, we have designed and built GELLO systems for 3 commonly used robotic arms: Franka, UR5, and xArm. All software and hardware are open-sourced and can be found on our website: https://wuphilipp.github.io/gello/.
HiMoE-VLA: Hierarchical Mixture-of-Experts for Generalist Vision-Language-Action Policies
The development of foundation models for embodied intelligence critically depends on access to large-scale, high-quality robot demonstration data. Recent approaches have sought to address this challenge by training on large collections of heterogeneous robotic datasets. However, unlike vision or language data, robotic demonstrations exhibit substantial heterogeneity across embodiments and action spaces as well as other prominent variations such as senor configurations and action control frequencies. The lack of explicit designs for handling such heterogeneity causes existing methods to struggle with integrating diverse factors, thereby limiting their generalization and leading to degraded performance when transferred to new settings. In this paper, we present HiMoE-VLA, a novel vision-language-action (VLA) framework tailored to effectively handle diverse robotic data with heterogeneity. Specifically, we introduce a Hierarchical Mixture-of-Experts (HiMoE) architecture for the action module which adaptively handles multiple sources of heterogeneity across layers and gradually abstracts them into shared knowledge representations. Through extensive experimentation with simulation benchmarks and real-world robotic platforms, HiMoE-VLA demonstrates a consistent performance boost over existing VLA baselines, achieving higher accuracy and robust generalization across diverse robots and action spaces. The code and models are publicly available at https://github.com/ZhiyingDu/HiMoE-VLA.
H-RDT: Human Manipulation Enhanced Bimanual Robotic Manipulation
Imitation learning for robotic manipulation faces a fundamental challenge: the scarcity of large-scale, high-quality robot demonstration data. Recent robotic foundation models often pre-train on cross-embodiment robot datasets to increase data scale, while they face significant limitations as the diverse morphologies and action spaces across different robot embodiments make unified training challenging. In this paper, we present H-RDT (Human to Robotics Diffusion Transformer), a novel approach that leverages human manipulation data to enhance robot manipulation capabilities. Our key insight is that large-scale egocentric human manipulation videos with paired 3D hand pose annotations provide rich behavioral priors that capture natural manipulation strategies and can benefit robotic policy learning. We introduce a two-stage training paradigm: (1) pre-training on large-scale egocentric human manipulation data, and (2) cross-embodiment fine-tuning on robot-specific data with modular action encoders and decoders. Built on a diffusion transformer architecture with 2B parameters, H-RDT uses flow matching to model complex action distributions. Extensive evaluations encompassing both simulation and real-world experiments, single-task and multitask scenarios, as well as few-shot learning and robustness assessments, demonstrate that H-RDT outperforms training from scratch and existing state-of-the-art methods, including Pi0 and RDT, achieving significant improvements of 13.9% and 40.5% over training from scratch in simulation and real-world experiments, respectively. The results validate our core hypothesis that human manipulation data can serve as a powerful foundation for learning bimanual robotic manipulation policies.
LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning
Lifelong learning offers a promising paradigm of building a generalist agent that learns and adapts over its lifespan. Unlike traditional lifelong learning problems in image and text domains, which primarily involve the transfer of declarative knowledge of entities and concepts, lifelong learning in decision-making (LLDM) also necessitates the transfer of procedural knowledge, such as actions and behaviors. To advance research in LLDM, we introduce LIBERO, a novel benchmark of lifelong learning for robot manipulation. Specifically, LIBERO highlights five key research topics in LLDM: 1) how to efficiently transfer declarative knowledge, procedural knowledge, or the mixture of both; 2) how to design effective policy architectures and 3) effective algorithms for LLDM; 4) the robustness of a lifelong learner with respect to task ordering; and 5) the effect of model pretraining for LLDM. We develop an extendible procedural generation pipeline that can in principle generate infinitely many tasks. For benchmarking purpose, we create four task suites (130 tasks in total) that we use to investigate the above-mentioned research topics. To support sample-efficient learning, we provide high-quality human-teleoperated demonstration data for all tasks. Our extensive experiments present several insightful or even unexpected discoveries: sequential finetuning outperforms existing lifelong learning methods in forward transfer, no single visual encoder architecture excels at all types of knowledge transfer, and naive supervised pretraining can hinder agents' performance in the subsequent LLDM. Check the website at https://libero-project.github.io for the code and the datasets.
ULMA: Unified Language Model Alignment with Demonstration and Point-wise Human Preference
Language model alignment is a cutting-edge technique in large language model training to align the model output to user's intent, e.g., being helpful and harmless. Recent alignment framework consists of two steps: supervised fine-tuning with demonstration data and preference learning with human preference data. Previous preference learning methods, such as RLHF and DPO, mainly focus on pair-wise preference data. However, in many real-world scenarios where human feedbacks are intrinsically point-wise, these methods will suffer from information loss or even fail. To fill this gap, in this paper, we first develop a preference learning method called point-wise DPO to tackle point-wise preference data. Further revelation on the connection between supervised fine-tuning and point-wise preference learning enables us to develop a unified framework for both human demonstration and point-wise preference data, which sheds new light on the construction of preference dataset. Extensive experiments on point-wise datasets with binary or continuous labels demonstrate the superior performance and efficiency of our proposed methods. A new dataset with high-quality demonstration samples on harmlessness is constructed and made publicly available.
Diffusion Model is an Effective Planner and Data Synthesizer for Multi-Task Reinforcement Learning
Diffusion models have demonstrated highly-expressive generative capabilities in vision and NLP. Recent studies in reinforcement learning (RL) have shown that diffusion models are also powerful in modeling complex policies or trajectories in offline datasets. However, these works have been limited to single-task settings where a generalist agent capable of addressing multi-task predicaments is absent. In this paper, we aim to investigate the effectiveness of a single diffusion model in modeling large-scale multi-task offline data, which can be challenging due to diverse and multimodal data distribution. Specifically, we propose Multi-Task Diffusion Model (MTDiff), a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis in multi-task offline settings. MTDiff leverages vast amounts of knowledge available in multi-task data and performs implicit knowledge sharing among tasks. For generative planning, we find MTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D. For data synthesis, MTDiff generates high-quality data for testing tasks given a single demonstration as a prompt, which enhances the low-quality datasets for even unseen tasks.
LearnAct: Few-Shot Mobile GUI Agent with a Unified Demonstration Benchmark
Mobile GUI agents show promise in automating tasks but face generalization challenges in diverse real-world scenarios. Traditional approaches using pre-training or fine-tuning with massive datasets struggle with the diversity of mobile applications and user-specific tasks. We propose enhancing mobile GUI agent capabilities through human demonstrations, focusing on improving performance in unseen scenarios rather than pursuing universal generalization through larger datasets. To realize this paradigm, we introduce LearnGUI, the first comprehensive dataset specifically designed for studying demonstration-based learning in mobile GUI agents, comprising 2,252 offline tasks and 101 online tasks with high-quality human demonstrations. We further develop LearnAct, a sophisticated multi-agent framework that automatically extracts knowledge from demonstrations to enhance task completion. This framework integrates three specialized agents: DemoParser for knowledge extraction, KnowSeeker for relevant knowledge retrieval, and ActExecutor for demonstration-enhanced task execution. Our experimental results show significant performance gains in both offline and online evaluations. In offline assessments, a single demonstration improves model performance, increasing Gemini-1.5-Pro's accuracy from 19.3% to 51.7%. In online evaluations, our framework enhances UI-TARS-7B-SFT's task success rate from 18.1% to 32.8%. LearnAct framework and LearnGUI benchmark establish demonstration-based learning as a promising direction for more adaptable, personalized, and deployable mobile GUI agents.
Do LLMs Feel? Teaching Emotion Recognition with Prompts, Retrieval, and Curriculum Learning
Emotion Recognition in Conversation (ERC) is a crucial task for understanding human emotions and enabling natural human-computer interaction. Although Large Language Models (LLMs) have recently shown great potential in this field, their ability to capture the intrinsic connections between explicit and implicit emotions remains limited. We propose a novel ERC training framework, PRC-Emo, which integrates Prompt engineering, demonstration Retrieval, and Curriculum learning, with the goal of exploring whether LLMs can effectively perceive emotions in conversational contexts. Specifically, we design emotion-sensitive prompt templates based on both explicit and implicit emotional cues to better guide the model in understanding the speaker's psychological states. We construct the first dedicated demonstration retrieval repository for ERC, which includes training samples from widely used datasets, as well as high-quality dialogue examples generated by LLMs and manually verified. Moreover, we introduce a curriculum learning strategy into the LoRA fine-tuning process, incorporating weighted emotional shifts between same-speaker and different-speaker utterances to assign difficulty levels to dialogue samples, which are then organized in an easy-to-hard training sequence. Experimental results on two benchmark datasets-- IEMOCAP and MELD --show that our method achieves new state-of-the-art (SOTA) performance, demonstrating the effectiveness and generalizability of our approach in improving LLM-based emotional understanding.
Schema for In-Context Learning
In-Context Learning (ICL) enables transformer-based language models to adapt to new tasks by conditioning on demonstration examples. However, traditional example-driven in-context learning lacks explicit modules for knowledge retrieval and transfer at the abstraction level. Inspired by cognitive science, specifically schema theory, which holds that humans interpret new information by activating pre-existing mental frameworks (schemas) to structure understanding, we introduce SCHEMA ACTIVATED IN CONTEXT LEARNING (SA-ICL). This framework extracts the representation of the building blocks of cognition for the reasoning process instilled from prior examples, creating an abstracted schema, a lightweight, structured template of key inferential steps and their relationships, which is then used to augment a model's reasoning process when presented with a novel question. We demonstrate that a broad range of large language models (LLMs) lack the capacity to form and utilize internal schema-based learning representations implicitly, but instead benefit significantly from explicit schema-based scaffolding. Across chemistry and physics questions from the GPQA dataset, our experiments show that SA-ICL consistently boosts performance, up to 36.19 percent, when the single demonstration example is of high quality, which simultaneously reduces reliance on the number of demonstrations and enhances interpretability. SCHEMA ACTIVATED IN CONTEXT LEARNING not only bridges disparate ICL strategies ranging from pattern priming to Chain-of-Thought prompting, but also paves a new path for enhancing human-like reasoning in LLMs.
Is Diversity All You Need for Scalable Robotic Manipulation?
Data scaling has driven remarkable success in foundation models for Natural Language Processing (NLP) and Computer Vision (CV), yet the principles of effective data scaling in robotic manipulation remain insufficiently understood. In this work, we investigate the nuanced role of data diversity in robot learning by examining three critical dimensions-task (what to do), embodiment (which robot to use), and expert (who demonstrates)-challenging the conventional intuition of "more diverse is better". Throughout extensive experiments on various robot platforms, we reveal that (1) task diversity proves more critical than per-task demonstration quantity, benefiting transfer from diverse pre-training tasks to novel downstream scenarios; (2) multi-embodiment pre-training data is optional for cross-embodiment transfer-models trained on high-quality single-embodiment data can efficiently transfer to different platforms, showing more desirable scaling property during fine-tuning than multi-embodiment pre-trained models; and (3) expert diversity, arising from individual operational preferences and stochastic variations in human demonstrations, can be confounding to policy learning, with velocity multimodality emerging as a key contributing factor. Based on this insight, we propose a distribution debiasing method to mitigate velocity ambiguity, the yielding GO-1-Pro achieves substantial performance gains of 15%, equivalent to using 2.5 times pre-training data. Collectively, these findings provide new perspectives and offer practical guidance on how to scale robotic manipulation datasets effectively.
HumanoidGen: Data Generation for Bimanual Dexterous Manipulation via LLM Reasoning
For robotic manipulation, existing robotics datasets and simulation benchmarks predominantly cater to robot-arm platforms. However, for humanoid robots equipped with dual arms and dexterous hands, simulation tasks and high-quality demonstrations are notably lacking. Bimanual dexterous manipulation is inherently more complex, as it requires coordinated arm movements and hand operations, making autonomous data collection challenging. This paper presents HumanoidGen, an automated task creation and demonstration collection framework that leverages atomic dexterous operations and LLM reasoning to generate relational constraints. Specifically, we provide spatial annotations for both assets and dexterous hands based on the atomic operations, and perform an LLM planner to generate a chain of actionable spatial constraints for arm movements based on object affordances and scenes. To further improve planning ability, we employ a variant of Monte Carlo tree search to enhance LLM reasoning for long-horizon tasks and insufficient annotation. In experiments, we create a novel benchmark with augmented scenarios to evaluate the quality of the collected data. The results show that the performance of the 2D and 3D diffusion policies can scale with the generated dataset. Project page is https://openhumanoidgen.github.io.
Robot Utility Models: General Policies for Zero-Shot Deployment in New Environments
Robot models, particularly those trained with large amounts of data, have recently shown a plethora of real-world manipulation and navigation capabilities. Several independent efforts have shown that given sufficient training data in an environment, robot policies can generalize to demonstrated variations in that environment. However, needing to finetune robot models to every new environment stands in stark contrast to models in language or vision that can be deployed zero-shot for open-world problems. In this work, we present Robot Utility Models (RUMs), a framework for training and deploying zero-shot robot policies that can directly generalize to new environments without any finetuning. To create RUMs efficiently, we develop new tools to quickly collect data for mobile manipulation tasks, integrate such data into a policy with multi-modal imitation learning, and deploy policies on-device on Hello Robot Stretch, a cheap commodity robot, with an external mLLM verifier for retrying. We train five such utility models for opening cabinet doors, opening drawers, picking up napkins, picking up paper bags, and reorienting fallen objects. Our system, on average, achieves 90% success rate in unseen, novel environments interacting with unseen objects. Moreover, the utility models can also succeed in different robot and camera set-ups with no further data, training, or fine-tuning. Primary among our lessons are the importance of training data over training algorithm and policy class, guidance about data scaling, necessity for diverse yet high-quality demonstrations, and a recipe for robot introspection and retrying to improve performance on individual environments. Our code, data, models, hardware designs, as well as our experiment and deployment videos are open sourced and can be found on our project website: https://robotutilitymodels.com
RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots
Recent advancements in Artificial Intelligence (AI) have largely been propelled by scaling. In Robotics, scaling is hindered by the lack of access to massive robot datasets. We advocate using realistic physical simulation as a means to scale environments, tasks, and datasets for robot learning methods. We present RoboCasa, a large-scale simulation framework for training generalist robots in everyday environments. RoboCasa features realistic and diverse scenes focusing on kitchen environments. We provide thousands of 3D assets across over 150 object categories and dozens of interactable furniture and appliances. We enrich the realism and diversity of our simulation with generative AI tools, such as object assets from text-to-3D models and environment textures from text-to-image models. We design a set of 100 tasks for systematic evaluation, including composite tasks generated by the guidance of large language models. To facilitate learning, we provide high-quality human demonstrations and integrate automated trajectory generation methods to substantially enlarge our datasets with minimal human burden. Our experiments show a clear scaling trend in using synthetically generated robot data for large-scale imitation learning and show great promise in harnessing simulation data in real-world tasks. Videos and open-source code are available at https://robocasa.ai/
End-to-End Dexterous Arm-Hand VLA Policies via Shared Autonomy: VR Teleoperation Augmented by Autonomous Hand VLA Policy for Efficient Data Collection
Achieving human-like dexterous manipulation remains a major challenge for general-purpose robots. While Vision-Language-Action (VLA) models show potential in learning skills from demonstrations, their scalability is limited by scarce high-quality training data. Existing data collection methods face inherent constraints: manual teleoperation overloads human operators, while automated planning often produces unnatural motions. We propose a Shared Autonomy framework that divides control between macro and micro motions. A human operator guides the robot's arm pose through intuitive VR teleoperation, while an autonomous DexGrasp-VLA policy handles fine-grained hand control using real-time tactile and visual feedback. This division significantly reduces cognitive load and enables efficient collection of high-quality coordinated arm-hand demonstrations. Using this data, we train an end-to-end VLA policy enhanced with our novel Arm-Hand Feature Enhancement module, which captures both distinct and shared representations of macro and micro movements for more natural coordination. Our Corrective Teleoperation system enables continuous policy improvement through human-in-the-loop failure recovery. Experiments demonstrate that our framework generates high-quality data with minimal manpower and achieves a 90% success rate across diverse objects, including unseen instances. Comprehensive evaluations validate the system's effectiveness in developing dexterous manipulation capabilities.
