Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePredicting Prosodic Prominence from Text with Pre-trained Contextualized Word Representations
In this paper we introduce a new natural language processing dataset and benchmark for predicting prosodic prominence from written text. To our knowledge this will be the largest publicly available dataset with prosodic labels. We describe the dataset construction and the resulting benchmark dataset in detail and train a number of different models ranging from feature-based classifiers to neural network systems for the prediction of discretized prosodic prominence. We show that pre-trained contextualized word representations from BERT outperform the other models even with less than 10% of the training data. Finally we discuss the dataset in light of the results and point to future research and plans for further improving both the dataset and methods of predicting prosodic prominence from text. The dataset and the code for the models are publicly available.
FedSA: A Unified Representation Learning via Semantic Anchors for Prototype-based Federated Learning
Prototype-based federated learning has emerged as a promising approach that shares lightweight prototypes to transfer knowledge among clients with data heterogeneity in a model-agnostic manner. However, existing methods often collect prototypes directly from local models, which inevitably introduce inconsistencies into representation learning due to the biased data distributions and differing model architectures among clients. In this paper, we identify that both statistical and model heterogeneity create a vicious cycle of representation inconsistency, classifier divergence, and skewed prototype alignment, which negatively impacts the performance of clients. To break the vicious cycle, we propose a novel framework named Federated Learning via Semantic Anchors (FedSA) to decouple the generation of prototypes from local representation learning. We introduce a novel perspective that uses simple yet effective semantic anchors serving as prototypes to guide local models in learning consistent representations. By incorporating semantic anchors, we further propose anchor-based regularization with margin-enhanced contrastive learning and anchor-based classifier calibration to correct feature extractors and calibrate classifiers across clients, achieving intra-class compactness and inter-class separability of prototypes while ensuring consistent decision boundaries. We then update the semantic anchors with these consistent and discriminative prototypes, which iteratively encourage clients to collaboratively learn a unified data representation with robust generalization. Extensive experiments under both statistical and model heterogeneity settings show that FedSA significantly outperforms existing prototype-based FL methods on various classification tasks.
Exploiting the Brain's Network Structure for Automatic Identification of ADHD Subjects
Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state Functional Magnetic Resonance Imaging (fMRI) sequences of the brain. We show that the brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects. We compute the pairwise correlation of brain voxels' activity over the time frame of the experimental protocol which helps to model the function of a brain as a network. Different network features are computed for each of the voxels constructing the network. The concatenation of the network features of all the voxels in a brain serves as the feature vector. Feature vectors from a set of subjects are then used to train a PCA-LDA (principal component analysis-linear discriminant analysis) based classifier. We hypothesized that ADHD-related differences lie in some specific regions of the brain and using features only from those regions is sufficient to discriminate ADHD and control subjects. We propose a method to create a brain mask that includes the useful regions only and demonstrate that using the feature from the masked regions improves classification accuracy on the test data set. We train our classifier with 776 subjects and test on 171 subjects provided by The Neuro Bureau for the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically the maps that represent the frequency of participation of voxels in network cycles of length 3. The best classification performance (69.59%) is achieved using 3-cycle map features with masking. Our proposed approach holds promise in being able to diagnose and understand the disorder.
Event-based Feature Extraction Using Adaptive Selection Thresholds
Unsupervised feature extraction algorithms form one of the most important building blocks in machine learning systems. These algorithms are often adapted to the event-based domain to perform online learning in neuromorphic hardware. However, not designed for the purpose, such algorithms typically require significant simplification during implementation to meet hardware constraints, creating trade offs with performance. Furthermore, conventional feature extraction algorithms are not designed to generate useful intermediary signals which are valuable only in the context of neuromorphic hardware limitations. In this work a novel event-based feature extraction method is proposed that focuses on these issues. The algorithm operates via simple adaptive selection thresholds which allow a simpler implementation of network homeostasis than previous works by trading off a small amount of information loss in the form of missed events that fall outside the selection thresholds. The behavior of the selection thresholds and the output of the network as a whole are shown to provide uniquely useful signals indicating network weight convergence without the need to access network weights. A novel heuristic method for network size selection is proposed which makes use of noise events and their feature representations. The use of selection thresholds is shown to produce network activation patterns that predict classification accuracy allowing rapid evaluation and optimization of system parameters without the need to run back-end classifiers. The feature extraction method is tested on both the N-MNIST benchmarking dataset and a dataset of airplanes passing through the field of view. Multiple configurations with different classifiers are tested with the results quantifying the resultant performance gains at each processing stage.
DiabML: AI-assisted diabetes diagnosis method with meta-heuristic-based feature selection
Diabetes is a chronic disorder identified by the high sugar level in the blood that can cause various different disorders such as kidney failure, heart attack, sightlessness, and stroke. Developments in the healthcare domain by facilitating the early detection of diabetes risk can help not only caregivers but also patients. AIoMT is a recent technology that integrates IoT and machine learning methods to give services for medical purposes, which is a powerful technology for the early detection of diabetes. In this paper, we take advantage of AIoMT and propose a hybrid diabetes risk detection method, DiabML, which uses the BWO algorithm and ML methods. BWO is utilized for feature selection and SMOTE for imbalance handling in the pre-processing procedure. The simulation results prove the superiority of the proposed DiabML method compared to the existing works. DiabML achieves 86.1\% classification accuracy by AdaBoost classifier outperforms the relevant existing methods.
MACFE: A Meta-learning and Causality Based Feature Engineering Framework
Feature engineering has become one of the most important steps to improve model prediction performance, and to produce quality datasets. However, this process requires non-trivial domain-knowledge which involves a time-consuming process. Thereby, automating such process has become an active area of research and of interest in industrial applications. In this paper, a novel method, called Meta-learning and Causality Based Feature Engineering (MACFE), is proposed; our method is based on the use of meta-learning, feature distribution encoding, and causality feature selection. In MACFE, meta-learning is used to find the best transformations, then the search is accelerated by pre-selecting "original" features given their causal relevance. Experimental evaluations on popular classification datasets show that MACFE can improve the prediction performance across eight classifiers, outperforms the current state-of-the-art methods in average by at least 6.54%, and obtains an improvement of 2.71% over the best previous works.
A Novel Multimodal Music Genre Classifier using Hierarchical Attention and Convolutional Neural Network
Music genre classification is one of the trending topics in regards to the current Music Information Retrieval (MIR) Research. Since, the dependency of genre is not only limited to the audio profile, we also make use of textual content provided as lyrics of the corresponding song. We implemented a CNN based feature extractor for spectrograms in order to incorporate the acoustic features and a Hierarchical Attention Network based feature extractor for lyrics. We then go on to classify the music track based upon the resulting fused feature vector.
iBitter-Stack: A Multi-Representation Ensemble Learning Model for Accurate Bitter Peptide Identification
The identification of bitter peptides is crucial in various domains, including food science, drug discovery, and biochemical research. These peptides not only contribute to the undesirable taste of hydrolyzed proteins but also play key roles in physiological and pharmacological processes. However, experimental methods for identifying bitter peptides are time-consuming and expensive. With the rapid expansion of peptide sequence databases in the post-genomic era, the demand for efficient computational approaches to distinguish bitter from non-bitter peptides has become increasingly significant. In this study, we propose a novel stacking-based ensemble learning framework aimed at enhancing the accuracy and reliability of bitter peptide classification. Our method integrates diverse sequence-based feature representations and leverages a broad set of machine learning classifiers. The first stacking layer comprises multiple base classifiers, each trained on distinct feature encoding schemes, while the second layer employs logistic regression to refine predictions using an eight-dimensional probability vector. Extensive evaluations on a carefully curated dataset demonstrate that our model significantly outperforms existing predictive methods, providing a robust and reliable computational tool for bitter peptide identification. Our approach achieves an accuracy of 96.09\% and a Matthews Correlation Coefficient (MCC) of 0.9220 on the independent test set, underscoring its effectiveness and generalizability. To facilitate real-time usage and broader accessibility, we have also developed a user-friendly web server based on the proposed method, which is freely accessible at https://ibitter-stack-webserver.streamlit.app/. This tool enables researchers and practitioners to conveniently screen peptide sequences for bitterness in real-time applications.
The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
We present our system (denoted as T05) for the VoiceMOS Challenge (VMC) 2024. Our system was designed for the VMC 2024 Track 1, which focused on the accurate prediction of naturalness mean opinion score (MOS) for high-quality synthetic speech. In addition to a pretrained self-supervised learning (SSL)-based speech feature extractor, our system incorporates a pretrained image feature extractor to capture the difference of synthetic speech observed in speech spectrograms. We first separately train two MOS predictors that use either of an SSL-based or spectrogram-based feature. Then, we fine-tune the two predictors for better MOS prediction using the fusion of two extracted features. In the VMC 2024 Track 1, our T05 system achieved first place in 7 out of 16 evaluation metrics and second place in the remaining 9 metrics, with a significant difference compared to those ranked third and below. We also report the results of our ablation study to investigate essential factors of our system.
