new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Evolution Strategies at the Hyperscale

We introduce Evolution Guided General Optimization via Low-rank Learning (EGGROLL), an evolution strategies (ES) algorithm designed to scale backprop-free optimization to large population sizes for modern large neural network architectures with billions of parameters. ES is a set of powerful blackbox optimisation methods that can handle non-differentiable or noisy objectives with excellent scaling potential through parallelisation. Na{ï}ve ES becomes prohibitively expensive at scale due to the computational and memory costs associated with generating matrix perturbations EinR^{mtimes n} and the batched matrix multiplications needed to compute per-member forward passes. EGGROLL overcomes these bottlenecks by generating random matrices Ain R^{mtimes r}, Bin R^{ntimes r} with rll min(m,n) to form a low-rank matrix perturbation A B^top that are used in place of the full-rank perturbation E. As the overall update is an average across a population of N workers, this still results in a high-rank update but with significant memory and computation savings, reducing the auxiliary storage from mn to r(m+n) per layer and the cost of a forward pass from O(mn) to O(r(m+n)) when compared to full-rank ES. A theoretical analysis reveals our low-rank update converges to the full-rank update at a fast Oleft(1{r}right) rate. Our experiments show that (1) EGGROLL does not compromise the performance of ES in tabula-rasa RL settings, despite being faster, (2) it is competitive with GRPO as a technique for improving LLM reasoning, and (3) EGGROLL enables stable pre-training of nonlinear recurrent language models that operate purely in integer datatypes.

  • 16 authors
·
Nov 20

BiPFT: Binary Pre-trained Foundation Transformer with Low-rank Estimation of Binarization Residual Polynomials

Pretrained foundation models offer substantial benefits for a wide range of downstream tasks, which can be one of the most potential techniques to access artificial general intelligence. However, scaling up foundation transformers for maximal task-agnostic knowledge has brought about computational challenges, especially on resource-limited devices such as mobiles. This work proposes the first Binary Pretrained Foundation Transformer (BiPFT) for natural language understanding (NLU) tasks, which remarkably saves 56 times operations and 28 times memory. In contrast to previous task-specific binary transformers, BiPFT exhibits a substantial enhancement in the learning capabilities of binary neural networks (BNNs), promoting BNNs into the era of pre-training. Benefiting from extensive pretraining data, we further propose a data-driven binarization method. Specifically, we first analyze the binarization error in self-attention operations and derive the polynomials of binarization error. To simulate full-precision self-attention, we define binarization error as binarization residual polynomials, and then introduce low-rank estimators to model these polynomials. Extensive experiments validate the effectiveness of BiPFTs, surpassing task-specific baseline by 15.4% average performance on the GLUE benchmark. BiPFT also demonstrates improved robustness to hyperparameter changes, improved optimization efficiency, and reduced reliance on downstream distillation, which consequently generalize on various NLU tasks and simplify the downstream pipeline of BNNs. Our code and pretrained models are publicly available at https://github.com/Xingrun-Xing/BiPFT.

  • 7 authors
·
Dec 14, 2023

Initialization using Update Approximation is a Silver Bullet for Extremely Efficient Low-Rank Fine-Tuning

Low-rank adapters have become standard for efficiently fine-tuning large language models (LLMs), but they often fall short of achieving the performance of full fine-tuning. We propose a method, LoRA Silver Bullet or LoRA-SB, that approximates full fine-tuning within low-rank subspaces using a carefully designed initialization strategy. We theoretically demonstrate that the architecture of LoRA-XS, which inserts a learnable (r x r) matrix between B and A while keeping other matrices fixed, provides the precise conditions needed for this approximation. We leverage its constrained update space to achieve optimal scaling for high-rank gradient updates while removing the need for hyperparameter tuning. We prove that our initialization offers an optimal low-rank approximation of the initial gradient and preserves update directions throughout training. Extensive experiments across mathematical reasoning, commonsense reasoning, and language understanding tasks demonstrate that our approach exceeds the performance of standard LoRA while using 27-90 times fewer learnable parameters, and comprehensively outperforms LoRA-XS. Our findings establish that it is possible to simulate full fine-tuning in low-rank subspaces, and achieve significant efficiency gains without sacrificing performance. Our code is publicly available at https://github.com/RaghavSinghal10/lora-sb.

  • 6 authors
·
Nov 29, 2024

Gradient Weight-normalized Low-rank Projection for Efficient LLM Training

Large Language Models (LLMs) have shown remarkable performance across various tasks, but the escalating demands on computational resources pose significant challenges, particularly in the extensive utilization of full fine-tuning for downstream tasks. To address this, parameter-efficient fine-tuning (PEFT) methods have been developed, but they often underperform compared to full fine-tuning and struggle with memory efficiency. In this work, we introduce Gradient Weight-Normalized Low-Rank Projection (GradNormLoRP), a novel approach that enhances both parameter and memory efficiency while maintaining comparable performance to full fine-tuning. GradNormLoRP normalizes the weight matrix to improve gradient conditioning, facilitating better convergence during optimization. Additionally, it applies low-rank approximations to the weight and gradient matrices, significantly reducing memory usage during training. Extensive experiments demonstrate that our 8-bit GradNormLoRP reduces optimizer memory usage by up to 89.5% and enables the pre-training of large LLMs, such as LLaMA 7B, on consumer-level GPUs like the NVIDIA RTX 4090, without additional inference costs. Moreover, GradNormLoRP outperforms existing low-rank methods in fine-tuning tasks. For instance, when fine-tuning the RoBERTa model on all GLUE tasks with a rank of 8, GradNormLoRP achieves an average score of 80.65, surpassing LoRA's score of 79.23. These results underscore GradNormLoRP as a promising alternative for efficient LLM pre-training and fine-tuning. Source code: https://github.com/Jhhuangkay/Gradient-Weight-normalized-Low-rank-Projection-for-Efficient-LLM-Training

  • 5 authors
·
Dec 27, 2024 2

SwitchLoRA: Switched Low-Rank Adaptation Can Learn Full-Rank Information

In the training of large language models, parameter-efficient techniques such as LoRA optimize memory usage and reduce communication overhead and memory usage during the fine-tuning phase. However, applying such techniques directly during the pre-training phase results in poor performance, primarily because the premature implementation of low-rank training significantly reduces model accuracy. Existing methods like ReLoRA and GaLore have attempted to address this challenge by updating the low-rank subspace. However, they still fall short of achieving the accuracy of full-rank training. Specifically, ReLoRA restricts the frequency of updates to preserve optimizer states consistency, hindering its ability to closely approximate full-rank training behavior. Meanwhile, GaLore relies on Singular Value Decomposition (SVD) to approximate the full-rank space, which introduces accuracy loss during the approximation process. In this paper, we introduce SwitchLoRA, a parameter-efficient training technique that frequently and smoothly replaces the trainable parameters of LoRA adapters with alternative parameters. SwitchLoRA updates the low-rank subspace incrementally, targeting only a few dimensions at a time to minimize the impact on optimizer states. This allows a higher update frequency, thereby enhancing accuracy by enabling the updated parameters to more closely mimic full-rank behavior during the pre-training phase. Our results demonstrate that SwitchLoRA actually surpasses full-rank training, reducing perplexity from 15.23 to 15.01 on the LLaMA 1.3B model, while also cutting communication overhead by 54\% and memory usage by 13\%. Furthermore, after full fine-tuning the SwitchLoRA pre-trained model and the full-rank pre-trained model on the GLUE benchmark, the SwitchLoRA pre-trained model showed an average accuracy gain of about 1\% over the full-rank pre-trained model.

  • 3 authors
·
Jun 3, 2024