Rapidly Developing High-quality Instruction Data and Evaluation Benchmark for Large Language Models with Minimal Human Effort: A Case Study on Japanese
The creation of instruction data and evaluation benchmarks for serving Large language models often involves enormous human annotation. This issue becomes particularly pronounced when rapidly developing such resources for a non-English language like Japanese. Instead of following the popular practice of directly translating existing English resources into Japanese (e.g., Japanese-Alpaca), we propose an efficient self-instruct method based on GPT-4. We first translate a small amount of English instructions into Japanese and post-edit them to obtain native-level quality. GPT-4 then utilizes them as demonstrations to automatically generate Japanese instruction data. We also construct an evaluation benchmark containing 80 questions across 8 categories, using GPT-4 to automatically assess the response quality of LLMs without human references. The empirical results suggest that the models fine-tuned on our GPT-4 self-instruct data significantly outperformed the Japanese-Alpaca across all three base pre-trained models. Our GPT-4 self-instruct data allowed the LLaMA 13B model to defeat GPT-3.5 (Davinci-003) with a 54.37\% win-rate. The human evaluation exhibits the consistency between GPT-4's assessments and human preference. Our high-quality instruction data and evaluation benchmark have been released here.
Grounding Computer Use Agents on Human Demonstrations
Building reliable computer-use agents requires grounding: accurately connecting natural language instructions to the correct on-screen elements. While large datasets exist for web and mobile interactions, high-quality resources for desktop environments are limited. To address this gap, we introduce GroundCUA, a large-scale desktop grounding dataset built from expert human demonstrations. It covers 87 applications across 12 categories and includes 56K screenshots, with every on-screen element carefully annotated for a total of over 3.56M human-verified annotations. From these demonstrations, we generate diverse instructions that capture a wide range of real-world tasks, providing high-quality data for model training. Using GroundCUA, we develop the GroundNext family of models that map instructions to their target UI elements. At both 3B and 7B scales, GroundNext achieves state-of-the-art results across five benchmarks using supervised fine-tuning, while requiring less than one-tenth the training data of prior work. Reinforcement learning post-training further improves performance, and when evaluated in an agentic setting on the OSWorld benchmark using o3 as planner, GroundNext attains comparable or superior results to models trained with substantially more data,. These results demonstrate the critical role of high-quality, expert-driven datasets in advancing general-purpose computer-use agents.
Proving Olympiad Algebraic Inequalities without Human Demonstrations
Solving Olympiad-level mathematical problems represents a significant advancement in machine intelligence and automated reasoning. Current machine learning methods, however, struggle to solve Olympiad-level problems beyond Euclidean plane geometry due to a lack of large-scale, high-quality datasets. The challenge is even greater in algebraic systems, which involve infinite reasoning spaces within finite conditions. To address these issues, we propose AIPS, an Algebraic Inequality Proving System capable of autonomously generating complex inequality theorems and effectively solving Olympiad-level inequality problems without requiring human demonstrations. During proof search in a mixed reasoning manner, a value curriculum learning strategy on generated datasets is implemented to improve proving performance, demonstrating strong mathematical intuitions. On a test set of 20 International Mathematical Olympiad-level inequality problems, AIPS successfully solved 10, outperforming state-of-the-art methods. Furthermore, AIPS automatically generated a vast array of non-trivial theorems without human intervention, some of which have been evaluated by professional contestants and deemed to reach the level of the International Mathematical Olympiad. Notably, one theorem was selected as a competition problem in a major city 2024 Mathematical Olympiad.
CHASE-SQL: Multi-Path Reasoning and Preference Optimized Candidate Selection in Text-to-SQL
In tackling the challenges of large language model (LLM) performance for Text-to-SQL tasks, we introduce CHASE-SQL, a new framework that employs innovative strategies, using test-time compute in multi-agent modeling to improve candidate generation and selection. CHASE-SQL leverages LLMs' intrinsic knowledge to generate diverse and high-quality SQL candidates using different LLM generators with: (1) a divide-and-conquer method that decomposes complex queries into manageable sub-queries in a single LLM call; (2) chain-of-thought reasoning based on query execution plans, reflecting the steps a database engine takes during execution; and (3) a unique instance-aware synthetic example generation technique, which offers specific few-shot demonstrations tailored to test questions.To identify the best candidate, a selection agent is employed to rank the candidates through pairwise comparisons with a fine-tuned binary-candidates selection LLM. This selection approach has been demonstrated to be more robust over alternatives. The proposed generators-selector framework not only enhances the quality and diversity of SQL queries but also outperforms previous methods. Overall, our proposed CHASE-SQL achieves the state-of-the-art execution accuracy of 73.0% and 73.01% on the test set and development set of the notable BIRD Text-to-SQL dataset benchmark, rendering CHASE-SQL the top submission of the leaderboard (at the time of paper submission).
Rank-GRPO: Training LLM-based Conversational Recommender Systems with Reinforcement Learning
Large language models (LLMs) are reshaping the recommender system paradigm by enabling users to express preferences and receive recommendations through conversations. Yet, aligning LLMs to the recommendation task remains challenging: pretrained LLMs often generate out-of-catalog items, violate required output formats, and their ranking quality degrades sharply toward the end of the generated list. To this end, we propose ConvRec-R1, a two-stage framework for end-to-end training of LLM-based conversational recommender systems. In Stage 1, we construct a behavioral-cloning dataset with a Remap-Reflect-Adjust pipeline, which produces high-quality, catalog-grounded demonstrations from powerful blackbox LLMs to warm-start the RL training. In Stage 2, we propose Rank-GRPO, a principled extension of group relative policy optimization (GRPO) tailored to tasks with rank-style outputs. Rank-GRPO treats each rank in the recommendation list as the unit instead of token (too fine-grained) or sequence (too coarse), redefining rewards to remove non-causal credit assignment and introducing a rank-level importance ratio based on the geometric mean of rank-wise token probabilities to stabilize policy updates. Experiments on the public Reddit-v2 dataset show that ConvRec-R1 converges faster and achieves higher Recall and NDCG than GRPO-style baselines. Code and datasets are released at https://github.com/yaochenzhu/Rank-GRPO.
Watch and Learn: Learning to Use Computers from Online Videos
Computer use agents (CUAs) need to plan task workflows grounded in diverse, ever-changing applications and environments, but learning is hindered by the scarcity of large-scale, high-quality training data in the target application. Existing datasets are domain-specific, static, and costly to annotate, while current synthetic data generation methods often yield simplistic or misaligned task demonstrations. To address these limitations, we introduce Watch & Learn (W&L), a framework that converts human demonstration videos readily available on the Internet into executable UI trajectories at scale. Instead of directly generating trajectories or relying on ad hoc reasoning heuristics, we cast the problem as an inverse dynamics objective: predicting the user's action from consecutive screen states. This formulation reduces manual engineering, is easier to learn, and generalizes more robustly across applications. Concretely, we develop an inverse dynamics labeling pipeline with task-aware video retrieval, generate over 53k high-quality trajectories from raw web videos, and demonstrate that these trajectories improve CUAs both as in-context demonstrations and as supervised training data. On the challenging OSWorld benchmark, UI trajectories extracted with W&L consistently enhance both general-purpose and state-of-the-art frameworks in-context, and deliver stronger gains for open-source models under supervised training. These results highlight web-scale human demonstration videos as a practical and scalable foundation for advancing CUAs towards real-world deployment.
Unified World Models: Coupling Video and Action Diffusion for Pretraining on Large Robotic Datasets
Imitation learning has emerged as a promising approach towards building generalist robots. However, scaling imitation learning for large robot foundation models remains challenging due to its reliance on high-quality expert demonstrations. Meanwhile, large amounts of video data depicting a wide range of environments and diverse behaviors are readily available. This data provides a rich source of information about real-world dynamics and agent-environment interactions. Leveraging this data directly for imitation learning, however, has proven difficult due to the lack of action annotation required for most contemporary methods. In this work, we present Unified World Models (UWM), a framework that allows for leveraging both video and action data for policy learning. Specifically, a UWM integrates an action diffusion process and a video diffusion process within a unified transformer architecture, where independent diffusion timesteps govern each modality. We show that by simply controlling each diffusion timestep, UWM can flexibly represent a policy, a forward dynamics, an inverse dynamics, and a video generator. Through simulated and real-world experiments, we show that: (1) UWM enables effective pretraining on large-scale multitask robot datasets with both dynamics and action predictions, resulting in more generalizable and robust policies than imitation learning, (2) UWM naturally facilitates learning from action-free video data through independent control of modality-specific diffusion timesteps, further improving the performance of finetuned policies. Our results suggest that UWM offers a promising step toward harnessing large, heterogeneous datasets for scalable robot learning, and provides a simple unification between the often disparate paradigms of imitation learning and world modeling. Videos and code are available at https://weirdlabuw.github.io/uwm/.
LIMI: Less is More for Agency
We define Agency as the emergent capacity of AI systems to function as autonomous agents actively discovering problems, formulating hypotheses, and executing solutions through self-directed engagement with environments and tools. This fundamental capability marks the dawn of the Age of AI Agency, driven by a critical industry shift: the urgent need for AI systems that don't just think, but work. While current AI excels at reasoning and generating responses, industries demand autonomous agents that can execute tasks, operate tools, and drive real-world outcomes. As agentic intelligence becomes the defining characteristic separating cognitive systems from productive workers, efficiently cultivating machine autonomy becomes paramount. Current approaches assume that more data yields better agency, following traditional scaling laws from language modeling. We fundamentally challenge this paradigm. LIMI (Less Is More for Intelligent Agency) demonstrates that agency follows radically different development principles. Through strategic focus on collaborative software development and scientific research workflows, we show that sophisticated agentic intelligence can emerge from minimal but strategically curated demonstrations of autonomous behavior. Using only 78 carefully designed training samples, LIMI achieves 73.5% on comprehensive agency benchmarks, dramatically outperforming state-of-the-art models: Kimi-K2-Instruct (24.1%), DeepSeek-V3.1 (11.9%), Qwen3-235B-A22B-Instruct (27.5%), and GLM-4.5 (45.1%). Most strikingly, LIMI demonstrates 53.7% improvement over models trained on 10,000 samples-achieving superior agentic intelligence with 128 times fewer samples. Our findings establish the Agency Efficiency Principle: machine autonomy emerges not from data abundance but from strategic curation of high-quality agentic demonstrations.
Counter-Strike Deathmatch with Large-Scale Behavioural Cloning
This paper describes an AI agent that plays the popular first-person-shooter (FPS) video game `Counter-Strike; Global Offensive' (CSGO) from pixel input. The agent, a deep neural network, matches the performance of the medium difficulty built-in AI on the deathmatch game mode, whilst adopting a humanlike play style. Unlike much prior work in games, no API is available for CSGO, so algorithms must train and run in real-time. This limits the quantity of on-policy data that can be generated, precluding many reinforcement learning algorithms. Our solution uses behavioural cloning - training on a large noisy dataset scraped from human play on online servers (4 million frames, comparable in size to ImageNet), and a smaller dataset of high-quality expert demonstrations. This scale is an order of magnitude larger than prior work on imitation learning in FPS games.
C3Net: Compound Conditioned ControlNet for Multimodal Content Generation
We present Compound Conditioned ControlNet, C3Net, a novel generative neural architecture taking conditions from multiple modalities and synthesizing multimodal contents simultaneously (e.g., image, text, audio). C3Net adapts the ControlNet architecture to jointly train and make inferences on a production-ready diffusion model and its trainable copies. Specifically, C3Net first aligns the conditions from multi-modalities to the same semantic latent space using modality-specific encoders based on contrastive training. Then, it generates multimodal outputs based on the aligned latent space, whose semantic information is combined using a ControlNet-like architecture called Control C3-UNet. Correspondingly, with this system design, our model offers an improved solution for joint-modality generation through learning and explaining multimodal conditions instead of simply taking linear interpolations on the latent space. Meanwhile, as we align conditions to a unified latent space, C3Net only requires one trainable Control C3-UNet to work on multimodal semantic information. Furthermore, our model employs unimodal pretraining on the condition alignment stage, outperforming the non-pretrained alignment even on relatively scarce training data and thus demonstrating high-quality compound condition generation. We contribute the first high-quality tri-modal validation set to validate quantitatively that C3Net outperforms or is on par with first and contemporary state-of-the-art multimodal generation. Our codes and tri-modal dataset will be released.
UI-Genie: A Self-Improving Approach for Iteratively Boosting MLLM-based Mobile GUI Agents
In this paper, we introduce UI-Genie, a self-improving framework addressing two key challenges in GUI agents: verification of trajectory outcome is challenging and high-quality training data are not scalable. These challenges are addressed by a reward model and a self-improving pipeline, respectively. The reward model, UI-Genie-RM, features an image-text interleaved architecture that efficiently pro- cesses historical context and unifies action-level and task-level rewards. To sup- port the training of UI-Genie-RM, we develop deliberately-designed data genera- tion strategies including rule-based verification, controlled trajectory corruption, and hard negative mining. To address the second challenge, a self-improvement pipeline progressively expands solvable complex GUI tasks by enhancing both the agent and reward models through reward-guided exploration and outcome verification in dynamic environments. For training the model, we generate UI- Genie-RM-517k and UI-Genie-Agent-16k, establishing the first reward-specific dataset for GUI agents while demonstrating high-quality synthetic trajectory gen- eration without manual annotation. Experimental results show that UI-Genie achieves state-of-the-art performance across multiple GUI agent benchmarks with three generations of data-model self-improvement. We open-source our complete framework implementation and generated datasets to facilitate further research in https://github.com/Euphoria16/UI-Genie.
Deep Performer: Score-to-Audio Music Performance Synthesis
Music performance synthesis aims to synthesize a musical score into a natural performance. In this paper, we borrow recent advances in text-to-speech synthesis and present the Deep Performer -- a novel system for score-to-audio music performance synthesis. Unlike speech, music often contains polyphony and long notes. Hence, we propose two new techniques for handling polyphonic inputs and providing a fine-grained conditioning in a transformer encoder-decoder model. To train our proposed system, we present a new violin dataset consisting of paired recordings and scores along with estimated alignments between them. We show that our proposed model can synthesize music with clear polyphony and harmonic structures. In a listening test, we achieve competitive quality against the baseline model, a conditional generative audio model, in terms of pitch accuracy, timbre and noise level. Moreover, our proposed model significantly outperforms the baseline on an existing piano dataset in overall quality.