Brain Tumor Detection and Classification based on Hybrid Ensemble Classifier
To improve patient survival and treatment outcomes, early diagnosis of brain tumors is an essential task. It is a difficult task to evaluate the magnetic resonance imaging (MRI) images manually. Thus, there is a need for digital methods for tumor diagnosis with better accuracy. However, it is still a very challenging task in assessing their shape, volume, boundaries, tumor detection, size, segmentation, and classification. In this proposed work, we propose a hybrid ensemble method using Random Forest (RF), K-Nearest Neighbour, and Decision Tree (DT) (KNN-RF-DT) based on Majority Voting Method. It aims to calculate the area of the tumor region and classify brain tumors as benign and malignant. In the beginning, segmentation is done by using Otsu's Threshold method. Feature Extraction is done by using Stationary Wavelet Transform (SWT), Principle Component Analysis (PCA), and Gray Level Co-occurrence Matrix (GLCM), which gives thirteen features for classification. The classification is done by hybrid ensemble classifier (KNN-RF-DT) based on the Majority Voting method. Overall it aimed at improving the performance by traditional classifiers instead of going to deep learning. Traditional classifiers have an advantage over deep learning algorithms because they require small datasets for training and have low computational time complexity, low cost to the users, and can be easily adopted by less skilled people. Overall, our proposed method is tested upon dataset of 2556 images, which are used in 85:15 for training and testing respectively and gives good accuracy of 97.305%.
Accurate Leukocyte Detection Based on Deformable-DETR and Multi-Level Feature Fusion for Aiding Diagnosis of Blood Diseases
In standard hospital blood tests, the traditional process requires doctors to manually isolate leukocytes from microscopic images of patients' blood using microscopes. These isolated leukocytes are then categorized via automatic leukocyte classifiers to determine the proportion and volume of different types of leukocytes present in the blood samples, aiding disease diagnosis. This methodology is not only time-consuming and labor-intensive, but it also has a high propensity for errors due to factors such as image quality and environmental conditions, which could potentially lead to incorrect subsequent classifications and misdiagnosis. To address these issues, this paper proposes an innovative method of leukocyte detection: the Multi-level Feature Fusion and Deformable Self-attention DETR (MFDS-DETR). To tackle the issue of leukocyte scale disparity, we designed the High-level Screening-feature Fusion Pyramid (HS-FPN), enabling multi-level fusion. This model uses high-level features as weights to filter low-level feature information via a channel attention module and then merges the screened information with the high-level features, thus enhancing the model's feature expression capability. Further, we address the issue of leukocyte feature scarcity by incorporating a multi-scale deformable self-attention module in the encoder and using the self-attention and cross-deformable attention mechanisms in the decoder, which aids in the extraction of the global features of the leukocyte feature maps. The effectiveness, superiority, and generalizability of the proposed MFDS-DETR method are confirmed through comparisons with other cutting-edge leukocyte detection models using the private WBCDD, public LISC and BCCD datasets. Our source code and private WBCCD dataset are available at https://github.com/JustlfC03/MFDS-DETR.
Improving Classifier Training Efficiency for Automatic Cyberbullying Detection with Feature Density
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods in order to estimate dataset complexity, which in turn is used to comparatively estimate the potential performance of machine learning (ML) classifiers prior to any training. We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments iterations. This way we can optimize the resource-intensive training of ML models which is becoming a serious issue due to the increases in available dataset sizes and the ever rising popularity of models based on Deep Neural Networks (DNN). The problem of constantly increasing needs for more powerful computational resources is also affecting the environment due to alarmingly-growing amount of CO2 emissions caused by training of large-scale ML models. The research was conducted on multiple datasets, including popular datasets, such as Yelp business review dataset used for training typical sentiment analysis models, as well as more recent datasets trying to tackle the problem of cyberbullying, which, being a serious social problem, is also a much more sophisticated problem form the point of view of linguistic representation. We use cyberbullying datasets collected for multiple languages, namely English, Japanese and Polish. The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
Initial Study into Application of Feature Density and Linguistically-backed Embedding to Improve Machine Learning-based Cyberbullying Detection
In this research, we study the change in the performance of machine learning (ML) classifiers when various linguistic preprocessing methods of a dataset were used, with the specific focus on linguistically-backed embeddings in Convolutional Neural Networks (CNN). Moreover, we study the concept of Feature Density and confirm its potential to comparatively predict the performance of ML classifiers, including CNN. The research was conducted on a Formspring dataset provided in a Kaggle competition on automatic cyberbullying detection. The dataset was re-annotated by objective experts (psychologists), as the importance of professional annotation in cyberbullying research has been indicated multiple times. The study confirmed the effectiveness of Neural Networks in cyberbullying detection and the correlation between classifier performance and Feature Density while also proposing a new approach of training various linguistically-backed embeddings for Convolutional Neural Networks.
Explaining image classifiers by removing input features using generative models
Perturbation-based explanation methods often measure the contribution of an input feature to an image classifier's outputs by heuristically removing it via e.g. blurring, adding noise, or graying out, which often produce unrealistic, out-of-samples. Instead, we propose to integrate a generative inpainter into three representative attribution methods to remove an input feature. Our proposed change improved all three methods in (1) generating more plausible counterfactual samples under the true data distribution; (2) being more accurate according to three metrics: object localization, deletion, and saliency metrics; and (3) being more robust to hyperparameter changes. Our findings were consistent across both ImageNet and Places365 datasets and two different pairs of classifiers and inpainters.
Multi-Label Text Classification using Attention-based Graph Neural Network
In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.
Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs in Language Models
We introduce methods for discovering and applying sparse feature circuits. These are causally implicated subnetworks of human-interpretable features for explaining language model behaviors. Circuits identified in prior work consist of polysemantic and difficult-to-interpret units like attention heads or neurons, rendering them unsuitable for many downstream applications. In contrast, sparse feature circuits enable detailed understanding of unanticipated mechanisms. Because they are based on fine-grained units, sparse feature circuits are useful for downstream tasks: We introduce SHIFT, where we improve the generalization of a classifier by ablating features that a human judges to be task-irrelevant. Finally, we demonstrate an entirely unsupervised and scalable interpretability pipeline by discovering thousands of sparse feature circuits for automatically discovered model behaviors.
An ensemble-based framework for mispronunciation detection of Arabic phonemes
Determination of mispronunciations and ensuring feedback to users are maintained by computer-assisted language learning (CALL) systems. In this work, we introduce an ensemble model that defines the mispronunciation of Arabic phonemes and assists learning of Arabic, effectively. To the best of our knowledge, this is the very first attempt to determine the mispronunciations of Arabic phonemes employing ensemble learning techniques and conventional machine learning models, comprehensively. In order to observe the effect of feature extraction techniques, mel-frequency cepstrum coefficients (MFCC), and Mel spectrogram are blended with each learning algorithm. To show the success of proposed model, 29 letters in the Arabic phonemes, 8 of which are hafiz, are voiced by a total of 11 different person. The amount of data set has been enhanced employing the methods of adding noise, time shifting, time stretching, pitch shifting. Extensive experiment results demonstrate that the utilization of voting classifier as an ensemble algorithm with Mel spectrogram feature extraction technique exhibits remarkable classification result with 95.9% of accuracy.
KNN and ANN-based Recognition of Handwritten Pashto Letters using Zoning Features
This paper presents a recognition system for handwritten Pashto letters. However, handwritten character recognition is a challenging task. These letters not only differ in shape and style but also vary among individuals. The recognition becomes further daunting due to the lack of standard datasets for inscribed Pashto letters. In this work, we have designed a database of moderate size, which encompasses a total of 4488 images, stemming from 102 distinguishing samples for each of the 44 letters in Pashto. The recognition framework uses zoning feature extractor followed by K-Nearest Neighbour (KNN) and Neural Network (NN) classifiers for classifying individual letter. Based on the evaluation of the proposed system, an overall classification accuracy of approximately 70.05% is achieved by using KNN while 72% is achieved by using NN.
Boosting Novel Category Discovery Over Domains with Soft Contrastive Learning and All-in-One Classifier
Unsupervised domain adaptation (UDA) has proven to be highly effective in transferring knowledge from a label-rich source domain to a label-scarce target domain. However, the presence of additional novel categories in the target domain has led to the development of open-set domain adaptation (ODA) and universal domain adaptation (UNDA). Existing ODA and UNDA methods treat all novel categories as a single, unified unknown class and attempt to detect it during training. However, we found that domain variance can lead to more significant view-noise in unsupervised data augmentation, which affects the effectiveness of contrastive learning (CL) and causes the model to be overconfident in novel category discovery. To address these issues, a framework named Soft-contrastive All-in-one Network (SAN) is proposed for ODA and UNDA tasks. SAN includes a novel data-augmentation-based soft contrastive learning (SCL) loss to fine-tune the backbone for feature transfer and a more human-intuitive classifier to improve new class discovery capability. The SCL loss weakens the adverse effects of the data augmentation view-noise problem which is amplified in domain transfer tasks. The All-in-One (AIO) classifier overcomes the overconfidence problem of current mainstream closed-set and open-set classifiers. Visualization and ablation experiments demonstrate the effectiveness of the proposed innovations. Furthermore, extensive experiment results on ODA and UNDA show that SAN outperforms existing state-of-the-art methods.
Embedding Hardware Approximations in Discrete Genetic-based Training for Printed MLPs
Printed Electronics (PE) stands out as a promisingtechnology for widespread computing due to its distinct attributes, such as low costs and flexible manufacturing. Unlike traditional silicon-based technologies, PE enables stretchable, conformal,and non-toxic hardware. However, PE are constrained by larger feature sizes, making it challenging to implement complex circuits such as machine learning (ML) classifiers. Approximate computing has been proven to reduce the hardware cost of ML circuits such as Multilayer Perceptrons (MLPs). In this paper, we maximize the benefits of approximate computing by integrating hardware approximation into the MLP training process. Due to the discrete nature of hardware approximation, we propose and implement a genetic-based, approximate, hardware-aware training approach specifically designed for printed MLPs. For a 5% accuracy loss, our MLPs achieve over 5x area and power reduction compared to the baseline while outperforming state of-the-art approximate and stochastic printed MLPs.
Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study
In this paper, we present a general scheme for building reproducible and extensible datasets for website phishing detection. The aim is to (1) enable comparison of systems using different features, (2) overtake the short-lived nature of phishing websites, and (3) keep track of the evolution of phishing tactics. For experimenting the proposed scheme, we start by adopting a refined classification of website phishing features and we systematically select a total of 87 commonly recognized ones, we classify them, and we made them subjects for relevance and runtime analysis. We use the collected set of features to build a dataset in light of the proposed scheme. Thereafter, we use a conceptual replication approach to check the genericity of former findings for the built dataset. Specifically, we evaluate the performance of classifiers on individual classes and on combinations of classes, we investigate different combinations of models, and we explore the effects of filter and wrapper methods on the selection of discriminative features. The results show that Random Forest is the most predictive classifier. Features gathered from external services are found the most discriminative where features extracted from web page contents are found less distinguishing. Besides external service based features, some web page content features are found time consuming and not suitable for runtime detection. The use of hybrid features provided the best accuracy score of 96.61%. By investigating different feature selection methods, filter-based ranking together with incremental removal of less important features improved the performance up to 96.83% better than wrapper methods.
AMU-Tuning: Effective Logit Bias for CLIP-based Few-shot Learning
Recently, pre-trained vision-language models (e.g., CLIP) have shown great potential in few-shot learning and attracted a lot of research interest. Although efforts have been made to improve few-shot ability of CLIP, key factors on the effectiveness of existing methods have not been well studied, limiting further exploration of CLIP's potential in few-shot learning. In this paper, we first introduce a unified formulation to analyze CLIP-based few-shot learning methods from a perspective of logit bias, which encourages us to learn an effective logit bias for further improving performance of CLIP-based few-shot learning methods. To this end, we disassemble three key components involved in computation of logit bias (i.e., logit features, logit predictor, and logit fusion) and empirically analyze the effect on performance of few-shot classification. Based on analysis of key components, this paper proposes a novel AMU-Tuning method to learn effective logit bias for CLIP-based few-shot classification. Specifically, our AMU-Tuning predicts logit bias by exploiting the appropriate textbf{A}uxiliary features, which are fed into an efficient feature-initialized linear classifier with textbf{M}ulti-branch training. Finally, an textbf{U}ncertainty-based fusion is developed to incorporate logit bias into CLIP for few-shot classification. The experiments are conducted on several widely used benchmarks, and the results show AMU-Tuning clearly outperforms its counterparts while achieving state-of-the-art performance of CLIP-based few-shot learning without bells and whistles.
A Classical Approach to Handcrafted Feature Extraction Techniques for Bangla Handwritten Digit Recognition
Bangla Handwritten Digit recognition is a significant step forward in the development of Bangla OCR. However, intricate shape, structural likeness and distinctive composition style of Bangla digits makes it relatively challenging to distinguish. Thus, in this paper, we benchmarked four rigorous classifiers to recognize Bangla Handwritten Digit: K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Gradient-Boosted Decision Trees (GBDT) based on three handcrafted feature extraction techniques: Histogram of Oriented Gradients (HOG), Local Binary Pattern (LBP), and Gabor filter on four publicly available Bangla handwriting digits datasets: NumtaDB, CMARTdb, Ekush and BDRW. Here, handcrafted feature extraction methods are used to extract features from the dataset image, which are then utilized to train machine learning classifiers to identify Bangla handwritten digits. We further fine-tuned the hyperparameters of the classification algorithms in order to acquire the finest Bangla handwritten digits recognition performance from these algorithms, and among all the models we employed, the HOG features combined with SVM model (HOG+SVM) attained the best performance metrics across all datasets. The recognition accuracy of the HOG+SVM method on the NumtaDB, CMARTdb, Ekush and BDRW datasets reached 93.32%, 98.08%, 95.68% and 89.68%, respectively as well as we compared the model performance with recent state-of-art methods.
Tuning Pre-trained Model via Moment Probing
Recently, efficient fine-tuning of large-scale pre-trained models has attracted increasing research interests, where linear probing (LP) as a fundamental module is involved in exploiting the final representations for task-dependent classification. However, most of the existing methods focus on how to effectively introduce a few of learnable parameters, and little work pays attention to the commonly used LP module. In this paper, we propose a novel Moment Probing (MP) method to further explore the potential of LP. Distinguished from LP which builds a linear classification head based on the mean of final features (e.g., word tokens for ViT) or classification tokens, our MP performs a linear classifier on feature distribution, which provides the stronger representation ability by exploiting richer statistical information inherent in features. Specifically, we represent feature distribution by its characteristic function, which is efficiently approximated by using first- and second-order moments of features. Furthermore, we propose a multi-head convolutional cross-covariance (MHC^3) to compute second-order moments in an efficient and effective manner. By considering that MP could affect feature learning, we introduce a partially shared module to learn two recalibrating parameters (PSRP) for backbones based on MP, namely MP_{+}. Extensive experiments on ten benchmarks using various models show that our MP significantly outperforms LP and is competitive with counterparts at less training cost, while our MP_{+} achieves state-of-the-art performance.
Wrapped Cauchy Distributed Angular Softmax for Long-Tailed Visual Recognition
Addressing imbalanced or long-tailed data is a major challenge in visual recognition tasks due to disparities between training and testing distributions and issues with data noise. We propose the Wrapped Cauchy Distributed Angular Softmax (WCDAS), a novel softmax function that incorporates data-wise Gaussian-based kernels into the angular correlation between feature representations and classifier weights, effectively mitigating noise and sparse sampling concerns. The class-wise distribution of angular representation becomes a sum of these kernels. Our theoretical analysis reveals that the wrapped Cauchy distribution excels the Gaussian distribution in approximating mixed distributions. Additionally, WCDAS uses trainable concentration parameters to dynamically adjust the compactness and margin of each class. Empirical results confirm label-aware behavior in these parameters and demonstrate WCDAS's superiority over other state-of-the-art softmax-based methods in handling long-tailed visual recognition across multiple benchmark datasets. The code is public available.
POTATO: exPlainable infOrmation exTrAcTion framewOrk
We present POTATO, a task- and languageindependent framework for human-in-the-loop (HITL) learning of rule-based text classifiers using graph-based features. POTATO handles any type of directed graph and supports parsing text into Abstract Meaning Representations (AMR), Universal Dependencies (UD), and 4lang semantic graphs. A streamlit-based user interface allows users to build rule systems from graph patterns, provides real-time evaluation based on ground truth data, and suggests rules by ranking graph features using interpretable machine learning models. Users can also provide patterns over graphs using regular expressions, and POTATO can recommend refinements of such rules. POTATO is applied in projects across domains and languages, including classification tasks on German legal text and English social media data. All components of our system are written in Python, can be installed via pip, and are released under an MIT License on GitHub.
Peritumoral Expansion Radiomics for Improved Lung Cancer Classification
Purpose: This study investigated how nodule segmentation and surrounding peritumoral regions influence radionics-based lung cancer classification. Methods: Using 3D CT scans with bounding box annotated nodules, we generated 3D segmentations using four techniques: Otsu, Fuzzy C-Means (FCM), Gaussian Mixture Model (GMM), and K-Nearest Neighbors (KNN). Radiomics features were extracted using the PyRadiomics library, and multiple machine-learning-based classifiers, including Random Forest, Logistic Regression, and KNN, were employed to classify nodules as cancerous or non-cancerous. The best-performing segmentation and model were further analyzed by expanding the initial nodule segmentation into the peritumoral region (2, 4, 6, 8, 10, and 12 mm) to understand the influence of the surrounding area on classification. Additionally, we compared our results to deep learning-based feature extractors Foundation Model for Cancer Biomarkers (FMCB) and other state-of-the-art baseline models. Results: Incorporating peritumoral regions significantly enhanced performance, with the best result obtained at 8 mm expansion (AUC = 0.78). Compared to image-based deep learning models, such as FMCB (AUC = 0.71) and ResNet50-SWS++ (AUC = 0.71), our radiomics-based approach demonstrated superior classification accuracy. Conclusion: The study highlights the importance of peritumoral expansion in improving lung cancer classification using radiomics. These findings can inform the development of more robust AI-driven diagnostic tools.
Can BERT eat RuCoLA? Topological Data Analysis to Explain
This paper investigates how Transformer language models (LMs) fine-tuned for acceptability classification capture linguistic features. Our approach uses the best practices of topological data analysis (TDA) in NLP: we construct directed attention graphs from attention matrices, derive topological features from them, and feed them to linear classifiers. We introduce two novel features, chordality, and the matching number, and show that TDA-based classifiers outperform fine-tuning baselines. We experiment with two datasets, CoLA and RuCoLA in English and Russian, typologically different languages. On top of that, we propose several black-box introspection techniques aimed at detecting changes in the attention mode of the LMs during fine-tuning, defining the LM's prediction confidences, and associating individual heads with fine-grained grammar phenomena. Our results contribute to understanding the behavior of monolingual LMs in the acceptability classification task, provide insights into the functional roles of attention heads, and highlight the advantages of TDA-based approaches for analyzing LMs. We release the code and the experimental results for further uptake.