Arctic-SnowCoder: Demystifying High-Quality Data in Code Pretraining
Recent studies have been increasingly demonstrating that high-quality data is crucial for effective pretraining of language models. However, the precise definition of "high-quality" remains underexplored. Focusing on the code domain, we introduce Arctic-SnowCoder-1.3B, a data-efficient base code model pretrained on 555B tokens through three phases of progressively refined data: (1) general pretraining with 500B standard-quality code tokens, preprocessed through basic filtering, deduplication, and decontamination, (2) continued pretraining with 50B high-quality tokens, selected from phase one by a BERT-style quality annotator trained to distinguish good code from random data, using positive examples drawn from high-quality code files, along with instruction data from Magicoder and StarCoder2-Instruct, and (3) enhanced pretraining with 5B synthetic data created by Llama-3.1-70B using phase two data as seeds, adapting the Magicoder approach for pretraining. Despite being trained on a limited dataset, Arctic-SnowCoder achieves state-of-the-art performance on BigCodeBench, a coding benchmark focusing on practical and challenging programming tasks, compared to similarly sized models trained on no more than 1T tokens, outperforming Phi-1.5-1.3B by 36%. Across all evaluated benchmarks, Arctic-SnowCoder-1.3B beats StarCoderBase-3B pretrained on 1T tokens. Additionally, it matches the performance of leading small base code models trained on trillions of tokens. For example, Arctic-SnowCoder-1.3B surpasses StarCoder2-3B, pretrained on over 3.3T tokens, on HumanEval+, a benchmark that evaluates function-level code generation, and remains competitive on BigCodeBench. Our evaluation presents a comprehensive analysis justifying various design choices for Arctic-SnowCoder. Most importantly, we find that the key to high-quality data is its alignment with the distribution of downstream applications.
VFHQ: A High-Quality Dataset and Benchmark for Video Face Super-Resolution
Most of the existing video face super-resolution (VFSR) methods are trained and evaluated on VoxCeleb1, which is designed specifically for speaker identification and the frames in this dataset are of low quality. As a consequence, the VFSR models trained on this dataset can not output visual-pleasing results. In this paper, we develop an automatic and scalable pipeline to collect a high-quality video face dataset (VFHQ), which contains over 16,000 high-fidelity clips of diverse interview scenarios. To verify the necessity of VFHQ, we further conduct experiments and demonstrate that VFSR models trained on our VFHQ dataset can generate results with sharper edges and finer textures than those trained on VoxCeleb1. In addition, we show that the temporal information plays a pivotal role in eliminating video consistency issues as well as further improving visual performance. Based on VFHQ, by analyzing the benchmarking study of several state-of-the-art algorithms under bicubic and blind settings. See our project page: https://liangbinxie.github.io/projects/vfhq
UltraVideo: High-Quality UHD Video Dataset with Comprehensive Captions
The quality of the video dataset (image quality, resolution, and fine-grained caption) greatly influences the performance of the video generation model. The growing demand for video applications sets higher requirements for high-quality video generation models. For example, the generation of movie-level Ultra-High Definition (UHD) videos and the creation of 4K short video content. However, the existing public datasets cannot support related research and applications. In this paper, we first propose a high-quality open-sourced UHD-4K (22.4\% of which are 8K) text-to-video dataset named UltraVideo, which contains a wide range of topics (more than 100 kinds), and each video has 9 structured captions with one summarized caption (average of 824 words). Specifically, we carefully design a highly automated curation process with four stages to obtain the final high-quality dataset: i) collection of diverse and high-quality video clips. ii) statistical data filtering. iii) model-based data purification. iv) generation of comprehensive, structured captions. In addition, we expand Wan to UltraWan-1K/-4K, which can natively generate high-quality 1K/4K videos with more consistent text controllability, demonstrating the effectiveness of our data curation.We believe that this work can make a significant contribution to future research on UHD video generation. UltraVideo dataset and UltraWan models are available at https://xzc-zju.github.io/projects/UltraVideo.
SynthForge: Synthesizing High-Quality Face Dataset with Controllable 3D Generative Models
Recent advancements in generative models have unlocked the capabilities to render photo-realistic data in a controllable fashion. Trained on the real data, these generative models are capable of producing realistic samples with minimal to no domain gap, as compared to the traditional graphics rendering. However, using the data generated using such models for training downstream tasks remains under-explored, mainly due to the lack of 3D consistent annotations. Moreover, controllable generative models are learned from massive data and their latent space is often too vast to obtain meaningful sample distributions for downstream task with limited generation. To overcome these challenges, we extract 3D consistent annotations from an existing controllable generative model, making the data useful for downstream tasks. Our experiments show competitive performance against state-of-the-art models using only generated synthetic data, demonstrating potential for solving downstream tasks. Project page: https://synth-forge.github.io
Synth-Empathy: Towards High-Quality Synthetic Empathy Data
In recent years, with the rapid advancements in large language models (LLMs), achieving excellent empathetic response capabilities has become a crucial prerequisite. Consequently, managing and understanding empathetic datasets have gained increasing significance. However, empathetic data are typically human-labeled, leading to insufficient datasets and wasted human labor. In this work, we present Synth-Empathy, an LLM-based data generation and quality and diversity selection pipeline that automatically generates high-quality empathetic data while discarding low-quality data. With the data generated from a low empathetic model, we are able to further improve empathetic response performance and achieve state-of-the-art (SoTA) results across multiple benchmarks. Moreover, our model achieves SoTA performance on various human evaluation benchmarks, demonstrating its effectiveness and robustness in real-world applications. Furthermore, we show the trade-off between data quantity and quality, providing insights into empathetic data generation and selection.
A Graph-Based Synthetic Data Pipeline for Scaling High-Quality Reasoning Instructions
Synthesizing high-quality reasoning data for continual training has been proven to be effective in enhancing the performance of Large Language Models (LLMs). However, previous synthetic approaches struggle to easily scale up data and incur high costs in the pursuit of high quality. In this paper, we propose the Graph-based Synthetic Data Pipeline (GSDP), an economical and scalable framework for high-quality reasoning data synthesis. Inspired by knowledge graphs, we extracted knowledge points from seed data and constructed a knowledge point relationships graph to explore their interconnections. By exploring the implicit relationships among knowledge, our method achieves times255 data expansion. Furthermore, GSDP led by open-source models, achieves synthesis quality comparable to GPT-4-0613 while maintaining times100 lower costs. To tackle the most challenging mathematical reasoning task, we present the GSDP-MATH dataset comprising over 1.91 million pairs of math problems and answers. After fine-tuning on GSDP-MATH, GSDP-7B based on Mistral-7B achieves 37.7% accuracy on MATH and 78.4% on GSM8K, demonstrating the effectiveness of our method. The dataset and models trained in this paper will be available.
Code2Doc: A Quality-First Curated Dataset for Code Documentation
The performance of automatic code documentation generation models depends critically on the quality of the training data used for supervision. However, most existing code documentation datasets are constructed through large scale scraping of public repositories with limited quality control. As a result, they often contain noisy documentation, extensive duplication, and increasing contamination from AI generated content. These issues weaken the supervision signal available to learning-based models and complicate evaluation. We introduce Code2Doc, a quality-first curated dataset for function-level code documentation generation. Code2Doc consists of 13,358 high-quality function-documentation pairs extracted from widely used open-source repositories spanning five programming languages: Python, Java, TypeScript, JavaScript, and C++. The dataset is constructed using a four-stage curation pipeline that enforces documentation completeness and clarity, filters functions based on structural and complexity criteria, removes exact and near-duplicate code, and identifies documentation likely to be AI generated. Starting from 52,069 extracted candidates, only 25.6% satisfy all quality constraints. We provide a detailed analysis of the resulting dataset, which achieves a mean documentation quality score of 6.93 out of 10. Overall, 86.9% of samples contain explicit type annotations, and only 2.9% are flagged as potentially AI generated. Baseline experiments show that fine-tuning a large language model on Code2Doc yields relative improvements of 29.47% in BLEU and 24.04% in ROUGE-L over zero shot performance, despite the modest dataset size. We release both the dataset and the full curation pipeline to support reproducible research on automatic code documentation generation.
DynamiCtrl: Rethinking the Basic Structure and the Role of Text for High-quality Human Image Animation
With diffusion transformer (DiT) excelling in video generation, its use in specific tasks has drawn increasing attention. However, adapting DiT for pose-guided human image animation faces two core challenges: (a) existing U-Net-based pose control methods may be suboptimal for the DiT backbone; and (b) removing text guidance, as in previous approaches, often leads to semantic loss and model degradation. To address these issues, we propose DynamiCtrl, a novel framework for human animation in video DiT architecture. Specifically, we use a shared VAE encoder for human images and driving poses, unifying them into a common latent space, maintaining pose fidelity, and eliminating the need for an expert pose encoder during video denoising. To integrate pose control into the DiT backbone effectively, we propose a novel Pose-adaptive Layer Norm model. It injects normalized pose features into the denoising process via conditioning on visual tokens, enabling seamless and scalable pose control across DiT blocks. Furthermore, to overcome the shortcomings of text removal, we introduce the "Joint-text" paradigm, which preserves the role of text embeddings to provide global semantic context. Through full-attention blocks, image and pose features are aligned with text features, enhancing semantic consistency, leveraging pretrained knowledge, and enabling multi-level control. Experiments verify the superiority of DynamiCtrl on benchmark and self-collected data (e.g., achieving the best LPIPS of 0.166), demonstrating strong character control and high-quality synthesis. The project page is available at https://gulucaptain.github.io/DynamiCtrl/.
MeshGS: Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering
Recently, 3D Gaussian splatting has gained attention for its capability to generate high-fidelity rendering results. At the same time, most applications such as games, animation, and AR/VR use mesh-based representations to represent and render 3D scenes. We propose a novel approach that integrates mesh representation with 3D Gaussian splats to perform high-quality rendering of reconstructed real-world scenes. In particular, we introduce a distance-based Gaussian splatting technique to align the Gaussian splats with the mesh surface and remove redundant Gaussian splats that do not contribute to the rendering. We consider the distance between each Gaussian splat and the mesh surface to distinguish between tightly-bound and loosely-bound Gaussian splats. The tightly-bound splats are flattened and aligned well with the mesh geometry. The loosely-bound Gaussian splats are used to account for the artifacts in reconstructed 3D meshes in terms of rendering. We present a training strategy of binding Gaussian splats to the mesh geometry, and take into account both types of splats. In this context, we introduce several regularization techniques aimed at precisely aligning tightly-bound Gaussian splats with the mesh surface during the training process. We validate the effectiveness of our method on large and unbounded scene from mip-NeRF 360 and Deep Blending datasets. Our method surpasses recent mesh-based neural rendering techniques by achieving a 2dB higher PSNR, and outperforms mesh-based Gaussian splatting methods by 1.3 dB PSNR, particularly on the outdoor mip-NeRF 360 dataset, demonstrating better rendering quality. We provide analyses for each type of Gaussian splat and achieve a reduction in the number of Gaussian splats by 30% compared to the original 3D Gaussian splatting.
MME-CoT: Benchmarking Chain-of-Thought in Large Multimodal Models for Reasoning Quality, Robustness, and Efficiency
Answering questions with Chain-of-Thought (CoT) has significantly enhanced the reasoning capabilities of Large Language Models (LLMs), yet its impact on Large Multimodal Models (LMMs) still lacks a systematic assessment and in-depth investigation. In this paper, we introduce MME-CoT, a specialized benchmark evaluating the CoT reasoning performance of LMMs, spanning six domains: math, science, OCR, logic, space-time, and general scenes. As the first comprehensive study in this area, we propose a thorough evaluation suite incorporating three novel metrics that assess the reasoning quality, robustness, and efficiency at a fine-grained level. Leveraging curated high-quality data and a unique evaluation strategy, we conduct an in-depth analysis of state-of-the-art LMMs, uncovering several key insights: 1) Models with reflection mechanism demonstrate a superior CoT quality, with Kimi k1.5 outperforming GPT-4o and demonstrating the highest quality results; 2) CoT prompting often degrades LMM performance on perception-heavy tasks, suggesting a potentially harmful overthinking behavior; and 3) Although the CoT quality is high, LMMs with reflection exhibit significant inefficiency in both normal response and self-correction phases. We hope MME-CoT serves as a foundation for advancing multimodal reasoning in LMMs. Project Page: https://mmecot.github.io/
APIGen: Automated Pipeline for Generating Verifiable and Diverse Function-Calling Datasets
The advancement of function-calling agent models requires diverse, reliable, and high-quality datasets. This paper presents APIGen, an automated data generation pipeline designed to synthesize verifiable high-quality datasets for function-calling applications. We leverage APIGen and collect 3,673 executable APIs across 21 different categories to generate diverse function-calling datasets in a scalable and structured manner. Each data in our dataset is verified through three hierarchical stages: format checking, actual function executions, and semantic verification, ensuring its reliability and correctness. We demonstrate that models trained with our curated datasets, even with only 7B parameters, can achieve state-of-the-art performance on the Berkeley Function-Calling Benchmark, outperforming multiple GPT-4 models. Moreover, our 1B model achieves exceptional performance, surpassing GPT-3.5-Turbo and Claude-3 Haiku. We release a dataset containing 60,000 high-quality entries, aiming to advance the field of function-calling agent domains. The dataset is available on Huggingface: https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k and the project homepage: https://apigen-pipeline.github.io/
Nemotron-CC: Transforming Common Crawl into a Refined Long-Horizon Pretraining Dataset
Recent English Common Crawl datasets like FineWeb-Edu and DCLM achieved significant benchmark gains via aggressive model-based filtering, but at the cost of removing 90% of data. This limits their suitability for long token horizon training, such as 15T tokens for Llama 3.1. In this paper, we show how to achieve better trade-offs between accuracy and data quantity by a combination of classifier ensembling, synthetic data rephrasing, and reduced reliance on heuristic filters. When training 8B parameter models for 1T tokens, using a high-quality subset of our data improves MMLU by 5.6 over DCLM, demonstrating the efficacy of our methods for boosting accuracies over a relatively short token horizon. Furthermore, our full 6.3T token dataset matches DCLM on MMLU, but contains four times more unique real tokens than DCLM. This unlocks state-of-the-art training over a long token horizon: an 8B parameter model trained for 15T tokens, of which 7.2T came from our dataset, is better than the Llama 3.1 8B model: +5 on MMLU, +3.1 on ARC-Challenge, and +0.5 on average across ten diverse tasks. The dataset is available at https://data.commoncrawl.org/contrib/Nemotron/Nemotron-CC/index.html
VideoA11y: Method and Dataset for Accessible Video Description
Video descriptions are crucial for blind and low vision (BLV) users to access visual content. However, current artificial intelligence models for generating descriptions often fall short due to limitations in the quality of human annotations within training datasets, resulting in descriptions that do not fully meet BLV users' needs. To address this gap, we introduce VideoA11y, an approach that leverages multimodal large language models (MLLMs) and video accessibility guidelines to generate descriptions tailored for BLV individuals. Using this method, we have curated VideoA11y-40K, the largest and most comprehensive dataset of 40,000 videos described for BLV users. Rigorous experiments across 15 video categories, involving 347 sighted participants, 40 BLV participants, and seven professional describers, showed that VideoA11y descriptions outperform novice human annotations and are comparable to trained human annotations in clarity, accuracy, objectivity, descriptiveness, and user satisfaction. We evaluated models on VideoA11y-40K using both standard and custom metrics, demonstrating that MLLMs fine-tuned on this dataset produce high-quality accessible descriptions. Code and dataset are available at https://people-robots.github.io/VideoA11y.
SynLLM: A Comparative Analysis of Large Language Models for Medical Tabular Synthetic Data Generation via Prompt Engineering
Access to real-world medical data is often restricted due to privacy regulations, posing a significant barrier to the advancement of healthcare research. Synthetic data offers a promising alternative; however, generating realistic, clinically valid, and privacy-conscious records remains a major challenge. Recent advancements in Large Language Models (LLMs) offer new opportunities for structured data generation; however, existing approaches frequently lack systematic prompting strategies and comprehensive, multi-dimensional evaluation frameworks. In this paper, we present SynLLM, a modular framework for generating high-quality synthetic medical tabular data using 20 state-of-the-art open-source LLMs, including LLaMA, Mistral, and GPT variants, guided by structured prompts. We propose four distinct prompt types, ranging from example-driven to rule-based constraints, that encode schema, metadata, and domain knowledge to control generation without model fine-tuning. Our framework features a comprehensive evaluation pipeline that rigorously assesses generated data across statistical fidelity, clinical consistency, and privacy preservation. We evaluate SynLLM across three public medical datasets, including Diabetes, Cirrhosis, and Stroke, using 20 open-source LLMs. Our results show that prompt engineering significantly impacts data quality and privacy risk, with rule-based prompts achieving the best privacy-quality balance. SynLLM establishes that, when guided by well-designed prompts and evaluated with robust, multi-metric criteria, LLMs can generate synthetic medical data that is both clinically plausible and privacy-aware, paving the way for safer and more effective data sharing in healthcare research.
PersonaMath: Enhancing Math Reasoning through Persona-Driven Data Augmentation
While closed-source Large Language Models (LLMs) demonstrate strong mathematical problem-solving abilities, open-source models continue to struggle with such tasks. To bridge this gap, we propose a data augmentation approach and introduce PersonaMathQA, a dataset derived from MATH and GSM8K, on which we train the PersonaMath models. Our approach consists of two stages: the first stage is learning from Persona Diversification, and the second stage is learning from Reflection. In the first stage, we regenerate detailed chain-of-thought (CoT) solutions as instructions using a closed-source LLM and introduce a novel persona-driven data augmentation technique to enhance the dataset's quantity and diversity. In the second stage, we incorporate reflection to fully leverage more challenging and valuable questions. Evaluation of our PersonaMath models on MATH and GSM8K reveals that the PersonaMath-7B model (based on LLaMA-2-7B) achieves an accuracy of 24.2% on MATH and 68.7% on GSM8K, surpassing all baseline methods and achieving state-of-the-art performance. Notably, our dataset contains only 70.3K data points-merely 17.8% of MetaMathQA and 27% of MathInstruct-yet our model outperforms these baselines, demonstrating the high quality and diversity of our dataset, which enables more efficient model training. We open-source the PersonaMathQA dataset, PersonaMath models, and our code for public usage.
MMTrail: A Multimodal Trailer Video Dataset with Language and Music Descriptions
Massive multi-modality datasets play a significant role in facilitating the success of large video-language models. However, current video-language datasets primarily provide text descriptions for visual frames, considering audio to be weakly related information. They usually overlook exploring the potential of inherent audio-visual correlation, leading to monotonous annotation within each modality instead of comprehensive and precise descriptions. Such ignorance results in the difficulty of multiple cross-modality studies. To fulfill this gap, we present MMTrail, a large-scale multi-modality video-language dataset incorporating more than 20M trailer clips with visual captions, and 2M high-quality clips with multimodal captions. Trailers preview full-length video works and integrate context, visual frames, and background music. In particular, the trailer has two main advantages: (1) the topics are diverse, and the content characters are of various types, e.g., film, news, and gaming. (2) the corresponding background music is custom-designed, making it more coherent with the visual context. Upon these insights, we propose a systemic captioning framework, achieving various modality annotations with more than 27.1k hours of trailer videos. Here, to ensure the caption retains music perspective while preserving the authority of visual context, we leverage the advanced LLM to merge all annotations adaptively. In this fashion, our MMtrail dataset potentially paves the path for fine-grained large multimodal-language model training. In experiments, we provide evaluation metrics and benchmark results on our dataset, demonstrating the high quality of our annotation and its effectiveness for model training.
Alif: Advancing Urdu Large Language Models via Multilingual Synthetic Data Distillation
Developing a high-performing large language models (LLMs) for low-resource languages such as Urdu, present several challenges. These challenges include the scarcity of high-quality datasets, multilingual inconsistencies, and safety concerns. Existing multilingual LLMs often address these issues by translating large volumes of available data. However, such translations often lack quality and cultural nuance while also incurring significant costs for data curation and training. To address these issues, we propose Alif-1.0-8B-Instruct, a multilingual Urdu-English model, that tackles these challenges with a unique approach. We train the model on a high-quality, multilingual synthetic dataset (Urdu-Instruct), developed using a modified self-instruct technique. By using unique prompts and seed values for each task along with a global task pool, this dataset incorporates Urdu-native chain-of-thought based reasoning, bilingual translation, cultural relevance, and ethical safety alignments. This technique significantly enhances the comprehension of Alif-1.0-8B-Instruct model for Urdu-specific tasks. As a result, Alif-1.0-8B-Instruct, built upon the pretrained Llama-3.1-8B, demonstrates superior performance compared to Llama-3.1-8B-Instruct for Urdu specific-tasks. It also outperformed leading multilingual LLMs, including Mistral-7B-Instruct-v0.3, Qwen-2.5-7B-Instruct, and Cohere-Aya-Expanse-8B, all within a training budget of under $100. Our results demonstrate that high-performance and low-resource language LLMs can be developed efficiently and culturally aligned using our modified self-instruct approach. All datasets, models, and code are publicly available at: https://github.com/traversaal-ai/alif-urdu-llm.
VideoEval: Comprehensive Benchmark Suite for Low-Cost Evaluation of Video Foundation Model
With the growth of high-quality data and advancement in visual pre-training paradigms, Video Foundation Models (VFMs) have made significant progress recently, demonstrating their remarkable performance on traditional video understanding benchmarks. However, the existing benchmarks (e.g. Kinetics) and their evaluation protocols are often limited by relatively poor diversity, high evaluation costs, and saturated performance metrics. In this paper, we build a comprehensive benchmark suite to address these issues, namely VideoEval. Specifically, we establish the Video Task Adaption Benchmark (VidTAB) and the Video Embedding Benchmark (VidEB) from two perspectives: evaluating the task adaptability of VFMs under few-shot conditions and assessing their representation power by directly applying to downstream tasks. With VideoEval, we conduct a large-scale study on 20 popular open-source vision foundation models. Our study reveals some insightful findings on VFMs: 1) overall, current VFMs exhibit weak generalization across diverse tasks, 2) increasing video data, whether labeled or weakly-labeled video-text pairs, does not necessarily improve task performance, 3) the effectiveness of some pre-training paradigms may not be fully validated in previous benchmarks, and 4) combining different pre-training paradigms can help improve the generalization capabilities. We believe this study serves as an important complement to the current evaluation for VFMs and offers valuable insights for the future research.
Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities
With the advent of large language models, methods for abstractive summarization have made great strides, creating potential for use in applications to aid knowledge workers processing unwieldy document collections. One such setting is the Civil Rights Litigation Clearinghouse (CRLC) (https://clearinghouse.net),which posts information about large-scale civil rights lawsuits, serving lawyers, scholars, and the general public. Today, summarization in the CRLC requires extensive training of lawyers and law students who spend hours per case understanding multiple relevant documents in order to produce high-quality summaries of key events and outcomes. Motivated by this ongoing real-world summarization effort, we introduce Multi-LexSum, a collection of 9,280 expert-authored summaries drawn from ongoing CRLC writing. Multi-LexSum presents a challenging multi-document summarization task given the length of the source documents, often exceeding two hundred pages per case. Furthermore, Multi-LexSum is distinct from other datasets in its multiple target summaries, each at a different granularity (ranging from one-sentence "extreme" summaries to multi-paragraph narrations of over five hundred words). We present extensive analysis demonstrating that despite the high-quality summaries in the training data (adhering to strict content and style guidelines), state-of-the-art summarization models perform poorly on this task. We release Multi-LexSum for further research in summarization methods as well as to facilitate development of applications to assist in the CRLC's mission at https://multilexsum.github.io.
WildLMa: Long Horizon Loco-Manipulation in the Wild
`In-the-wild' mobile manipulation aims to deploy robots in diverse real-world environments, which requires the robot to (1) have skills that generalize across object configurations; (2) be capable of long-horizon task execution in diverse environments; and (3) perform complex manipulation beyond pick-and-place. Quadruped robots with manipulators hold promise for extending the workspace and enabling robust locomotion, but existing results do not investigate such a capability. This paper proposes WildLMa with three components to address these issues: (1) adaptation of learned low-level controller for VR-enabled whole-body teleoperation and traversability; (2) WildLMa-Skill -- a library of generalizable visuomotor skills acquired via imitation learning or heuristics and (3) WildLMa-Planner -- an interface of learned skills that allow LLM planners to coordinate skills for long-horizon tasks. We demonstrate the importance of high-quality training data by achieving higher grasping success rate over existing RL baselines using only tens of demonstrations. WildLMa exploits CLIP for language-conditioned imitation learning that empirically generalizes to objects unseen in training demonstrations. Besides extensive quantitative evaluation, we qualitatively demonstrate practical robot applications, such as cleaning up trash in university hallways or outdoor terrains, operating articulated objects, and rearranging items on a bookshelf.
Bora: Biomedical Generalist Video Generation Model
Generative models hold promise for revolutionizing medical education, robot-assisted surgery, and data augmentation for medical AI development. Diffusion models can now generate realistic images from text prompts, while recent advancements have demonstrated their ability to create diverse, high-quality videos. However, these models often struggle with generating accurate representations of medical procedures and detailed anatomical structures. This paper introduces Bora, the first spatio-temporal diffusion probabilistic model designed for text-guided biomedical video generation. Bora leverages Transformer architecture and is pre-trained on general-purpose video generation tasks. It is fine-tuned through model alignment and instruction tuning using a newly established medical video corpus, which includes paired text-video data from various biomedical fields. To the best of our knowledge, this is the first attempt to establish such a comprehensive annotated biomedical video dataset. Bora is capable of generating high-quality video data across four distinct biomedical domains, adhering to medical expert standards and demonstrating consistency and diversity. This generalist video generative model holds significant potential for enhancing medical consultation and decision-making, particularly in resource-limited settings. Additionally, Bora could pave the way for immersive medical training and procedure planning. Extensive experiments on distinct medical modalities such as endoscopy, ultrasound, MRI, and cell tracking validate the effectiveness of our model in understanding biomedical instructions and its superior performance across subjects compared to state-of-the-art generation models.
ResearchGPT: Benchmarking and Training LLMs for End-to-End Computer Science Research Workflows
As large language models (LLMs) advance, the ultimate vision for their role in science is emerging: we could build an AI collaborator to effectively assist human beings throughout the entire scientific research process. We refer to this envisioned system as ResearchGPT. Given that scientific research progresses through multiple interdependent phases, achieving this vision requires rigorous benchmarks that evaluate the end-to-end workflow rather than isolated sub-tasks. To this end, we contribute CS-54k, a high-quality corpus of scientific Q&A pairs in computer science, built from 14k CC-licensed papers. It is constructed through a scalable, paper-grounded pipeline that combines retrieval-augmented generation (RAG) with multi-stage quality control to ensure factual grounding. From this unified corpus, we derive two complementary subsets: CS-4k, a carefully curated benchmark for evaluating AI's ability to assist scientific research, and CS-50k, a large-scale training dataset. Extensive experiments demonstrate that CS-4k stratifies state-of-the-art LLMs into distinct capability tiers. Open models trained on CS-50k with supervised training and reinforcement learning demonstrate substantial improvements. Even 7B-scale models, when properly trained, outperform many larger proprietary systems, such as GPT-4.1, GPT-4o, and Gemini 2.5 Pro. This indicates that making AI models better research assistants relies more on domain-aligned training with high-quality data than on pretraining scale or general benchmark performance. We release CS-4k and CS-50k in the hope of fostering AI systems as reliable collaborators in CS research.
DiaSynth -- Synthetic Dialogue Generation Framework
The scarcity of domain specific dialogue datasets across various domains, from academic topics to everyday conversations, limits the development of dialogue systems for various applications. Existing research is often constrained either by dialogue datasets that are too general or by niche domain dialogue datasets whose scale does not match the required scale for training dialogue systems. To address this gap, we introduce DiaSynth - a synthetic dialogue generation framework capable of generating high quality, contextually rich dialogues across a wide range of domains. Our approach differs from existing frameworks by dynamically generating dialogues that incorporate simulated personas, subtopics, and diverse conversational characteristics, using a Large Language Model (LLM) with Chain of Thought (CoT) reasoning to create contextually rich, domain-specific dialogues that closely mimic natural human interactions. DiaSynth produces tailored dialogues that emulate realistic conversations. We perform our experiments by generating synthetic data using different LLMs and few-shot examples from DialogSum and SAMSum. The pretrained language models fine-tuned on the synthetic data outperform the base models by 16.47%, while the comparison between models fine-tuned on in-domain data and synthetic data shows that the synthetic data is able to capture 90.48% of the distribution of the in-domain data. The quality of the data generated also scales with the size of LLMs. These results validate DiaSynth's potential as a robust alternative to traditional data collection methods.
RLDG: Robotic Generalist Policy Distillation via Reinforcement Learning
Recent advances in robotic foundation models have enabled the development of generalist policies that can adapt to diverse tasks. While these models show impressive flexibility, their performance heavily depends on the quality of their training data. In this work, we propose Reinforcement Learning Distilled Generalists (RLDG), a method that leverages reinforcement learning to generate high-quality training data for finetuning generalist policies. Through extensive real-world experiments on precise manipulation tasks like connector insertion and assembly, we demonstrate that generalist policies trained with RL-generated data consistently outperform those trained with human demonstrations, achieving up to 40% higher success rates while generalizing better to new tasks. We also provide a detailed analysis that reveals this performance gain stems from both optimized action distributions and improved state coverage. Our results suggest that combining task-specific RL with generalist policy distillation offers a promising approach for developing more capable and efficient robotic manipulation systems that maintain the flexibility of foundation models while achieving the performance of specialized controllers. Videos and code can be found on our project website https://generalist-distillation.github.io
CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering
The recent advancements in artificial intelligence highlight the potential of language models in psychological health support. While models trained on data from mental health service platform have achieved preliminary success, challenges persist in areas such as data scarcity, quality, and ensuring a solid foundation in psychological techniques. To address these challenges, this study introduces a novel approach to enhance the precision and efficacy of psychological support through large language models. Specifically, we design a specific prompt derived from principles of Cognitive Behavioral Therapy (CBT) and have generated the CBT QA dataset, specifically for Chinese psychological health Q&A based on CBT structured intervention strategies. Unlike previous methods, our dataset emphasizes professional and structured response. Utilizing this dataset, we fine-tuned the large language model, giving birth to CBT-LLM, the large-scale language model specifically designed for Cognitive Behavioral Therapy techniques. Empirical evaluations demonstrate that CBT-LLM excels in generating structured, professional, and highly relevant responses in psychological health support tasks, showcasing its practicality and quality. The model is available on Hugging Face: https://huggingface.co/Hongbin37/CBT-LLM.