Modality-Agnostic Debiasing for Single Domain Generalization
Deep neural networks (DNNs) usually fail to generalize well to outside of distribution (OOD) data, especially in the extreme case of single domain generalization (single-DG) that transfers DNNs from single domain to multiple unseen domains. Existing single-DG techniques commonly devise various data-augmentation algorithms, and remould the multi-source domain generalization methodology to learn domain-generalized (semantic) features. Nevertheless, these methods are typically modality-specific, thereby being only applicable to one single modality (e.g., image). In contrast, we target a versatile Modality-Agnostic Debiasing (MAD) framework for single-DG, that enables generalization for different modalities. Technically, MAD introduces a novel two-branch classifier: a biased-branch encourages the classifier to identify the domain-specific (superficial) features, and a general-branch captures domain-generalized features based on the knowledge from biased-branch. Our MAD is appealing in view that it is pluggable to most single-DG models. We validate the superiority of our MAD in a variety of single-DG scenarios with different modalities, including recognition on 1D texts, 2D images, 3D point clouds, and semantic segmentation on 2D images. More remarkably, for recognition on 3D point clouds and semantic segmentation on 2D images, MAD improves DSU by 2.82\% and 1.5\% in accuracy and mIOU.
UIUC_BioNLP at SemEval-2021 Task 11: A Cascade of Neural Models for Structuring Scholarly NLP Contributions
We propose a cascade of neural models that performs sentence classification, phrase recognition, and triple extraction to automatically structure the scholarly contributions of NLP publications. To identify the most important contribution sentences in a paper, we used a BERT-based classifier with positional features (Subtask 1). A BERT-CRF model was used to recognize and characterize relevant phrases in contribution sentences (Subtask 2). We categorized the triples into several types based on whether and how their elements were expressed in text, and addressed each type using separate BERT-based classifiers as well as rules (Subtask 3). Our system was officially ranked second in Phase 1 evaluation and first in both parts of Phase 2 evaluation. After fixing a submission error in Pharse 1, our approach yields the best results overall. In this paper, in addition to a system description, we also provide further analysis of our results, highlighting its strengths and limitations. We make our code publicly available at https://github.com/Liu-Hy/nlp-contrib-graph.
Feature Representation Learning for Click-through Rate Prediction: A Review and New Perspectives
Representation learning has been a critical topic in machine learning. In Click-through Rate Prediction, most features are represented as embedding vectors and learned simultaneously with other parameters in the model. With the development of CTR models, feature representation learning has become a trending topic and has been extensively studied by both industrial and academic researchers in recent years. This survey aims at summarizing the feature representation learning in a broader picture and pave the way for future research. To achieve such a goal, we first present a taxonomy of current research methods on feature representation learning following two main issues: (i) which feature to represent and (ii) how to represent these features. Then we give a detailed description of each method regarding these two issues. Finally, the review concludes with a discussion on the future directions of this field.
Feature Gradients: Scalable Feature Selection via Discrete Relaxation
In this paper we introduce Feature Gradients, a gradient-based search algorithm for feature selection. Our approach extends a recent result on the estimation of learnability in the sublinear data regime by showing that the calculation can be performed iteratively (i.e., in mini-batches) and in linear time and space with respect to both the number of features D and the sample size N . This, along with a discrete-to-continuous relaxation of the search domain, allows for an efficient, gradient-based search algorithm among feature subsets for very large datasets. Crucially, our algorithm is capable of finding higher-order correlations between features and targets for both the N > D and N < D regimes, as opposed to approaches that do not consider such interactions and/or only consider one regime. We provide experimental demonstration of the algorithm in small and large sample-and feature-size settings.
Acceptability Judgements via Examining the Topology of Attention Maps
The role of the attention mechanism in encoding linguistic knowledge has received special interest in NLP. However, the ability of the attention heads to judge the grammatical acceptability of a sentence has been underexplored. This paper approaches the paradigm of acceptability judgments with topological data analysis (TDA), showing that the geometric properties of the attention graph can be efficiently exploited for two standard practices in linguistics: binary judgments and linguistic minimal pairs. Topological features enhance the BERT-based acceptability classifier scores by 8%-24% on CoLA in three languages (English, Italian, and Swedish). By revealing the topological discrepancy between attention maps of minimal pairs, we achieve the human-level performance on the BLiMP benchmark, outperforming nine statistical and Transformer LM baselines. At the same time, TDA provides the foundation for analyzing the linguistic functions of attention heads and interpreting the correspondence between the graph features and grammatical phenomena.
Assessing In-context Learning and Fine-tuning for Topic Classification of German Web Data
Researchers in the political and social sciences often rely on classification models to analyze trends in information consumption by examining browsing histories of millions of webpages. Automated scalable methods are necessary due to the impracticality of manual labeling. In this paper, we model the detection of topic-related content as a binary classification task and compare the accuracy of fine-tuned pre-trained encoder models against in-context learning strategies. Using only a few hundred annotated data points per topic, we detect content related to three German policies in a database of scraped webpages. We compare multilingual and monolingual models, as well as zero and few-shot approaches, and investigate the impact of negative sampling strategies and the combination of URL & content-based features. Our results show that a small sample of annotated data is sufficient to train an effective classifier. Fine-tuning encoder-based models yields better results than in-context learning. Classifiers using both URL & content-based features perform best, while using URLs alone provides adequate results when content is unavailable.
Lookback Lens: Detecting and Mitigating Contextual Hallucinations in Large Language Models Using Only Attention Maps
When asked to summarize articles or answer questions given a passage, large language models (LLMs) can hallucinate details and respond with unsubstantiated answers that are inaccurate with respect to the input context. This paper describes a simple approach for detecting such contextual hallucinations. We hypothesize that contextual hallucinations are related to the extent to which an LLM attends to information in the provided context versus its own generations. Based on this intuition, we propose a simple hallucination detection model whose input features are given by the ratio of attention weights on the context versus newly generated tokens (for each attention head). We find that a linear classifier based on these lookback ratio features is as effective as a richer detector that utilizes the entire hidden states of an LLM or a text-based entailment model. The lookback ratio-based detector -- Lookback Lens -- is found to transfer across tasks and even models, allowing a detector that is trained on a 7B model to be applied (without retraining) to a larger 13B model. We further apply this detector to mitigate contextual hallucinations, and find that a simple classifier-guided decoding approach is able to reduce the amount of hallucination, for example by 9.6% in the XSum summarization task.
CHIP: Contrastive Hierarchical Image Pretraining
Few-shot object classification is the task of classifying objects in an image with limited number of examples as supervision. We propose a one-shot/few-shot classification model that can classify an object of any unseen class into a relatively general category in an hierarchically based classification. Our model uses a three-level hierarchical contrastive loss based ResNet152 classifier for classifying an object based on its features extracted from Image embedding, not used during the training phase. For our experimentation, we have used a subset of the ImageNet (ILSVRC-12) dataset that contains only the animal classes for training our model and created our own dataset of unseen classes for evaluating our trained model. Our model provides satisfactory results in classifying the unknown objects into a generic category which has been later discussed in greater detail.
Sentiment Polarity Detection for Software Development
The role of sentiment analysis is increasingly emerging to study software developers' emotions by mining crowd-generated content within social software engineering tools. However, off-the-shelf sentiment analysis tools have been trained on non-technical domains and general-purpose social media, thus resulting in misclassifications of technical jargon and problem reports. Here, we present Senti4SD, a classifier specifically trained to support sentiment analysis in developers' communication channels. Senti4SD is trained and validated using a gold standard of Stack Overflow questions, answers, and comments manually annotated for sentiment polarity. It exploits a suite of both lexicon- and keyword-based features, as well as semantic features based on word embedding. With respect to a mainstream off-the-shelf tool, which we use as a baseline, Senti4SD reduces the misclassifications of neutral and positive posts as emotionally negative. To encourage replications, we release a lab package including the classifier, the word embedding space, and the gold standard with annotation guidelines.
Personality Style Recognition via Machine Learning: Identifying Anaclitic and Introjective Personality Styles from Patients' Speech
In disentangling the heterogeneity observed in psychopathology, personality of the patients is considered crucial. While it has been demonstrated that personality traits are reflected in the language used by a patient, we hypothesize that this enables automatic inference of the personality type directly from speech utterances, potentially more accurately than through a traditional questionnaire-based approach explicitly designed for personality classification. To validate this hypothesis, we adopt natural language processing (NLP) and standard machine learning tools for classification. We test this on a dataset of recorded clinical diagnostic interviews (CDI) on a sample of 79 patients diagnosed with major depressive disorder (MDD) -- a condition for which differentiated treatment based on personality styles has been advocated -- and classified into anaclitic and introjective personality styles. We start by analyzing the interviews to see which linguistic features are associated with each style, in order to gain a better understanding of the styles. Then, we develop automatic classifiers based on (a) standardized questionnaire responses; (b) basic text features, i.e., TF-IDF scores of words and word sequences; (c) more advanced text features, using LIWC (linguistic inquiry and word count) and context-aware features using BERT (bidirectional encoder representations from transformers); (d) audio features. We find that automated classification with language-derived features (i.e., based on LIWC) significantly outperforms questionnaire-based classification models. Furthermore, the best performance is achieved by combining LIWC with the questionnaire features. This suggests that more work should be put into developing linguistically based automated techniques for characterizing personality, however questionnaires still to some extent complement such methods.
FreCDo: A Large Corpus for French Cross-Domain Dialect Identification
We present a novel corpus for French dialect identification comprising 413,522 French text samples collected from public news websites in Belgium, Canada, France and Switzerland. To ensure an accurate estimation of the dialect identification performance of models, we designed the corpus to eliminate potential biases related to topic, writing style, and publication source. More precisely, the training, validation and test splits are collected from different news websites, while searching for different keywords (topics). This leads to a French cross-domain (FreCDo) dialect identification task. We conduct experiments with four competitive baselines, a fine-tuned CamemBERT model, an XGBoost based on fine-tuned CamemBERT features, a Support Vector Machines (SVM) classifier based on fine-tuned CamemBERT features, and an SVM based on word n-grams. Aside from presenting quantitative results, we also make an analysis of the most discriminative features learned by CamemBERT. Our corpus is available at https://github.com/MihaelaGaman/FreCDo.
CoReS: Compatible Representations via Stationarity
Compatible features enable the direct comparison of old and new learned features allowing to use them interchangeably over time. In visual search systems, this eliminates the need to extract new features from the gallery-set when the representation model is upgraded with novel data. This has a big value in real applications as re-indexing the gallery-set can be computationally expensive when the gallery-set is large, or even infeasible due to privacy or other concerns of the application. In this paper, we propose CoReS, a new training procedure to learn representations that are compatible with those previously learned, grounding on the stationarity of the features as provided by fixed classifiers based on polytopes. With this solution, classes are maximally separated in the representation space and maintain their spatial configuration stationary as new classes are added, so that there is no need to learn any mappings between representations nor to impose pairwise training with the previously learned model. We demonstrate that our training procedure largely outperforms the current state of the art and is particularly effective in the case of multiple upgrades of the training-set, which is the typical case in real applications.
DenseNet: Implementing Efficient ConvNet Descriptor Pyramids
Convolutional Neural Networks (CNNs) can provide accurate object classification. They can be extended to perform object detection by iterating over dense or selected proposed object regions. However, the runtime of such detectors scales as the total number and/or area of regions to examine per image, and training such detectors may be prohibitively slow. However, for some CNN classifier topologies, it is possible to share significant work among overlapping regions to be classified. This paper presents DenseNet, an open source system that computes dense, multiscale features from the convolutional layers of a CNN based object classifier. Future work will involve training efficient object detectors with DenseNet feature descriptors.
An Empirical Analysis of Feature Engineering for Predictive Modeling
Machine learning models, such as neural networks, decision trees, random forests, and gradient boosting machines, accept a feature vector, and provide a prediction. These models learn in a supervised fashion where we provide feature vectors mapped to the expected output. It is common practice to engineer new features from the provided feature set. Such engineered features will either augment or replace portions of the existing feature vector. These engineered features are essentially calculated fields based on the values of the other features. Engineering such features is primarily a manual, time-consuming task. Additionally, each type of model will respond differently to different kinds of engineered features. This paper reports empirical research to demonstrate what kinds of engineered features are best suited to various machine learning model types. We provide this recommendation by generating several datasets that we designed to benefit from a particular type of engineered feature. The experiment demonstrates to what degree the machine learning model can synthesize the needed feature on its own. If a model can synthesize a planned feature, it is not necessary to provide that feature. The research demonstrated that the studied models do indeed perform differently with various types of engineered features.
A Hybrid MLP-SVM Model for Classification using Spatial-Spectral Features on Hyper-Spectral Images
There are many challenges in the classification of hyper spectral images such as large dimensionality, scarcity of labeled data and spatial variability of spectral signatures. In this proposed method, we make a hybrid classifier (MLP-SVM) using multilayer perceptron (MLP) and support vector machine (SVM) which aimed to improve the various classification parameters such as accuracy, precision, recall, f-score and to predict the region without ground truth. In proposed method, outputs from the last hidden layer of the neural net-ork become the input to the SVM, which finally classifies into various desired classes. In the present study, we worked on Indian Pines, U. Pavia and Salinas dataset with 16, 9, 16 classes and 200, 103 and 204 reflectance bands respectively, which is provided by AVIRIS and ROSIS sensor of NASA Jet propulsion laboratory. The proposed method significantly increases the accuracy on testing dataset to 93.22%, 96.87%, 93.81% as compare to 86.97%, 88.58%, 88.85% and 91.61%, 96.20%, 90.68% based on individual classifiers SVM and MLP on Indian Pines, U. Pavia and Salinas datasets respectively.
DragonDiffusion: Enabling Drag-style Manipulation on Diffusion Models
Despite the ability of existing large-scale text-to-image (T2I) models to generate high-quality images from detailed textual descriptions, they often lack the ability to precisely edit the generated or real images. In this paper, we propose a novel image editing method, DragonDiffusion, enabling Drag-style manipulation on Diffusion models. Specifically, we construct classifier guidance based on the strong correspondence of intermediate features in the diffusion model. It can transform the editing signals into gradients via feature correspondence loss to modify the intermediate representation of the diffusion model. Based on this guidance strategy, we also build a multi-scale guidance to consider both semantic and geometric alignment. Moreover, a cross-branch self-attention is added to maintain the consistency between the original image and the editing result. Our method, through an efficient design, achieves various editing modes for the generated or real images, such as object moving, object resizing, object appearance replacement, and content dragging. It is worth noting that all editing and content preservation signals come from the image itself, and the model does not require fine-tuning or additional modules. Our source code will be available at https://github.com/MC-E/DragonDiffusion.
Few-Shot Class-Incremental Learning via Training-Free Prototype Calibration
Real-world scenarios are usually accompanied by continuously appearing classes with scare labeled samples, which require the machine learning model to incrementally learn new classes and maintain the knowledge of base classes. In this Few-Shot Class-Incremental Learning (FSCIL) scenario, existing methods either introduce extra learnable components or rely on a frozen feature extractor to mitigate catastrophic forgetting and overfitting problems. However, we find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes. In other words, the strong discriminability of base classes distracts the classification of new classes. To figure out this intriguing phenomenon, we observe that although the feature extractor is only trained on base classes, it can surprisingly represent the semantic similarity between the base and unseen new classes. Building upon these analyses, we propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes by fusing the new prototypes (i.e., mean features of a class) with weighted base prototypes. In addition to standard benchmarks in FSCIL, TEEN demonstrates remarkable performance and consistent improvements over baseline methods in the few-shot learning scenario. Code is available at: https://github.com/wangkiw/TEEN
Class-incremental Novel Class Discovery
We study the new task of class-incremental Novel Class Discovery (class-iNCD), which refers to the problem of discovering novel categories in an unlabelled data set by leveraging a pre-trained model that has been trained on a labelled data set containing disjoint yet related categories. Apart from discovering novel classes, we also aim at preserving the ability of the model to recognize previously seen base categories. Inspired by rehearsal-based incremental learning methods, in this paper we propose a novel approach for class-iNCD which prevents forgetting of past information about the base classes by jointly exploiting base class feature prototypes and feature-level knowledge distillation. We also propose a self-training clustering strategy that simultaneously clusters novel categories and trains a joint classifier for both the base and novel classes. This makes our method able to operate in a class-incremental setting. Our experiments, conducted on three common benchmarks, demonstrate that our method significantly outperforms state-of-the-art approaches. Code is available at https://github.com/OatmealLiu/class-iNCD
On the Stability-Plasticity Dilemma of Class-Incremental Learning
A primary goal of class-incremental learning is to strike a balance between stability and plasticity, where models should be both stable enough to retain knowledge learned from previously seen classes, and plastic enough to learn concepts from new classes. While previous works demonstrate strong performance on class-incremental benchmarks, it is not clear whether their success comes from the models being stable, plastic, or a mixture of both. This paper aims to shed light on how effectively recent class-incremental learning algorithms address the stability-plasticity trade-off. We establish analytical tools that measure the stability and plasticity of feature representations, and employ such tools to investigate models trained with various algorithms on large-scale class-incremental benchmarks. Surprisingly, we find that the majority of class-incremental learning algorithms heavily favor stability over plasticity, to the extent that the feature extractor of a model trained on the initial set of classes is no less effective than that of the final incremental model. Our observations not only inspire two simple algorithms that highlight the importance of feature representation analysis, but also suggest that class-incremental learning approaches, in general, should strive for better feature representation learning.
A Boundary Based Out-of-Distribution Classifier for Generalized Zero-Shot Learning
Generalized Zero-Shot Learning (GZSL) is a challenging topic that has promising prospects in many realistic scenarios. Using a gating mechanism that discriminates the unseen samples from the seen samples can decompose the GZSL problem to a conventional Zero-Shot Learning (ZSL) problem and a supervised classification problem. However, training the gate is usually challenging due to the lack of data in the unseen domain. To resolve this problem, in this paper, we propose a boundary based Out-of-Distribution (OOD) classifier which classifies the unseen and seen domains by only using seen samples for training. First, we learn a shared latent space on a unit hyper-sphere where the latent distributions of visual features and semantic attributes are aligned class-wisely. Then we find the boundary and the center of the manifold for each class. By leveraging the class centers and boundaries, the unseen samples can be separated from the seen samples. After that, we use two experts to classify the seen and unseen samples separately. We extensively validate our approach on five popular benchmark datasets including AWA1, AWA2, CUB, FLO and SUN. The experimental results demonstrate the advantages of our approach over state-of-the-art methods.