Pretraining on the Test Set Is All You Need
Inspired by recent work demonstrating the promise of smaller Transformer-based language models pretrained on carefully curated data, we supercharge such approaches by investing heavily in curating a novel, high quality, non-synthetic data mixture based solely on evaluation benchmarks. Using our novel dataset mixture consisting of less than 100 thousand tokens, we pretrain a 1 million parameter transformer-based LLM phi-CTNL (pronounced ``fictional") that achieves perfect results across diverse academic benchmarks, strictly outperforming all known foundation models. phi-CTNL also beats power-law scaling and exhibits a never-before-seen grokking-like ability to accurately predict downstream evaluation benchmarks' canaries.
CoLoR-Filter: Conditional Loss Reduction Filtering for Targeted Language Model Pre-training
Selecting high-quality data for pre-training is crucial in shaping the downstream task performance of language models. A major challenge lies in identifying this optimal subset, a problem generally considered intractable, thus necessitating scalable and effective heuristics. In this work, we propose a data selection method, CoLoR-Filter (Conditional Loss Reduction Filtering), which leverages an empirical Bayes-inspired approach to derive a simple and computationally efficient selection criterion based on the relative loss values of two auxiliary models. In addition to the modeling rationale, we evaluate CoLoR-Filter empirically on two language modeling tasks: (1) selecting data from C4 for domain adaptation to evaluation on Books and (2) selecting data from C4 for a suite of downstream multiple-choice question answering tasks. We demonstrate favorable scaling both as we subselect more aggressively and using small auxiliary models to select data for large target models. As one headline result, CoLoR-Filter data selected using a pair of 150m parameter auxiliary models can train a 1.2b parameter target model to match a 1.2b parameter model trained on 25b randomly selected tokens with 25x less data for Books and 11x less data for the downstream tasks. Code: https://github.com/davidbrandfonbrener/color-filter-olmo Filtered data: https://huggingface.co/datasets/davidbrandfonbrener/color-filtered-c4
COP-GEN-Beta: Unified Generative Modelling of COPernicus Imagery Thumbnails
In remote sensing, multi-modal data from various sensors capturing the same scene offers rich opportunities, but learning a unified representation across these modalities remains a significant challenge. Traditional methods have often been limited to single or dual-modality approaches. In this paper, we introduce COP-GEN-Beta, a generative diffusion model trained on optical, radar, and elevation data from the Major TOM dataset. What sets COP-GEN-Beta apart is its ability to map any subset of modalities to any other, enabling zero-shot modality translation after training. This is achieved through a sequence-based diffusion transformer, where each modality is controlled by its own timestep embedding. We extensively evaluate COP-GEN-Beta on thumbnail images from the Major TOM dataset, demonstrating its effectiveness in generating high-quality samples. Qualitative and quantitative evaluations validate the model's performance, highlighting its potential as a powerful pre-trained model for future remote sensing tasks.
Inclusive Easy-to-Read Generation for Individuals with Cognitive Impairments
Ensuring accessibility for individuals with cognitive impairments is essential for autonomy, self-determination, and full citizenship. However, manual Easy-to-Read (ETR) text adaptations are slow, costly, and difficult to scale, limiting access to crucial information in healthcare, education, and civic life. AI-driven ETR generation offers a scalable solution but faces key challenges, including dataset scarcity, domain adaptation, and balancing lightweight learning of Large Language Models (LLMs). In this paper, we introduce ETR-fr, the first dataset for ETR text generation fully compliant with European ETR guidelines. We implement parameter-efficient fine-tuning on PLMs and LLMs to establish generative baselines. To ensure high-quality and accessible outputs, we introduce an evaluation framework based on automatic metrics supplemented by human assessments. The latter is conducted using a 36-question evaluation form that is aligned with the guidelines. Overall results show that PLMs perform comparably to LLMs and adapt effectively to out-of-domain texts.
LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors
We aim to address sparse-view reconstruction of a 3D scene by leveraging priors from large-scale vision models. While recent advancements such as 3D Gaussian Splatting (3DGS) have demonstrated remarkable successes in 3D reconstruction, these methods typically necessitate hundreds of input images that densely capture the underlying scene, making them time-consuming and impractical for real-world applications. However, sparse-view reconstruction is inherently ill-posed and under-constrained, often resulting in inferior and incomplete outcomes. This is due to issues such as failed initialization, overfitting on input images, and a lack of details. To mitigate these challenges, we introduce LM-Gaussian, a method capable of generating high-quality reconstructions from a limited number of images. Specifically, we propose a robust initialization module that leverages stereo priors to aid in the recovery of camera poses and the reliable point clouds. Additionally, a diffusion-based refinement is iteratively applied to incorporate image diffusion priors into the Gaussian optimization process to preserve intricate scene details. Finally, we utilize video diffusion priors to further enhance the rendered images for realistic visual effects. Overall, our approach significantly reduces the data acquisition requirements compared to previous 3DGS methods. We validate the effectiveness of our framework through experiments on various public datasets, demonstrating its potential for high-quality 360-degree scene reconstruction. Visual results are on our website.
RLHF Can Speak Many Languages: Unlocking Multilingual Preference Optimization for LLMs
Preference optimization techniques have become a standard final stage for training state-of-art large language models (LLMs). However, despite widespread adoption, the vast majority of work to-date has focused on first-class citizen languages like English and Chinese. This captures a small fraction of the languages in the world, but also makes it unclear which aspects of current state-of-the-art research transfer to a multilingual setting. In this work, we perform an exhaustive study to achieve a new state-of-the-art in aligning multilingual LLMs. We introduce a novel, scalable method for generating high-quality multilingual feedback data to balance data coverage. We establish the benefits of cross-lingual transfer and increased dataset size in preference training. Our preference-trained model achieves a 54.4% win-rate against Aya 23 8B, the current state-of-the-art multilingual LLM in its parameter class, and a 69.5% win-rate or higher against widely used models like Gemma-1.1-7B-it, Llama-3-8B-Instruct, Mistral-7B-Instruct-v0.3. As a result of our study, we expand the frontier of alignment techniques to 23 languages covering half of the world's population.
UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet code generation remains a major challenge. Current approaches for obtaining high-quality code data primarily focus on (i) collecting large-scale pre-training data and (ii) synthesizing instruction data through prompt engineering with powerful models. While pre-training data faces quality consistency issues, instruction-based synthesis suffers from limited instruction diversity and inherent biases of LLMs. To address this gap, we introduce UnitCoder, a systematic pipeline leveraging model-generated unit tests to both guide and validate the code generation process. Combined with large-scale package-based retrieval from pre-training corpus, we generate a dataset of 500K+ verifiable programs containing diverse API calls. Evaluations on multiple Python benchmarks (BigCodeBench, HumanEval, MBPP) demonstrate that models fine-tuned on our synthetic data exhibit consistent performance improvements. Notably, Llama3.1-8B and InternLM2.5-7B improve from 31\% and 28\% to 40\% and 39\% success rates on BigCodeBench, respectively. Our work presents a scalable approach that leverages model-generated unit tests to guide the synthesis of high-quality code data from pre-training corpora, demonstrating the potential for producing diverse and high-quality post-training data at scale. All code and data will be released (https://github.com).
CharacterEval: A Chinese Benchmark for Role-Playing Conversational Agent Evaluation
Recently, the advent of large language models (LLMs) has revolutionized generative agents. Among them, Role-Playing Conversational Agents (RPCAs) attract considerable attention due to their ability to emotionally engage users. However, the absence of a comprehensive benchmark impedes progress in this field. To bridge this gap, we introduce CharacterEval, a Chinese benchmark for comprehensive RPCA assessment, complemented by a tailored high-quality dataset. The dataset comprises 1,785 multi-turn role-playing dialogues, encompassing 23,020 examples and featuring 77 characters derived from Chinese novels and scripts. It was carefully constructed, beginning with initial dialogue extraction via GPT-4, followed by rigorous human-led quality control, and enhanced with in-depth character profiles sourced from Baidu Baike. CharacterEval employs a multifaceted evaluation approach, encompassing thirteen targeted metrics on four dimensions. Comprehensive experiments on CharacterEval demonstrate that Chinese LLMs exhibit more promising capabilities than GPT-4 in Chinese role-playing conversation. Source code, data source and reward model will be publicly accessible at https://github.com/morecry/CharacterEval.
Space-Variant Total Variation boosted by learning techniques in few-view tomographic imaging
This paper focuses on the development of a space-variant regularization model for solving an under-determined linear inverse problem. The case study is a medical image reconstruction from few-view tomographic noisy data. The primary objective of the proposed optimization model is to achieve a good balance between denoising and the preservation of fine details and edges, overcoming the performance of the popular and largely used Total Variation (TV) regularization through the application of appropriate pixel-dependent weights. The proposed strategy leverages the role of gradient approximations for the computation of the space-variant TV weights. For this reason, a convolutional neural network is designed, to approximate both the ground truth image and its gradient using an elastic loss function in its training. Additionally, the paper provides a theoretical analysis of the proposed model, showing the uniqueness of its solution, and illustrates a Chambolle-Pock algorithm tailored to address the specific problem at hand. This comprehensive framework integrates innovative regularization techniques with advanced neural network capabilities, demonstrating promising results in achieving high-quality reconstructions from low-sampled tomographic data.
Beyond Coverage Path Planning: Can UAV Swarms Perfect Scattered Regions Inspections?
Unmanned Aerial Vehicles (UAVs) have revolutionized inspection tasks by offering a safer, more efficient, and flexible alternative to traditional methods. However, battery limitations often constrain their effectiveness, necessitating the development of optimized flight paths and data collection techniques. While existing approaches like coverage path planning (CPP) ensure comprehensive data collection, they can be inefficient, especially when inspecting multiple non connected Regions of Interest (ROIs). This paper introduces the Fast Inspection of Scattered Regions (FISR) problem and proposes a novel solution, the multi UAV Disjoint Areas Inspection (mUDAI) method. The introduced approach implements a two fold optimization procedure, for calculating the best image capturing positions and the most efficient UAV trajectories, balancing data resolution and operational time, minimizing redundant data collection and resource consumption. The mUDAI method is designed to enable rapid, efficient inspections of scattered ROIs, making it ideal for applications such as security infrastructure assessments, agricultural inspections, and emergency site evaluations. A combination of simulated evaluations and real world deployments is used to validate and quantify the method's ability to improve operational efficiency while preserving high quality data capture, demonstrating its effectiveness in real world operations. An open source Python implementation of the mUDAI method can be found on GitHub (https://github.com/soc12/mUDAI) and the collected and processed data from the real world experiments are all hosted on Zenodo (https://zenodo.org/records/13866483). Finally, this online platform (https://sites.google.com/view/mudai-platform/) allows interested readers to interact with the mUDAI method and generate their own multi UAV FISR missions.
Experience of Training a 1.7B-Parameter LLaMa Model From Scratch
Pretraining large language models is a complex endeavor influenced by multiple factors, including model architecture, data quality, training continuity, and hardware constraints. In this paper, we share insights gained from the experience of training DMaS-LLaMa-Lite, a fully open source, 1.7-billion-parameter, LLaMa-based model, on approximately 20 billion tokens of carefully curated data. We chronicle the full training trajectory, documenting how evolving validation loss levels and downstream benchmarks reflect transitions from incoherent text to fluent, contextually grounded output. Beyond standard quantitative metrics, we highlight practical considerations such as the importance of restoring optimizer states when resuming from checkpoints, and the impact of hardware changes on training stability and throughput. While qualitative evaluation provides an intuitive understanding of model improvements, our analysis extends to various performance benchmarks, demonstrating how high-quality data and thoughtful scaling enable competitive results with significantly fewer training tokens. By detailing these experiences and offering training logs, checkpoints, and sample outputs, we aim to guide future researchers and practitioners in refining their pretraining strategies. The training script is available on Github at https://github.com/McGill-DMaS/DMaS-LLaMa-Lite-Training-Code. The model checkpoints are available on Huggingface at https://huggingface.co/collections/McGill-DMaS/dmas-llama-lite-6761d97ba903f82341954ceb.
Unleashing Hour-Scale Video Training for Long Video-Language Understanding
Recent long-form video-language understanding benchmarks have driven progress in video large multimodal models (Video-LMMs). However, the scarcity of well-annotated long videos has left the training of hour-long Video-LLMs underexplored. To close this gap, we present VideoMarathon, a large-scale hour-long video instruction-following dataset. This dataset includes around 9,700 hours of long videos sourced from diverse domains, ranging from 3 to 60 minutes per video. Specifically, it contains 3.3M high-quality QA pairs, spanning six fundamental topics: temporality, spatiality, object, action, scene, and event. Compared to existing video instruction datasets, VideoMarathon significantly extends training video durations up to 1 hour, and supports 22 diverse tasks requiring both short- and long-term video comprehension. Building on VideoMarathon, we propose Hour-LLaVA, a powerful and efficient Video-LMM for hour-scale video-language modeling. It enables hour-long video training and inference at 1-FPS sampling by leveraging a memory augmentation module, which adaptively integrates user question-relevant and spatiotemporal-informative semantics from a cached full video context. In our experiments, Hour-LLaVA achieves the best performance on multiple long video-language benchmarks, demonstrating the high quality of the VideoMarathon dataset and the superiority of the Hour-LLaVA model.
Efficient and Scalable Point Cloud Generation with Sparse Point-Voxel Diffusion Models
We propose a novel point cloud U-Net diffusion architecture for 3D generative modeling capable of generating high-quality and diverse 3D shapes while maintaining fast generation times. Our network employs a dual-branch architecture, combining the high-resolution representations of points with the computational efficiency of sparse voxels. Our fastest variant outperforms all non-diffusion generative approaches on unconditional shape generation, the most popular benchmark for evaluating point cloud generative models, while our largest model achieves state-of-the-art results among diffusion methods, with a runtime approximately 70% of the previously state-of-the-art PVD. Beyond unconditional generation, we perform extensive evaluations, including conditional generation on all categories of ShapeNet, demonstrating the scalability of our model to larger datasets, and implicit generation which allows our network to produce high quality point clouds on fewer timesteps, further decreasing the generation time. Finally, we evaluate the architecture's performance in point cloud completion and super-resolution. Our model excels in all tasks, establishing it as a state-of-the-art diffusion U-Net for point cloud generative modeling. The code is publicly available at https://github.com/JohnRomanelis/SPVD.git.
VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training
Pre-training video transformers on extra large-scale datasets is generally required to achieve premier performance on relatively small datasets. In this paper, we show that video masked autoencoders (VideoMAE) are data-efficient learners for self-supervised video pre-training (SSVP). We are inspired by the recent ImageMAE and propose customized video tube masking with an extremely high ratio. This simple design makes video reconstruction a more challenging self-supervision task, thus encouraging extracting more effective video representations during this pre-training process. We obtain three important findings on SSVP: (1) An extremely high proportion of masking ratio (i.e., 90% to 95%) still yields favorable performance of VideoMAE. The temporally redundant video content enables a higher masking ratio than that of images. (2) VideoMAE achieves impressive results on very small datasets (i.e., around 3k-4k videos) without using any extra data. (3) VideoMAE shows that data quality is more important than data quantity for SSVP. Domain shift between pre-training and target datasets is an important issue. Notably, our VideoMAE with the vanilla ViT can achieve 87.4% on Kinetics-400, 75.4% on Something-Something V2, 91.3% on UCF101, and 62.6% on HMDB51, without using any extra data. Code is available at https://github.com/MCG-NJU/VideoMAE.