ReviewGraph: A Knowledge Graph Embedding Based Framework for Review Rating Prediction with Sentiment Features
In the hospitality industry, understanding the factors that drive customer review ratings is critical for improving guest satisfaction and business performance. This work proposes ReviewGraph for Review Rating Prediction (RRP), a novel framework that transforms textual customer reviews into knowledge graphs by extracting (subject, predicate, object) triples and associating sentiment scores. Using graph embeddings (Node2Vec) and sentiment features, the framework predicts review rating scores through machine learning classifiers. We compare ReviewGraph performance with traditional NLP baselines (such as Bag of Words, TF-IDF, and Word2Vec) and large language models (LLMs), evaluating them in the HotelRec dataset. In comparison to the state of the art literature, our proposed model performs similar to their best performing model but with lower computational cost (without ensemble). While ReviewGraph achieves comparable predictive performance to LLMs and outperforms baselines on agreement-based metrics such as Cohen's Kappa, it offers additional advantages in interpretability, visual exploration, and potential integration into Retrieval-Augmented Generation (RAG) systems. This work highlights the potential of graph-based representations for enhancing review analytics and lays the groundwork for future research integrating advanced graph neural networks and fine-tuned LLM-based extraction methods. We will share ReviewGraph output and platform open-sourced on our GitHub page https://github.com/aaronlifenghan/ReviewGraph
Text Classification Algorithms: A Survey
In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed.
Learning Support and Trivial Prototypes for Interpretable Image Classification
Prototypical part network (ProtoPNet) methods have been designed to achieve interpretable classification by associating predictions with a set of training prototypes, which we refer to as trivial prototypes because they are trained to lie far from the classification boundary in the feature space. Note that it is possible to make an analogy between ProtoPNet and support vector machine (SVM) given that the classification from both methods relies on computing similarity with a set of training points (i.e., trivial prototypes in ProtoPNet, and support vectors in SVM). However, while trivial prototypes are located far from the classification boundary, support vectors are located close to this boundary, and we argue that this discrepancy with the well-established SVM theory can result in ProtoPNet models with inferior classification accuracy. In this paper, we aim to improve the classification of ProtoPNet with a new method to learn support prototypes that lie near the classification boundary in the feature space, as suggested by the SVM theory. In addition, we target the improvement of classification results with a new model, named ST-ProtoPNet, which exploits our support prototypes and the trivial prototypes to provide more effective classification. Experimental results on CUB-200-2011, Stanford Cars, and Stanford Dogs datasets demonstrate that ST-ProtoPNet achieves state-of-the-art classification accuracy and interpretability results. We also show that the proposed support prototypes tend to be better localised in the object of interest rather than in the background region.
A Theoretical Analysis of Contrastive Unsupervised Representation Learning
Recent empirical works have successfully used unlabeled data to learn feature representations that are broadly useful in downstream classification tasks. Several of these methods are reminiscent of the well-known word2vec embedding algorithm: leveraging availability of pairs of semantically "similar" data points and "negative samples," the learner forces the inner product of representations of similar pairs with each other to be higher on average than with negative samples. The current paper uses the term contrastive learning for such algorithms and presents a theoretical framework for analyzing them by introducing latent classes and hypothesizing that semantically similar points are sampled from the same latent class. This framework allows us to show provable guarantees on the performance of the learned representations on the average classification task that is comprised of a subset of the same set of latent classes. Our generalization bound also shows that learned representations can reduce (labeled) sample complexity on downstream tasks. We conduct controlled experiments in both the text and image domains to support the theory.
OpenFE: Automated Feature Generation with Expert-level Performance
The goal of automated feature generation is to liberate machine learning experts from the laborious task of manual feature generation, which is crucial for improving the learning performance of tabular data. The major challenge in automated feature generation is to efficiently and accurately identify effective features from a vast pool of candidate features. In this paper, we present OpenFE, an automated feature generation tool that provides competitive results against machine learning experts. OpenFE achieves high efficiency and accuracy with two components: 1) a novel feature boosting method for accurately evaluating the incremental performance of candidate features and 2) a two-stage pruning algorithm that performs feature pruning in a coarse-to-fine manner. Extensive experiments on ten benchmark datasets show that OpenFE outperforms existing baseline methods by a large margin. We further evaluate OpenFE in two Kaggle competitions with thousands of data science teams participating. In the two competitions, features generated by OpenFE with a simple baseline model can beat 99.3% and 99.6% data science teams respectively. In addition to the empirical results, we provide a theoretical perspective to show that feature generation can be beneficial in a simple yet representative setting. The code is available at https://github.com/ZhangTP1996/OpenFE.
Sequential Attention for Feature Selection
Feature selection is the problem of selecting a subset of features for a machine learning model that maximizes model quality subject to a budget constraint. For neural networks, prior methods, including those based on ell_1 regularization, attention, and other techniques, typically select the entire feature subset in one evaluation round, ignoring the residual value of features during selection, i.e., the marginal contribution of a feature given that other features have already been selected. We propose a feature selection algorithm called Sequential Attention that achieves state-of-the-art empirical results for neural networks. This algorithm is based on an efficient one-pass implementation of greedy forward selection and uses attention weights at each step as a proxy for feature importance. We give theoretical insights into our algorithm for linear regression by showing that an adaptation to this setting is equivalent to the classical Orthogonal Matching Pursuit (OMP) algorithm, and thus inherits all of its provable guarantees. Our theoretical and empirical analyses offer new explanations towards the effectiveness of attention and its connections to overparameterization, which may be of independent interest.
Distributed Representations of Sentences and Documents
Many machine learning algorithms require the input to be represented as a fixed-length feature vector. When it comes to texts, one of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses: they lose the ordering of the words and they also ignore semantics of the words. For example, "powerful," "strong" and "Paris" are equally distant. In this paper, we propose Paragraph Vector, an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents. Our algorithm represents each document by a dense vector which is trained to predict words in the document. Its construction gives our algorithm the potential to overcome the weaknesses of bag-of-words models. Empirical results show that Paragraph Vectors outperform bag-of-words models as well as other techniques for text representations. Finally, we achieve new state-of-the-art results on several text classification and sentiment analysis tasks.
Towards Reliable Audio Deepfake Attribution and Model Recognition: A Multi-Level Autoencoder-Based Framework
The proliferation of audio deepfakes poses a growing threat to trust in digital communications. While detection methods have advanced, attributing audio deepfakes to their source models remains an underexplored yet crucial challenge. In this paper we introduce LAVA (Layered Architecture for Voice Attribution), a hierarchical framework for audio deepfake detection and model recognition that leverages attention-enhanced latent representations extracted by a convolutional autoencoder trained solely on fake audio. Two specialized classifiers operate on these features: Audio Deepfake Attribution (ADA), which identifies the generation technology, and Audio Deepfake Model Recognition (ADMR), which recognize the specific generative model instance. To improve robustness under open-set conditions, we incorporate confidence-based rejection thresholds. Experiments on ASVspoof2021, FakeOrReal, and CodecFake show strong performance: the ADA classifier achieves F1-scores over 95% across all datasets, and the ADMR module reaches 96.31% macro F1 across six classes. Additional tests on unseen attacks from ASVpoof2019 LA and error propagation analysis confirm LAVA's robustness and reliability. The framework advances the field by introducing a supervised approach to deepfake attribution and model recognition under open-set conditions, validated on public benchmarks and accompanied by publicly released models and code. Models and code are available at https://www.github.com/adipiz99/lava-framework.
Human Fall Detection using Transfer Learning-based 3D CNN
Unintentional or accidental falls are one of the significant health issues in senior persons. The population of senior persons is increasing steadily. So, there is a need for an automated fall detection monitoring system. This paper introduces a vision-based fall detection system using a pre-trained 3D CNN. Unlike 2D CNN, 3D CNN extracts not only spatial but also temporal features. The proposed model leverages the original learned weights of a 3D CNN model pre-trained on the Sports1M dataset to extract the spatio-temporal features. Only the SVM classifier was trained, which saves the time required to train the 3D CNN. Stratified shuffle five split cross-validation has been used to split the dataset into training and testing data. Extracted features from the proposed 3D CNN model were fed to an SVM classifier to classify the activity as fall or ADL. Two datasets, GMDCSA and CAUCAFall, were utilized to conduct the experiment. The source code for this work can be accessed via the following link: https://github.com/ekramalam/HFD_3DCNN.
FusionEnsemble-Net: An Attention-Based Ensemble of Spatiotemporal Networks for Multimodal Sign Language Recognition
Accurate recognition of sign language in healthcare communication poses a significant challenge, requiring frameworks that can accurately interpret complex multimodal gestures. To deal with this, we propose FusionEnsemble-Net, a novel attention-based ensemble of spatiotemporal networks that dynamically fuses visual and motion data to enhance recognition accuracy. The proposed approach processes RGB video and range Doppler map radar modalities synchronously through four different spatiotemporal networks. For each network, features from both modalities are continuously fused using an attention-based fusion module before being fed into an ensemble of classifiers. Finally, the outputs of these four different fused channels are combined in an ensemble classification head, thereby enhancing the model's robustness. Experiments demonstrate that FusionEnsemble-Net outperforms state-of-the-art approaches with a test accuracy of 99.44% on the large-scale MultiMeDaLIS dataset for Italian Sign Language. Our findings indicate that an ensemble of diverse spatiotemporal networks, unified by attention-based fusion, yields a robust and accurate framework for complex, multimodal isolated gesture recognition tasks. The source code is available at: https://github.com/rezwanh001/Multimodal-Isolated-Italian-Sign-Language-Recognition.
AntiPhishStack: LSTM-based Stacked Generalization Model for Optimized Phishing URL Detection
The escalating reliance on revolutionary online web services has introduced heightened security risks, with persistent challenges posed by phishing despite extensive security measures. Traditional phishing systems, reliant on machine learning and manual features, struggle with evolving tactics. Recent advances in deep learning offer promising avenues for tackling novel phishing challenges and malicious URLs. This paper introduces a two-phase stack generalized model named AntiPhishStack, designed to detect phishing sites. The model leverages the learning of URLs and character-level TF-IDF features symmetrically, enhancing its ability to combat emerging phishing threats. In Phase I, features are trained on a base machine learning classifier, employing K-fold cross-validation for robust mean prediction. Phase II employs a two-layered stacked-based LSTM network with five adaptive optimizers for dynamic compilation, ensuring premier prediction on these features. Additionally, the symmetrical predictions from both phases are optimized and integrated to train a meta-XGBoost classifier, contributing to a final robust prediction. The significance of this work lies in advancing phishing detection with AntiPhishStack, operating without prior phishing-specific feature knowledge. Experimental validation on two benchmark datasets, comprising benign and phishing or malicious URLs, demonstrates the model's exceptional performance, achieving a notable 96.04% accuracy compared to existing studies. This research adds value to the ongoing discourse on symmetry and asymmetry in information security and provides a forward-thinking solution for enhancing network security in the face of evolving cyber threats.
DiffStyleTTS: Diffusion-based Hierarchical Prosody Modeling for Text-to-Speech with Diverse and Controllable Styles
Human speech exhibits rich and flexible prosodic variations. To address the one-to-many mapping problem from text to prosody in a reasonable and flexible manner, we propose DiffStyleTTS, a multi-speaker acoustic model based on a conditional diffusion module and an improved classifier-free guidance, which hierarchically models speech prosodic features, and controls different prosodic styles to guide prosody prediction. Experiments show that our method outperforms all baselines in naturalness and achieves superior synthesis speed compared to three diffusion-based baselines. Additionally, by adjusting the guiding scale, DiffStyleTTS effectively controls the guidance intensity of the synthetic prosody.
OOTDiffusion: Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on
Image-based virtual try-on (VTON), which aims to generate an outfitted image of a target human wearing an in-shop garment, is a challenging image-synthesis task calling for not only high fidelity of the outfitted human but also full preservation of garment details. To tackle this issue, we propose Outfitting over Try-on Diffusion (OOTDiffusion), leveraging the power of pretrained latent diffusion models and designing a novel network architecture for realistic and controllable virtual try-on. Without an explicit warping process, we propose an outfitting UNet to learn the garment detail features, and merge them with the target human body via our proposed outfitting fusion in the denoising process of diffusion models. In order to further enhance the controllability of our outfitting UNet, we introduce outfitting dropout to the training process, which enables us to adjust the strength of garment features through classifier-free guidance. Our comprehensive experiments on the VITON-HD and Dress Code datasets demonstrate that OOTDiffusion efficiently generates high-quality outfitted images for arbitrary human and garment images, which outperforms other VTON methods in both fidelity and controllability, indicating an impressive breakthrough in virtual try-on. Our source code is available at https://github.com/levihsu/OOTDiffusion.
CLIP meets DINO for Tuning Zero-Shot Classifier using Unlabeled Image Collections
In the era of foundation models, CLIP has emerged as a powerful tool for aligning text and visual modalities into a common embedding space. However, the alignment objective used to train CLIP often results in subpar visual features for fine-grained tasks. In contrast, SSL-pretrained models like DINO excel at extracting rich visual features due to their specialized training paradigm. Yet, these SSL models require an additional supervised linear probing step, which relies on fully labeled data which is often expensive and difficult to obtain at scale. In this paper, we propose a label-free prompt-tuning method that leverages the rich visual features of self-supervised learning models (DINO) and the broad textual knowledge of large language models (LLMs) to largely enhance CLIP-based image classification performance using unlabeled images. Our approach unfolds in three key steps: (1) We generate robust textual feature embeddings that more accurately represent object classes by leveraging class-specific descriptions from LLMs, enabling more effective zero-shot classification compared to CLIP's default name-specific prompts. (2) These textual embeddings are then used to produce pseudo-labels to train an alignment module that integrates the complementary strengths of LLM description-based textual embeddings and DINO's visual features. (3) Finally, we prompt-tune CLIP's vision encoder through DINO-assisted supervision using the trained alignment module. This three-step process allows us to harness the best of visual and textual foundation models, resulting in a powerful and efficient approach that surpasses state-of-the-art label-free classification methods. Notably, our framework, NoLA (No Labels Attached), achieves an average absolute gain of 3.6% over the state-of-the-art LaFter across 11 diverse image classification datasets.
PureEBM: Universal Poison Purification via Mid-Run Dynamics of Energy-Based Models
Data poisoning attacks pose a significant threat to the integrity of machine learning models by leading to misclassification of target distribution data by injecting adversarial examples during training. Existing state-of-the-art (SoTA) defense methods suffer from limitations, such as significantly reduced generalization performance and significant overhead during training, making them impractical or limited for real-world applications. In response to this challenge, we introduce a universal data purification method that defends naturally trained classifiers from malicious white-, gray-, and black-box image poisons by applying a universal stochastic preprocessing step Psi_{T}(x), realized by iterative Langevin sampling of a convergent Energy Based Model (EBM) initialized with an image x. Mid-run dynamics of Psi_{T}(x) purify poison information with minimal impact on features important to the generalization of a classifier network. We show that EBMs remain universal purifiers, even in the presence of poisoned EBM training data, and achieve SoTA defense on leading triggered and triggerless poisons. This work is a subset of a larger framework introduced in \pgen with a more detailed focus on EBM purification and poison defense.
Mitigating Word Bias in Zero-shot Prompt-based Classifiers
Prompt-based classifiers are an attractive approach for zero-shot classification. However, the precise choice of the prompt template and label words can largely influence performance, with semantically equivalent settings often showing notable performance difference. This discrepancy can be partly attributed to word biases, where the classifier may be biased towards classes. To address this problem, it is possible to optimise classification thresholds on a labelled data set, however, this mitigates some of the advantages of prompt-based classifiers. This paper instead approaches this problem by examining the expected marginal probabilities of the classes. Here, probabilities are reweighted to have a uniform prior over classes, in an unsupervised fashion. Further, we draw a theoretical connection between the class priors and the language models' word prior, and offer the ability to set a threshold in a zero-resource fashion. We show that matching class priors correlates strongly with the oracle upper bound performance and demonstrate large consistent performance gains for prompt settings over a range of NLP tasks.
Going Beyond Neural Network Feature Similarity: The Network Feature Complexity and Its Interpretation Using Category Theory
The behavior of neural networks still remains opaque, and a recently widely noted phenomenon is that networks often achieve similar performance when initialized with different random parameters. This phenomenon has attracted significant attention in measuring the similarity between features learned by distinct networks. However, feature similarity could be vague in describing the same feature since equivalent features hardly exist. In this paper, we expand the concept of equivalent feature and provide the definition of what we call functionally equivalent features. These features produce equivalent output under certain transformations. Using this definition, we aim to derive a more intrinsic metric for the so-called feature complexity regarding the redundancy of features learned by a neural network at each layer. We offer a formal interpretation of our approach through the lens of category theory, a well-developed area in mathematics. To quantify the feature complexity, we further propose an efficient algorithm named Iterative Feature Merging. Our experimental results validate our ideas and theories from various perspectives. We empirically demonstrate that the functionally equivalence widely exists among different features learned by the same neural network and we could reduce the number of parameters of the network without affecting the performance.The IFM shows great potential as a data-agnostic model prune method. We have also drawn several interesting empirical findings regarding the defined feature complexity.
Objective Assessment of Social Skills Using Automated Language Analysis for Identification of Schizophrenia and Bipolar Disorder
Several studies have shown that speech and language features, automatically extracted from clinical interviews or spontaneous discourse, have diagnostic value for mental disorders such as schizophrenia and bipolar disorder. They typically make use of a large feature set to train a classifier for distinguishing between two groups of interest, i.e. a clinical and control group. However, a purely data-driven approach runs the risk of overfitting to a particular data set, especially when sample sizes are limited. Here, we first down-select the set of language features to a small subset that is related to a well-validated test of functional ability, the Social Skills Performance Assessment (SSPA). This helps establish the concurrent validity of the selected features. We use only these features to train a simple classifier to distinguish between groups of interest. Linear regression reveals that a subset of language features can effectively model the SSPA, with a correlation coefficient of 0.75. Furthermore, the same feature set can be used to build a strong binary classifier to distinguish between healthy controls and a clinical group (AUC = 0.96) and also between patients within the clinical group with schizophrenia and bipolar I disorder (AUC = 0.83).
Automatic Classification of Object Code Using Machine Learning
Recent research has repeatedly shown that machine learning techniques can be applied to either whole files or file fragments to classify them for analysis. We build upon these techniques to show that for samples of un-labeled compiled computer object code, one can apply the same type of analysis to classify important aspects of the code, such as its target architecture and endianess. We show that using simple byte-value histograms we retain enough information about the opcodes within a sample to classify the target architecture with high accuracy, and then discuss heuristic-based features that exploit information within the operands to determine endianess. We introduce a dataset with over 16000 code samples from 20 architectures and experimentally show that by using our features, classifiers can achieve very high accuracy with relatively small sample sizes.