A large-scale image-text dataset benchmark for farmland segmentation
The traditional deep learning paradigm that solely relies on labeled data has limitations in representing the spatial relationships between farmland elements and the surrounding environment.It struggles to effectively model the dynamic temporal evolution and spatial heterogeneity of farmland. Language,as a structured knowledge carrier,can explicitly express the spatiotemporal characteristics of farmland, such as its shape, distribution,and surrounding environmental information.Therefore,a language-driven learning paradigm can effectively alleviate the challenges posed by the spatiotemporal heterogeneity of farmland.However,in the field of remote sensing imagery of farmland,there is currently no comprehensive benchmark dataset to support this research direction.To fill this gap,we introduced language based descriptions of farmland and developed FarmSeg-VL dataset,the first fine-grained image-text dataset designed for spatiotemporal farmland segmentation.Firstly, this article proposed a semi-automatic annotation method that can accurately assign caption to each image, ensuring high data quality and semantic richness while improving the efficiency of dataset construction.Secondly,the FarmSeg-VL exhibits significant spatiotemporal characteristics.In terms of the temporal dimension,it covers all four seasons.In terms of the spatial dimension,it covers eight typical agricultural regions across China.In addition, in terms of captions,FarmSeg-VL covers rich spatiotemporal characteristics of farmland,including its inherent properties,phenological characteristics, spatial distribution,topographic and geomorphic features,and the distribution of surrounding environments.Finally,we present a performance analysis of VLMs and the deep learning models that rely solely on labels trained on the FarmSeg-VL,demonstrating its potential as a standard benchmark for farmland segmentation.
EditCast3D: Single-Frame-Guided 3D Editing with Video Propagation and View Selection
Recent advances in foundation models have driven remarkable progress in image editing, yet their extension to 3D editing remains underexplored. A natural approach is to replace the image editing modules in existing workflows with foundation models. However, their heavy computational demands and the restrictions and costs of closed-source APIs make plugging these models into existing iterative editing strategies impractical. To address this limitation, we propose EditCast3D, a pipeline that employs video generation foundation models to propagate edits from a single first frame across the entire dataset prior to reconstruction. While editing propagation enables dataset-level editing via video models, its consistency remains suboptimal for 3D reconstruction, where multi-view alignment is essential. To overcome this, EditCast3D introduces a view selection strategy that explicitly identifies consistent and reconstruction-friendly views and adopts feedforward reconstruction without requiring costly refinement. In combination, the pipeline both minimizes reliance on expensive image editing and mitigates prompt ambiguities that arise when applying foundation models independently across images. We evaluate EditCast3D on commonly used 3D editing datasets and compare it against state-of-the-art 3D editing baselines, demonstrating superior editing quality and high efficiency. These results establish EditCast3D as a scalable and general paradigm for integrating foundation models into 3D editing pipelines. The code is available at https://github.com/UNITES-Lab/EditCast3D
Beyond Sample-Level Feedback: Using Reference-Level Feedback to Guide Data Synthesis
LLMs demonstrate remarkable capabilities in following natural language instructions, largely due to instruction-tuning on high-quality datasets. While synthetic data generation has emerged as a scalable approach for creating such datasets, maintaining consistent quality standards remains challenging. Recent approaches incorporate feedback to improve data quality, but typically operate at the sample level, generating and applying feedback for each response individually. In this work, we propose Reference-Level Feedback, a novel methodology that instead collects feedback based on high-quality reference samples from carefully curated seed data. We use this feedback to capture rich signals of desirable characteristics and propagate it throughout the data synthesis process. We present REFED, a dataset of 10K instruction-response pairs synthesized using such feedback. We demonstrate the effectiveness of our approach by showing that Llama-3.1-8B-Instruct finetuned on REFED achieves state-of-the-art performance among similar-sized SFT-based models on AlpacaEval 2.0 and strong results on Arena-Hard. Through extensive experiments, we show that our approach consistently outperforms traditional sample-level feedback methods with significantly fewer feedback collections and improves performance across different model architectures.
SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature
We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks covering five essential scientific literature understanding capabilities: information extraction, summarization, question answering, claim verification, and classification. SciRIFF demonstrations are notable for their long input contexts, detailed task specifications, and complex structured outputs. While instruction-following resources are available in specific domains such as clinical medicine and chemistry, SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields. To demonstrate the utility of SciRIFF, we develop a sample-efficient strategy to adapt a general instruction-following model for science by performing additional finetuning on a mix of general-domain and SciRIFF demonstrations. In evaluations on nine held-out scientific tasks, our model -- called SciTulu -- improves over a strong LLM baseline by 28.1% and 6.5% at the 7B and 70B scales respectively, while maintaining general instruction-following performance within 2% of the baseline. We are optimistic that SciRIFF will facilitate the development and evaluation of LLMs to help researchers navigate the ever-growing body of scientific literature. We release our dataset, model checkpoints, and data processing and evaluation code to enable further research.
ForgeHLS: A Large-Scale, Open-Source Dataset for High-Level Synthesis
High-Level Synthesis (HLS) plays a crucial role in modern hardware design by transforming high-level code into optimized hardware implementations. However, progress in applying machine learning (ML) to HLS optimization has been hindered by a shortage of sufficiently large and diverse datasets. To bridge this gap, we introduce ForgeHLS, a large-scale, open-source dataset explicitly designed for ML-driven HLS research. ForgeHLS comprises over 400k diverse designs generated from 846 kernels covering a broad range of application domains, consuming over 200k CPU hours during dataset construction. Each kernel includes systematically automated pragma insertions (loop unrolling, pipelining, array partitioning), combined with extensive design space exploration using Bayesian optimization. Compared to existing datasets, ForgeHLS significantly enhances scale, diversity, and design coverage. We further define and evaluate representative downstream tasks in Quality of Result (QoR) prediction and automated pragma exploration, clearly demonstrating ForgeHLS utility for developing and improving ML-based HLS optimization methodologies. The dataset and code are public at https://github.com/zedong-peng/ForgeHLS.
TeGit: Generating High-Quality Instruction-Tuning Data with Text-Grounded Task Design
High-quality instruction-tuning data is critical to improving LLM capabilities. Existing data collection methods are limited by unrealistic manual labeling costs or by the hallucination of relying solely on LLM generation. To address the problems, this paper presents a scalable method to automatically collect high-quality instructional adaptation data by training language models to automatically design tasks based on human-written texts. Intuitively, human-written text helps to help the model attenuate illusions during the generation of tasks. Unlike instruction back-translation-based methods that directly take the given text as a response, we require the model to generate the instruction, input, and output simultaneously to filter the noise. The results of the automated and manual evaluation experiments demonstrate the quality of our dataset.
Self-Demos: Eliciting Out-of-Demonstration Generalizability in Large Language Models
Large language models (LLMs) have shown promising abilities of in-context learning (ICL), adapting swiftly to new tasks with only few-shot demonstrations. However, current few-shot methods heavily depend on high-quality, query-specific demos, which are often lacking. When faced with out-of-demonstration (OOD) queries, methods that rely on hand-crafted demos or external retrievers might fail. To bridge the gap between limited demos and OOD queries, we propose Self-Demos, a novel prompting method that elicits the inherent generalizability in LLMs by query-aware demo generation. The generated demos strategically interpolate between existing demos and the given query, transforming the query from OOD to ID. To evaluate the effectiveness of our approach, we manually constructed OOD-Toolset, a dataset in the tool-using scenario with over 300 real-world APIs and 1000 instances, each consisting of three tool-use cases as demos and an OOD query. Thorough experiments on our dataset and two public math benchmarks have shown that our method can outperform state-of-the-art baselines in the OOD setting. Moreover, we conduct a range of analyses to validate Self-Demos's generalization and provide more insights.
Some Like It Small: Czech Semantic Embedding Models for Industry Applications
This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance.
GIRAFFE: Design Choices for Extending the Context Length of Visual Language Models
Visual Language Models (VLMs) demonstrate impressive capabilities in processing multimodal inputs, yet applications such as visual agents, which require handling multiple images and high-resolution videos, demand enhanced long-range modeling. Moreover, existing open-source VLMs lack systematic exploration into extending their context length, and commercial models often provide limited details. To tackle this, we aim to establish an effective solution that enhances long context performance of VLMs while preserving their capacities in short context scenarios. Towards this goal, we make the best design choice through extensive experiment settings from data curation to context window extending and utilizing: (1) we analyze data sources and length distributions to construct ETVLM - a data recipe to balance the performance across scenarios; (2) we examine existing position extending methods, identify their limitations and propose M-RoPE++ as an enhanced approach; we also choose to solely instruction-tune the backbone with mixed-source data; (3) we discuss how to better utilize extended context windows and propose hybrid-resolution training. Built on the Qwen-VL series model, we propose Giraffe, which is effectively extended to 128K lengths. Evaluated on extensive long context VLM benchmarks such as VideoMME and Viusal Haystacks, our Giraffe achieves state-of-the-art performance among similarly sized open-source long VLMs and is competitive with commercial model GPT-4V. We will open-source the code, data, and models.
Manipulate-Anything: Automating Real-World Robots using Vision-Language Models
Large-scale endeavors like and widespread community efforts such as Open-X-Embodiment have contributed to growing the scale of robot demonstration data. However, there is still an opportunity to improve the quality, quantity, and diversity of robot demonstration data. Although vision-language models have been shown to automatically generate demonstration data, their utility has been limited to environments with privileged state information, they require hand-designed skills, and are limited to interactions with few object instances. We propose Manipulate-Anything, a scalable automated generation method for real-world robotic manipulation. Unlike prior work, our method can operate in real-world environments without any privileged state information, hand-designed skills, and can manipulate any static object. We evaluate our method using two setups. First, Manipulate-Anything successfully generates trajectories for all 7 real-world and 14 simulation tasks, significantly outperforming existing methods like VoxPoser. Second, Manipulate-Anything's demonstrations can train more robust behavior cloning policies than training with human demonstrations, or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe Manipulate-Anything can be a scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Project page: https://robot-ma.github.io/.
Tool Documentation Enables Zero-Shot Tool-Usage with Large Language Models
Today, large language models (LLMs) are taught to use new tools by providing a few demonstrations of the tool's usage. Unfortunately, demonstrations are hard to acquire, and can result in undesirable biased usage if the wrong demonstration is chosen. Even in the rare scenario that demonstrations are readily available, there is no principled selection protocol to determine how many and which ones to provide. As tasks grow more complex, the selection search grows combinatorially and invariably becomes intractable. Our work provides an alternative to demonstrations: tool documentation. We advocate the use of tool documentation, descriptions for the individual tool usage, over demonstrations. We substantiate our claim through three main empirical findings on 6 tasks across both vision and language modalities. First, on existing benchmarks, zero-shot prompts with only tool documentation are sufficient for eliciting proper tool usage, achieving performance on par with few-shot prompts. Second, on a newly collected realistic tool-use dataset with hundreds of available tool APIs, we show that tool documentation is significantly more valuable than demonstrations, with zero-shot documentation significantly outperforming few-shot without documentation. Third, we highlight the benefits of tool documentations by tackling image generation and video tracking using just-released unseen state-of-the-art models as tools. Finally, we highlight the possibility of using tool documentation to automatically enable new applications: by using nothing more than the documentation of GroundingDino, Stable Diffusion, XMem, and SAM, LLMs can re-invent the functionalities of the just-released Grounded-SAM and Track Anything models.
Unified Demonstration Retriever for In-Context Learning
In-context learning is a new learning paradigm where a language model conditions on a few input-output pairs (demonstrations) and a test input, and directly outputs the prediction. It has been shown highly dependent on the provided demonstrations and thus promotes the research of demonstration retrieval: given a test input, relevant examples are retrieved from the training set to serve as informative demonstrations for in-context learning. While previous works focus on training task-specific retrievers for several tasks separately, these methods are often hard to transfer and scale on various tasks, and separately trained retrievers incur a lot of parameter storage and deployment cost. In this paper, we propose Unified Demonstration Retriever (UDR), a single model to retrieve demonstrations for a wide range of tasks. To train UDR, we cast various tasks' training signals into a unified list-wise ranking formulation by language model's feedback. Then we propose a multi-task list-wise ranking training framework, with an iterative mining strategy to find high-quality candidates, which can help UDR fully incorporate various tasks' signals. Experiments on 30+ tasks across 13 task families and multiple data domains show that UDR significantly outperforms baselines. Further analyses show the effectiveness of each proposed component and UDR's strong ability in various scenarios including different LMs (1.3B - 175B), unseen datasets, varying demonstration quantities, etc.
Leveraging Demonstrations to Improve Online Learning: Quality Matters
We investigate the extent to which offline demonstration data can improve online learning. It is natural to expect some improvement, but the question is how, and by how much? We show that the degree of improvement must depend on the quality of the demonstration data. To generate portable insights, we focus on Thompson sampling (TS) applied to a multi-armed bandit as a prototypical online learning algorithm and model. The demonstration data is generated by an expert with a given competence level, a notion we introduce. We propose an informed TS algorithm that utilizes the demonstration data in a coherent way through Bayes' rule and derive a prior-dependent Bayesian regret bound. This offers insight into how pretraining can greatly improve online performance and how the degree of improvement increases with the expert's competence level. We also develop a practical, approximate informed TS algorithm through Bayesian bootstrapping and show substantial empirical regret reduction through experiments.
POINTS: Improving Your Vision-language Model with Affordable Strategies
In recent years, vision-language models have made significant strides, excelling in tasks like optical character recognition and geometric problem-solving. However, several critical issues remain: 1) Proprietary models often lack transparency about their architectures, while open-source models need more detailed ablations of their training strategies. 2) Pre-training data in open-source works is under-explored, with datasets added empirically, making the process cumbersome. 3) Fine-tuning often focuses on adding datasets, leading to diminishing returns. To address these issues, we propose the following contributions: 1) We trained a robust baseline model using the latest advancements in vision-language models, introducing effective improvements and conducting comprehensive ablation and validation for each technique. 2) Inspired by recent work on large language models, we filtered pre-training data using perplexity, selecting the lowest perplexity data for training. This approach allowed us to train on a curated 1M dataset, achieving competitive performance. 3) During visual instruction tuning, we used model soup on different datasets when adding more datasets yielded marginal improvements. These innovations resulted in a 9B parameter model that performs competitively with state-of-the-art models. Our strategies are efficient and lightweight, making them easily adoptable by the community.
HQ-Edit: A High-Quality Dataset for Instruction-based Image Editing
This study introduces HQ-Edit, a high-quality instruction-based image editing dataset with around 200,000 edits. Unlike prior approaches relying on attribute guidance or human feedback on building datasets, we devise a scalable data collection pipeline leveraging advanced foundation models, namely GPT-4V and DALL-E 3. To ensure its high quality, diverse examples are first collected online, expanded, and then used to create high-quality diptychs featuring input and output images with detailed text prompts, followed by precise alignment ensured through post-processing. In addition, we propose two evaluation metrics, Alignment and Coherence, to quantitatively assess the quality of image edit pairs using GPT-4V. HQ-Edits high-resolution images, rich in detail and accompanied by comprehensive editing prompts, substantially enhance the capabilities of existing image editing models. For example, an HQ-Edit finetuned InstructPix2Pix can attain state-of-the-art image editing performance, even surpassing those models fine-tuned with human-annotated data. The project page is https://thefllood.github.io/HQEdit_web.
When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data
Many methods now exist for conditioning model outputs on task instructions, retrieved documents, and user-provided explanations and feedback. Rather than relying solely on examples of task inputs and outputs, these approaches use valuable additional data for improving model correctness and aligning learned models with human priors. Meanwhile, a growing body of evidence suggests that some language models can (1) store a large amount of knowledge in their parameters, and (2) perform inference over tasks in textual inputs at test time. These results raise the possibility that, for some tasks, humans cannot explain to a model any more about the task than it already knows or could infer on its own. In this paper, we study the circumstances under which explanations of individual data points can (or cannot) improve modeling performance. In order to carefully control important properties of the data and explanations, we introduce a synthetic dataset for experiments, and we also make use of three existing datasets with explanations: e-SNLI, TACRED, and SemEval. We first give a formal framework for the available modeling approaches, in which explanation data can be used as model inputs, as targets, or as a prior. After arguing that the most promising role for explanation data is as model inputs, we propose to use a retrieval-based method and show that it solves our synthetic task with accuracies upwards of 95%, while baselines without explanation data achieve below 65% accuracy. We then identify properties of datasets for which retrieval-based modeling fails. With the three existing datasets, we find no improvements from explanation retrieval. Drawing on findings from our synthetic task, we suggest that at least one of six preconditions for successful modeling fails to hold with these datasets. Our code is publicly available at https://github.com/peterbhase/ExplanationRoles
Raccoon: Multi-stage Diffusion Training with Coarse-to-Fine Curating Videos
Text-to-video generation has demonstrated promising progress with the advent of diffusion models, yet existing approaches are limited by dataset quality and computational resources. To address these limitations, this paper presents a comprehensive approach that advances both data curation and model design. We introduce CFC-VIDS-1M, a high-quality video dataset constructed through a systematic coarse-to-fine curation pipeline. The pipeline first evaluates video quality across multiple dimensions, followed by a fine-grained stage that leverages vision-language models to enhance text-video alignment and semantic richness. Building upon the curated dataset's emphasis on visual quality and temporal coherence, we develop RACCOON, a transformer-based architecture with decoupled spatial-temporal attention mechanisms. The model is trained through a progressive four-stage strategy designed to efficiently handle the complexities of video generation. Extensive experiments demonstrate that our integrated approach of high-quality data curation and efficient training strategy generates visually appealing and temporally coherent videos while maintaining computational efficiency. We will release our dataset, code, and models.
Follow-Your-Instruction: A Comprehensive MLLM Agent for World Data Synthesis
With the growing demands of AI-generated content (AIGC), the need for high-quality, diverse, and scalable data has become increasingly crucial. However, collecting large-scale real-world data remains costly and time-consuming, hindering the development of downstream applications. While some works attempt to collect task-specific data via a rendering process, most approaches still rely on manual scene construction, limiting their scalability and accuracy. To address these challenges, we propose Follow-Your-Instruction, a Multimodal Large Language Model (MLLM)-driven framework for automatically synthesizing high-quality 2D, 3D, and 4D data. Our Follow-Your-Instruction first collects assets and their associated descriptions through multimodal inputs using the MLLM-Collector. Then it constructs 3D layouts, and leverages Vision-Language Models (VLMs) for semantic refinement through multi-view scenes with the MLLM-Generator and MLLM-Optimizer, respectively. Finally, it uses MLLM-Planner to generate temporally coherent future frames. We evaluate the quality of the generated data through comprehensive experiments on the 2D, 3D, and 4D generative tasks. The results show that our synthetic data significantly boosts the performance of existing baseline models, demonstrating Follow-Your-Instruction's potential as a scalable and effective data engine for generative intelligence.
MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval
Despite the rapidly growing demand for multimodal retrieval, progress in this field remains severely constrained by a lack of training data. In this paper, we introduce MegaPairs, a novel data synthesis method that leverages vision language models (VLMs) and open-domain images, together with a massive synthetic dataset generated from this method. Our empirical analysis shows that MegaPairs generates high-quality data, enabling the multimodal retriever to significantly outperform the baseline model trained on 70times more data from existing datasets. Moreover, since MegaPairs solely relies on general image corpora and open-source VLMs, it can be easily scaled up, enabling continuous improvements in retrieval performance. In this stage, we produced more than 26 million training instances and trained several models of varying sizes using this data. These new models achieve state-of-the-art zero-shot performance across 4 popular composed image retrieval (CIR) benchmarks and the highest overall performance on the 36 datasets provided by MMEB. They also demonstrate notable performance improvements with additional downstream fine-tuning. Our produced dataset, well-trained models, and data synthesis pipeline will be made publicly available to facilitate the future development of this field.
"What is the value of {templates}?" Rethinking Document Information Extraction Datasets for LLMs
The rise of large language models (LLMs) for visually rich document understanding (VRDU) has kindled a need for prompt-response, document-based datasets. As annotating new datasets from scratch is labor-intensive, the existing literature has generated prompt-response datasets from available resources using simple templates. For the case of key information extraction (KIE), one of the most common VRDU tasks, past work has typically employed the template "What is the value for the {key}?". However, given the variety of questions encountered in the wild, simple and uniform templates are insufficient for creating robust models in research and industrial contexts. In this work, we present K2Q, a diverse collection of five datasets converted from KIE to a prompt-response format using a plethora of bespoke templates. The questions in K2Q can span multiple entities and be extractive or boolean. We empirically compare the performance of seven baseline generative models on K2Q with zero-shot prompting. We further compare three of these models when training on K2Q versus training on simpler templates to motivate the need of our work. We find that creating diverse and intricate KIE questions enhances the performance and robustness of VRDU models. We hope this work encourages future studies on data quality for generative model training.
Are LLMs ready to help non-expert users to make charts of official statistics data?
In this time when biased information, deep fakes, and propaganda proliferate, the accessibility of reliable data sources is more important than ever. National statistical institutes provide curated data that contain quantitative information on a wide range of topics. However, that information is typically spread across many tables and the plain numbers may be arduous to process. Hence, this open data may be practically inaccessible. We ask the question "Are current Generative AI models capable of facilitating the identification of the right data and the fully-automatic creation of charts to provide information in visual form, corresponding to user queries?". We present a structured evaluation of recent large language models' (LLMs) capabilities to generate charts from complex data in response to user queries. Working with diverse public data from Statistics Netherlands, we assessed multiple LLMs on their ability to identify relevant data tables, perform necessary manipulations, and generate appropriate visualizations autonomously. We propose a new evaluation framework spanning three dimensions: data retrieval & pre-processing, code quality, and visual representation. Results indicate that locating and processing the correct data represents the most significant challenge. Additionally, LLMs rarely implement visualization best practices without explicit guidance. When supplemented with information about effective chart design, models showed marked improvement in representation scores. Furthermore, an agentic approach with iterative self-evaluation led to excellent performance across all evaluation dimensions. These findings suggest that LLMs' effectiveness for automated chart generation can be enhanced through appropriate scaffolding and feedback mechanisms, and that systems can already reach the necessary accuracy across the three evaluation dimensions.
Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and the Case of Information Extraction
Large language models (LLMs) show great potential for synthetic data generation. This work shows that useful data can be synthetically generated even for tasks that cannot be solved directly by the LLM: we show that, for problems with structured outputs, it is possible to prompt an LLM to perform the task in the opposite direction, to generate plausible text for the target structure. Leveraging the asymmetry in task difficulty makes it possible to produce large-scale, high-quality data for complex tasks. We demonstrate the effectiveness of this approach on closed information extraction, where collecting ground-truth data is challenging, and no satisfactory dataset exists to date. We synthetically generate a dataset of 1.8M data points, demonstrate its superior quality compared to existing datasets in a human evaluation and use it to finetune small models (220M and 770M parameters). The models we introduce, SynthIE, outperform existing baselines of comparable size with a substantial gap of 57 and 79 absolute points in micro and macro F1, respectively. Code, data, and models are available at https://github.com/epfl-dlab/SynthIE.
ROVI: A VLM-LLM Re-Captioned Dataset for Open-Vocabulary Instance-Grounded Text-to-Image Generation
We present ROVI, a high-quality synthetic dataset for instance-grounded text-to-image generation, created by labeling 1M curated web images. Our key innovation is a strategy called re-captioning, focusing on the pre-detection stage, where a VLM (Vision-Language Model) generates comprehensive visual descriptions that are then processed by an LLM (Large Language Model) to extract a flat list of potential categories for OVDs (Open-Vocabulary Detectors) to detect. This approach yields a global prompt inherently linked to instance annotations while capturing secondary visual elements humans typically overlook. Evaluations show that ROVI exceeds existing detection datasets in image quality and resolution while containing two orders of magnitude more categories with an open-vocabulary nature. For demonstrative purposes, a text-to-image model GLIGEN trained on ROVI significantly outperforms state-of-the-art alternatives in instance grounding accuracy, prompt fidelity, and aesthetic quality. Our dataset and reproducible pipeline are available at https://github.com/CihangPeng/ROVI.
Are AI Detectors Good Enough? A Survey on Quality of Datasets With Machine-Generated Texts
The rapid development of autoregressive Large Language Models (LLMs) has significantly improved the quality of generated texts, necessitating reliable machine-generated text detectors. A huge number of detectors and collections with AI fragments have emerged, and several detection methods even showed recognition quality up to 99.9% according to the target metrics in such collections. However, the quality of such detectors tends to drop dramatically in the wild, posing a question: Are detectors actually highly trustworthy or do their high benchmark scores come from the poor quality of evaluation datasets? In this paper, we emphasise the need for robust and qualitative methods for evaluating generated data to be secure against bias and low generalising ability of future model. We present a systematic review of datasets from competitions dedicated to AI-generated content detection and propose methods for evaluating the quality of datasets containing AI-generated fragments. In addition, we discuss the possibility of using high-quality generated data to achieve two goals: improving the training of detection models and improving the training datasets themselves. Our contribution aims to facilitate a better understanding of the dynamics between human and machine text, which will ultimately support the integrity of information in an increasingly automated world.
PaRaDe: Passage Ranking using Demonstrations with Large Language Models
Recent studies show that large language models (LLMs) can be instructed to effectively perform zero-shot passage re-ranking, in which the results of a first stage retrieval method, such as BM25, are rated and reordered to improve relevance. In this work, we improve LLM-based re-ranking by algorithmically selecting few-shot demonstrations to include in the prompt. Our analysis investigates the conditions where demonstrations are most helpful, and shows that adding even one demonstration is significantly beneficial. We propose a novel demonstration selection strategy based on difficulty rather than the commonly used semantic similarity. Furthermore, we find that demonstrations helpful for ranking are also effective at question generation. We hope our work will spur more principled research into question generation and passage ranking.
How Does Data Corruption Affect Natural Language Understanding Models? A Study on GLUE datasets
A central question in natural language understanding (NLU) research is whether high performance demonstrates the models' strong reasoning capabilities. We present an extensive series of controlled experiments where pre-trained language models are exposed to data that have undergone specific corruption transformations. These involve removing instances of specific word classes and often lead to non-sensical sentences. Our results show that performance remains high on most GLUE tasks when the models are fine-tuned or tested on corrupted data, suggesting that they leverage other cues for prediction even in non-sensical contexts. Our proposed data transformations can be used to assess the extent to which a specific dataset constitutes a proper testbed for evaluating models' language understanding capabilities.
A Survey on Data Synthesis and Augmentation for Large Language Models
The success of Large Language Models (LLMs) is inherently linked to the availability of vast, diverse, and high-quality data for training and evaluation. However, the growth rate of high-quality data is significantly outpaced by the expansion of training datasets, leading to a looming data exhaustion crisis. This underscores the urgent need to enhance data efficiency and explore new data sources. In this context, synthetic data has emerged as a promising solution. Currently, data generation primarily consists of two major approaches: data augmentation and synthesis. This paper comprehensively reviews and summarizes data generation techniques throughout the lifecycle of LLMs, including data preparation, pre-training, fine-tuning, instruction-tuning, preference alignment, and applications. Furthermore, We discuss the current constraints faced by these methods and investigate potential pathways for future development and research. Our aspiration is to equip researchers with a clear understanding of these methodologies, enabling them to swiftly identify appropriate data generation strategies in the construction of LLMs, while providing valuable insights for future exploration.
Scaling (Down) CLIP: A Comprehensive Analysis of Data, Architecture, and Training Strategies
This paper investigates the performance of the Contrastive Language-Image Pre-training (CLIP) when scaled down to limited computation budgets. We explore CLIP along three dimensions: data, architecture, and training strategies. With regards to data, we demonstrate the significance of high-quality training data and show that a smaller dataset of high-quality data can outperform a larger dataset with lower quality. We also examine how model performance varies with different dataset sizes, suggesting that smaller ViT models are better suited for smaller datasets, while larger models perform better on larger datasets with fixed compute. Additionally, we provide guidance on when to choose a CNN-based architecture or a ViT-based architecture for CLIP training. We compare four CLIP training strategies - SLIP, FLIP, CLIP, and CLIP+Data Augmentation - and show that the choice of training strategy depends on the available compute resource. Our analysis reveals that CLIP+Data Augmentation can achieve comparable performance to CLIP using only half of the training data. This work provides practical insights into how to effectively train and deploy CLIP models, making them more accessible and affordable for practical use in various applications.
AIR-Bench: Automated Heterogeneous Information Retrieval Benchmark
Evaluation plays a crucial role in the advancement of information retrieval (IR) models. However, current benchmarks, which are based on predefined domains and human-labeled data, face limitations in addressing evaluation needs for emerging domains both cost-effectively and efficiently. To address this challenge, we propose the Automated Heterogeneous Information Retrieval Benchmark (AIR-Bench). AIR-Bench is distinguished by three key features: 1) Automated. The testing data in AIR-Bench is automatically generated by large language models (LLMs) without human intervention. 2) Heterogeneous. The testing data in AIR-Bench is generated with respect to diverse tasks, domains and languages. 3) Dynamic. The domains and languages covered by AIR-Bench are constantly augmented to provide an increasingly comprehensive evaluation benchmark for community developers. We develop a reliable and robust data generation pipeline to automatically create diverse and high-quality evaluation datasets based on real-world corpora. Our findings demonstrate that the generated testing data in AIR-Bench aligns well with human-labeled testing data, making AIR-Bench a dependable benchmark for evaluating IR models. The resources in AIR-Bench are publicly available at https://github.com/AIR-Bench/AIR-Bench.
GenQA: Generating Millions of Instructions from a Handful of Prompts
Most public instruction finetuning datasets are relatively small compared to the closed source datasets used to train industry models. To study questions about finetuning at scale, such as curricula and learning rate cooldown schedules, there is a need for industrial-scale datasets. However, this scale necessitates a data generation process that is almost entirely automated. In this work, we study methods for generating large instruction datasets from a single prompt. With little human oversight, we get LLMs to write diverse sets of instruction examples ranging from simple completion tasks to complex multi-turn dialogs across a variety of subject areas. When finetuning a Llama-3 8B base model, our dataset meets or exceeds both WizardLM and Ultrachat on both knowledge-intensive leaderboard tasks as well as conversational evaluations. We release our dataset, the "generator" prompts that created it, and our finetuned model checkpoints.
Language Models are Realistic Tabular Data Generators
Tabular data is among the oldest and most ubiquitous forms of data. However, the generation of synthetic samples with the original data's characteristics remains a significant challenge for tabular data. While many generative models from the computer vision domain, such as variational autoencoders or generative adversarial networks, have been adapted for tabular data generation, less research has been directed towards recent transformer-based large language models (LLMs), which are also generative in nature. To this end, we propose GReaT (Generation of Realistic Tabular data), which exploits an auto-regressive generative LLM to sample synthetic and yet highly realistic tabular data. Furthermore, GReaT can model tabular data distributions by conditioning on any subset of features; the remaining features are sampled without additional overhead. We demonstrate the effectiveness of the proposed approach in a series of experiments that quantify the validity and quality of the produced data samples from multiple angles. We find that GReaT maintains state-of-the-art performance across numerous real-world and synthetic data sets with heterogeneous feature types coming in various sizes.
Improving Physical Object State Representation in Text-to-Image Generative Systems
Current text-to-image generative models struggle to accurately represent object states (e.g., "a table without a bottle," "an empty tumbler"). In this work, we first design a fully-automatic pipeline to generate high-quality synthetic data that accurately captures objects in varied states. Next, we fine-tune several open-source text-to-image models on this synthetic data. We evaluate the performance of the fine-tuned models by quantifying the alignment of the generated images to their prompts using GPT4o-mini, and achieve an average absolute improvement of 8+% across four models on the public GenAI-Bench dataset. We also curate a collection of 200 prompts with a specific focus on common objects in various physical states. We demonstrate a significant improvement of an average of 24+% over the baseline on this dataset. We release all evaluation prompts and code.
QuerYD: A video dataset with high-quality text and audio narrations
We introduce QuerYD, a new large-scale dataset for retrieval and event localisation in video. A unique feature of our dataset is the availability of two audio tracks for each video: the original audio, and a high-quality spoken description of the visual content. The dataset is based on YouDescribe, a volunteer project that assists visually-impaired people by attaching voiced narrations to existing YouTube videos. This ever-growing collection of videos contains highly detailed, temporally aligned audio and text annotations. The content descriptions are more relevant than dialogue, and more detailed than previous description attempts, which can be observed to contain many superficial or uninformative descriptions. To demonstrate the utility of the QuerYD dataset, we show that it can be used to train and benchmark strong models for retrieval and event localisation. Data, code and models are made publicly available, and we hope that QuerYD inspires further research on video understanding with written and spoken natural language.
Concept-Aware Batch Sampling Improves Language-Image Pretraining
What data should a vision-language model be trained on? To answer this question, many data curation efforts center on the quality of a dataset. However, most of these existing methods are (i) offline, i.e. they produce a static dataset from a set of predetermined filtering criteria, and (ii) concept-agnostic, i.e. they use model-based filters which induce additional data biases. In this work, we go beyond such offline, concept-agnostic methods and advocate for more flexible, task-adaptive online concept-based curation. Our first contribution is DataConcept, a collection of 128M web-crawled image-text pairs annotated with fine-grained details about their concept composition. Building on DataConcept, we introduce Concept-Aware Batch Sampling (CABS), a simple yet effective batch sampling framework that flexibly constructs batches on-the-fly based on specific target distributions. We propose two variants: (i) Diversity Maximization (CABS-DM) to curate batches with a broad coverage of available concepts, and (ii) Frequency Maximization (CABS-FM) to curate batches with high object multiplicity. Through extensive evaluations across 28 benchmarks, we demonstrate that our CABS method significantly benefits CLIP/SigLIP model classes and yields highly performant models. Overall, CABS represents a strong open-source alternative to proprietary online data curation algorithms, enabling practitioners to define custom concept distributions that optimize for specific downstream tasks.
ViMix-14M: A Curated Multi-Source Video-Text Dataset with Long-Form, High-Quality Captions and Crawl-Free Access
Text-to-video generation has surged in interest since Sora, yet open-source models still face a data bottleneck: there is no large, high-quality, easily obtainable video-text corpus. Existing public datasets typically require manual YouTube crawling, which yields low usable volume due to link rot and access limits, and raises licensing uncertainty. This work addresses this challenge by introducing ViMix-14M, a curated multi-source video-text dataset of around 14 million pairs that provides crawl-free, download-ready access and long-form, high-quality captions tightly aligned to video. ViMix-14M is built by merging diverse open video sources, followed by unified de-duplication and quality filtering, and a multi-granularity, ground-truth-guided re-captioning pipeline that refines descriptions to better match actions, scenes, and temporal structure. We evaluate the dataset by multimodal retrieval, text-to-video generation, and video question answering tasks, observing consistent improvements over counterpart datasets. We hope this work can help removing the key barrier to training and fine-tuning open-source video foundation models, and provide insights of building high-quality and generalizable video-text datasets.
Best Practices and Lessons Learned on Synthetic Data for Language Models
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Bee: A High-Quality Corpus and Full-Stack Suite to Unlock Advanced Fully Open MLLMs
Fully open multimodal large language models (MLLMs) currently lag behind proprietary counterparts, primarily due to a significant gap in data quality for supervised fine-tuning (SFT). Existing open-source datasets are often plagued by widespread noise and a critical deficit in complex reasoning data, such as Chain-of-Thought (CoT), which hinders the development of advanced model capabilities. Addressing these challenges, our work makes three primary contributions. First, we introduce Honey-Data-15M, a new SFT dataset comprising approximately 15 million QA pairs, processed through multiple cleaning techniques and enhanced with a novel dual-level (short and long) CoT enrichment strategy. Second, we introduce HoneyPipe, the data curation pipeline, and its underlying framework DataStudio, providing the community with a transparent and adaptable methodology for data curation that moves beyond static dataset releases. Finally, to validate our dataset and pipeline, we train Bee-8B, an 8B model on Honey-Data-15M. Experiments show that Bee-8B establishes a new state-of-the-art (SOTA) for fully open MLLMs, achieving performance that is competitive with, and in some cases surpasses, recent semi-open models such as InternVL3.5-8B. Our work delivers to the community a suite of foundational resources, including: the Honey-Data-15M corpus; the full-stack suite comprising HoneyPipe and DataStudio; training recipes; an evaluation harness; and the model weights. This effort demonstrates that a principled focus on data quality is a key pathway to developing fully open MLLMs that are highly competitive with their semi-open counterparts.
Thinking Like an Annotator: Generation of Dataset Labeling Instructions
Large-scale datasets are essential to modern day deep learning. Advocates argue that understanding these methods requires dataset transparency (e.g. "dataset curation, motivation, composition, collection process, etc..."). However, almost no one has suggested the release of the detailed definitions and visual category examples provided to annotators - information critical to understanding the structure of the annotations present in each dataset. These labels are at the heart of public datasets, yet few datasets include the instructions that were used to generate them. We introduce a new task, Labeling Instruction Generation, to address missing publicly available labeling instructions. In Labeling Instruction Generation, we take a reasonably annotated dataset and: 1) generate a set of examples that are visually representative of each category in the dataset; 2) provide a text label that corresponds to each of the examples. We introduce a framework that requires no model training to solve this task and includes a newly created rapid retrieval system that leverages a large, pre-trained vision and language model. This framework acts as a proxy to human annotators that can help to both generate a final labeling instruction set and evaluate its quality. Our framework generates multiple diverse visual and text representations of dataset categories. The optimized instruction set outperforms our strongest baseline across 5 folds by 7.06 mAP for NuImages and 12.9 mAP for COCO.
TIP-I2V: A Million-Scale Real Text and Image Prompt Dataset for Image-to-Video Generation
Video generation models are revolutionizing content creation, with image-to-video models drawing increasing attention due to their enhanced controllability, visual consistency, and practical applications. However, despite their popularity, these models rely on user-provided text and image prompts, and there is currently no dedicated dataset for studying these prompts. In this paper, we introduce TIP-I2V, the first large-scale dataset of over 1.70 million unique user-provided Text and Image Prompts specifically for Image-to-Video generation. Additionally, we provide the corresponding generated videos from five state-of-the-art image-to-video models. We begin by outlining the time-consuming and costly process of curating this large-scale dataset. Next, we compare TIP-I2V to two popular prompt datasets, VidProM (text-to-video) and DiffusionDB (text-to-image), highlighting differences in both basic and semantic information. This dataset enables advancements in image-to-video research. For instance, to develop better models, researchers can use the prompts in TIP-I2V to analyze user preferences and evaluate the multi-dimensional performance of their trained models; and to enhance model safety, they may focus on addressing the misinformation issue caused by image-to-video models. The new research inspired by TIP-I2V and the differences with existing datasets emphasize the importance of a specialized image-to-video prompt dataset. The project is publicly available at https://tip-i2v.github.io.
Quality Matters: Evaluating Synthetic Data for Tool-Using LLMs
Training large language models (LLMs) for external tool usage is a rapidly expanding field, with recent research focusing on generating synthetic data to address the shortage of available data. However, the absence of systematic data quality checks poses complications for properly training and testing models. To that end, we propose two approaches for assessing the reliability of data for training LLMs to use external tools. The first approach uses intuitive, human-defined correctness criteria. The second approach uses a model-driven assessment with in-context evaluation. We conduct a thorough evaluation of data quality on two popular benchmarks, followed by an extrinsic evaluation that showcases the impact of data quality on model performance. Our results demonstrate that models trained on high-quality data outperform those trained on unvalidated data, even when trained with a smaller quantity of data. These findings empirically support the significance of assessing and ensuring the reliability of training data for tool-using LLMs.
TABLET: A Large-Scale Dataset for Robust Visual Table Understanding
While table understanding increasingly relies on pixel-only settings where tables are processed as visual representations, current benchmarks predominantly use synthetic renderings that lack the complexity and visual diversity of real-world tables. Additionally, existing visual table understanding (VTU) datasets offer fixed examples with single visualizations and pre-defined instructions, providing no access to underlying serialized data for reformulation. We introduce TABLET, a large-scale VTU dataset with 4 million examples across 20 tasks, grounded in 2 million unique tables where 88% preserve original visualizations. Each example includes paired image-HTML representations, comprehensive metadata, and provenance information linking back to the source datasets. Fine-tuning vision-language models like Qwen2.5-VL-7B on TABLET improves performance on seen and unseen VTU tasks while increasing robustness on real-world table visualizations. By preserving original visualizations and maintaining example traceability in a unified large-scale collection, TABLET establishes a foundation for robust training and extensible evaluation of future VTU models.
What Matters in Learning from Offline Human Demonstrations for Robot Manipulation
Imitating human demonstrations is a promising approach to endow robots with various manipulation capabilities. While recent advances have been made in imitation learning and batch (offline) reinforcement learning, a lack of open-source human datasets and reproducible learning methods make assessing the state of the field difficult. In this paper, we conduct an extensive study of six offline learning algorithms for robot manipulation on five simulated and three real-world multi-stage manipulation tasks of varying complexity, and with datasets of varying quality. Our study analyzes the most critical challenges when learning from offline human data for manipulation. Based on the study, we derive a series of lessons including the sensitivity to different algorithmic design choices, the dependence on the quality of the demonstrations, and the variability based on the stopping criteria due to the different objectives in training and evaluation. We also highlight opportunities for learning from human datasets, such as the ability to learn proficient policies on challenging, multi-stage tasks beyond the scope of current reinforcement learning methods, and the ability to easily scale to natural, real-world manipulation scenarios where only raw sensory signals are available. We have open-sourced our datasets and all algorithm implementations to facilitate future research and fair comparisons in learning from human demonstration data. Codebase, datasets, trained models, and more available at https://arise-initiative.github.io/robomimic-web/
Under the Surface: Tracking the Artifactuality of LLM-Generated Data
This work delves into the expanding role of large language models (LLMs) in generating artificial data. LLMs are increasingly employed to create a variety of outputs, including annotations, preferences, instruction prompts, simulated dialogues, and free text. As these forms of LLM-generated data often intersect in their application, they exert mutual influence on each other and raise significant concerns about the quality and diversity of the artificial data incorporated into training cycles, leading to an artificial data ecosystem. To the best of our knowledge, this is the first study to aggregate various types of LLM-generated text data, from more tightly constrained data like "task labels" to more lightly constrained "free-form text". We then stress test the quality and implications of LLM-generated artificial data, comparing it with human data across various existing benchmarks. Despite artificial data's capability to match human performance, this paper reveals significant hidden disparities, especially in complex tasks where LLMs often miss the nuanced understanding of intrinsic human-generated content. This study critically examines diverse LLM-generated data and emphasizes the need for ethical practices in data creation and when using LLMs. It highlights the LLMs' shortcomings in replicating human traits and behaviors, underscoring the importance of addressing biases and artifacts produced in LLM-generated content for future research and development. All data and code are available on our project page.
Maintaining MTEB: Towards Long Term Usability and Reproducibility of Embedding Benchmarks
The Massive Text Embedding Benchmark (MTEB) has become a standard evaluation platform for text embedding models. While previous work has established the core benchmark methodology, this paper focuses on the engineering aspects that ensure MTEB's continued reproducibility and extensibility. We present our approach to maintaining robust continuous integration pipelines that validate dataset integrity, automate test execution, and assess benchmark results' generalizability. We detail the design choices that collectively enhance reproducibility and usability. Furthermore, we discuss our strategies for handling community contributions and extending the benchmark with new tasks and datasets. These engineering practices have been instrumental in scaling MTEB to become more comprehensive while maintaining quality and, ultimately, relevance to the field. Our experiences offer valuable insights for benchmark maintainers facing similar challenges in ensuring reproducibility and usability in machine learning evaluation frameworks. The MTEB repository is available at: https://github.com/embeddings-benchmark/mteb
GneissWeb: Preparing High Quality Data for LLMs at Scale
Data quantity and quality play a vital role in determining the performance of Large Language Models (LLMs). High-quality data, in particular, can significantly boost the LLM's ability to generalize on a wide range of downstream tasks. Large pre-training datasets for leading LLMs remain inaccessible to the public, whereas many open datasets are small in size (less than 5 trillion tokens), limiting their suitability for training large models. In this paper, we introduce GneissWeb, a large dataset yielding around 10 trillion tokens that caters to the data quality and quantity requirements of training LLMs. Our GneissWeb recipe that produced the dataset consists of sharded exact sub-string deduplication and a judiciously constructed ensemble of quality filters. GneissWeb achieves a favorable trade-off between data quality and quantity, producing models that outperform models trained on state-of-the-art open large datasets (5+ trillion tokens). We show that models trained using GneissWeb dataset outperform those trained on FineWeb-V1.1.0 by 2.73 percentage points in terms of average score computed on a set of 11 commonly used benchmarks (both zero-shot and few-shot) for pre-training dataset evaluation. When the evaluation set is extended to 20 benchmarks (both zero-shot and few-shot), models trained using GneissWeb still achieve a 1.75 percentage points advantage over those trained on FineWeb-V1.1.0.
Prototype-based Dataset Comparison
Dataset summarisation is a fruitful approach to dataset inspection. However, when applied to a single dataset the discovery of visual concepts is restricted to those most prominent. We argue that a comparative approach can expand upon this paradigm to enable richer forms of dataset inspection that go beyond the most prominent concepts. To enable dataset comparison we present a module that learns concept-level prototypes across datasets. We leverage self-supervised learning to discover these prototypes without supervision, and we demonstrate the benefits of our approach in two case-studies. Our findings show that dataset comparison extends dataset inspection and we hope to encourage more works in this direction. Code and usage instructions available at https://github.com/Nanne/ProtoSim