Estimating Conditional Mutual Information for Dynamic Feature Selection
Dynamic feature selection, where we sequentially query features to make accurate predictions with a minimal budget, is a promising paradigm to reduce feature acquisition costs and provide transparency into a model's predictions. The problem is challenging, however, as it requires both predicting with arbitrary feature sets and learning a policy to identify valuable selections. Here, we take an information-theoretic perspective and prioritize features based on their mutual information with the response variable. The main challenge is implementing this policy, and we design a new approach that estimates the mutual information in a discriminative rather than generative fashion. Building on our approach, we then introduce several further improvements: allowing variable feature budgets across samples, enabling non-uniform feature costs, incorporating prior information, and exploring modern architectures to handle partial inputs. Our experiments show that our method provides consistent gains over recent methods across a variety of datasets.
Background-aware Classification Activation Map for Weakly Supervised Object Localization
Weakly supervised object localization (WSOL) relaxes the requirement of dense annotations for object localization by using image-level classification masks to supervise its learning process. However, current WSOL methods suffer from excessive activation of background locations and need post-processing to obtain the localization mask. This paper attributes these issues to the unawareness of background cues, and propose the background-aware classification activation map (B-CAM) to simultaneously learn localization scores of both object and background with only image-level labels. In our B-CAM, two image-level features, aggregated by pixel-level features of potential background and object locations, are used to purify the object feature from the object-related background and to represent the feature of the pure-background sample, respectively. Then based on these two features, both the object classifier and the background classifier are learned to determine the binary object localization mask. Our B-CAM can be trained in end-to-end manner based on a proposed stagger classification loss, which not only improves the objects localization but also suppresses the background activation. Experiments show that our B-CAM outperforms one-stage WSOL methods on the CUB-200, OpenImages and VOC2012 datasets.
Restart Strategy Selection using Machine Learning Techniques
Restart strategies are an important factor in the performance of conflict-driven Davis Putnam style SAT solvers. Selecting a good restart strategy for a problem instance can enhance the performance of a solver. Inspired by recent success applying machine learning techniques to predict the runtime of SAT solvers, we present a method which uses machine learning to boost solver performance through a smart selection of the restart strategy. Based on easy to compute features, we train both a satisfiability classifier and runtime models. We use these models to choose between restart strategies. We present experimental results comparing this technique with the most commonly used restart strategies. Our results demonstrate that machine learning is effective in improving solver performance.
Persuasion for Good: Towards a Personalized Persuasive Dialogue System for Social Good
Developing intelligent persuasive conversational agents to change people's opinions and actions for social good is the frontier in advancing the ethical development of automated dialogue systems. To do so, the first step is to understand the intricate organization of strategic disclosures and appeals employed in human persuasion conversations. We designed an online persuasion task where one participant was asked to persuade the other to donate to a specific charity. We collected a large dataset with 1,017 dialogues and annotated emerging persuasion strategies from a subset. Based on the annotation, we built a baseline classifier with context information and sentence-level features to predict the 10 persuasion strategies used in the corpus. Furthermore, to develop an understanding of personalized persuasion processes, we analyzed the relationships between individuals' demographic and psychological backgrounds including personality, morality, value systems, and their willingness for donation. Then, we analyzed which types of persuasion strategies led to a greater amount of donation depending on the individuals' personal backgrounds. This work lays the ground for developing a personalized persuasive dialogue system.
Audio-replay attack detection countermeasures
This paper presents the Speech Technology Center (STC) replay attack detection systems proposed for Automatic Speaker Verification Spoofing and Countermeasures Challenge 2017. In this study we focused on comparison of different spoofing detection approaches. These were GMM based methods, high level features extraction with simple classifier and deep learning frameworks. Experiments performed on the development and evaluation parts of the challenge dataset demonstrated stable efficiency of deep learning approaches in case of changing acoustic conditions. At the same time SVM classifier with high level features provided a substantial input in the efficiency of the resulting STC systems according to the fusion systems results.
Reprogramming under constraints: Revisiting efficient and reliable transferability of lottery tickets
In the era of foundation models with huge pre-training budgets, the downstream tasks have been shifted to the narrative of efficient and fast adaptation. For classification-based tasks in the domain of computer vision, the two most efficient approaches have been linear probing (LP) and visual prompting/reprogramming (VP); the former aims to learn a classifier in the form of a linear head on the features extracted by the pre-trained model, while the latter maps the input data to the domain of the source data on which the model was originally pre-trained on. Although extensive studies have demonstrated the differences between LP and VP in terms of downstream performance, we explore the capabilities of the two aforementioned methods via the sparsity axis: (a) Data sparsity: the impact of few-shot adaptation and (b) Model sparsity: the impact of lottery tickets (LT). We demonstrate that LT are not universal reprogrammers, i.e., for certain target datasets, reprogramming an LT yields significantly lower performance than the reprogrammed dense model although their corresponding upstream performance is similar. Further, we demonstrate that the calibration of dense models is always superior to that of their lottery ticket counterparts under both LP and VP regimes. Our empirical study opens a new avenue of research into VP for sparse models and encourages further understanding of the performance beyond the accuracy achieved by VP under constraints of sparsity. Code and logs can be accessed at https://github.com/landskape-ai/Reprogram_LT.
Learning to Detour: Shortcut Mitigating Augmentation for Weakly Supervised Semantic Segmentation
Weakly supervised semantic segmentation (WSSS) employing weak forms of labels has been actively studied to alleviate the annotation cost of acquiring pixel-level labels. However, classifiers trained on biased datasets tend to exploit shortcut features and make predictions based on spurious correlations between certain backgrounds and objects, leading to a poor generalization performance. In this paper, we propose shortcut mitigating augmentation (SMA) for WSSS, which generates synthetic representations of object-background combinations not seen in the training data to reduce the use of shortcut features. Our approach disentangles the object-relevant and background features. We then shuffle and combine the disentangled representations to create synthetic features of diverse object-background combinations. SMA-trained classifier depends less on contexts and focuses more on the target object when making predictions. In addition, we analyzed the behavior of the classifier on shortcut usage after applying our augmentation using an attribution method-based metric. The proposed method achieved the improved performance of semantic segmentation result on PASCAL VOC 2012 and MS COCO 2014 datasets.
DASO: Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced Semi-Supervised Learning
The capability of the traditional semi-supervised learning (SSL) methods is far from real-world application due to severely biased pseudo-labels caused by (1) class imbalance and (2) class distribution mismatch between labeled and unlabeled data. This paper addresses such a relatively under-explored problem. First, we propose a general pseudo-labeling framework that class-adaptively blends the semantic pseudo-label from a similarity-based classifier to the linear one from the linear classifier, after making the observation that both types of pseudo-labels have complementary properties in terms of bias. We further introduce a novel semantic alignment loss to establish balanced feature representation to reduce the biased predictions from the classifier. We term the whole framework as Distribution-Aware Semantics-Oriented (DASO) Pseudo-label. We conduct extensive experiments in a wide range of imbalanced benchmarks: CIFAR10/100-LT, STL10-LT, and large-scale long-tailed Semi-Aves with open-set class, and demonstrate that, the proposed DASO framework reliably improves SSL learners with unlabeled data especially when both (1) class imbalance and (2) distribution mismatch dominate.
A Multi-Strategy Approach for AI-Generated Text Detection
This paper presents presents three distinct systems developed for the M-DAIGT shared task on detecting AI generated content in news articles and academic abstracts. The systems includes: (1) A fine-tuned RoBERTa-base classifier, (2) A classical TF-IDF + Support Vector Machine (SVM) classifier , and (3) An Innovative ensemble model named Candace, leveraging probabilistic features extracted from multiple Llama-3.2 models processed by a customTransformer encoder.The RoBERTa-based system emerged as the most performant, achieving near-perfect results on both development and test sets.
Crafting Tomorrow's Headlines: Neural News Generation and Detection in English, Turkish, Hungarian, and Persian
In the era dominated by information overload and its facilitation with Large Language Models (LLMs), the prevalence of misinformation poses a significant threat to public discourse and societal well-being. A critical concern at present involves the identification of machine-generated news. In this work, we take a significant step by introducing a benchmark dataset designed for neural news detection in four languages: English, Turkish, Hungarian, and Persian. The dataset incorporates outputs from multiple multilingual generators (in both, zero-shot and fine-tuned setups) such as BloomZ, LLaMa-2, Mistral, Mixtral, and GPT-4. Next, we experiment with a variety of classifiers, ranging from those based on linguistic features to advanced Transformer-based models and LLMs prompting. We present the detection results aiming to delve into the interpretablity and robustness of machine-generated texts detectors across all target languages.
Sparse Dense Fusion for 3D Object Detection
With the prevalence of multimodal learning, camera-LiDAR fusion has gained popularity in 3D object detection. Although multiple fusion approaches have been proposed, they can be classified into either sparse-only or dense-only fashion based on the feature representation in the fusion module. In this paper, we analyze them in a common taxonomy and thereafter observe two challenges: 1) sparse-only solutions preserve 3D geometric prior and yet lose rich semantic information from the camera, and 2) dense-only alternatives retain the semantic continuity but miss the accurate geometric information from LiDAR. By analyzing these two formulations, we conclude that the information loss is inevitable due to their design scheme. To compensate for the information loss in either manner, we propose Sparse Dense Fusion (SDF), a complementary framework that incorporates both sparse-fusion and dense-fusion modules via the Transformer architecture. Such a simple yet effective sparse-dense fusion structure enriches semantic texture and exploits spatial structure information simultaneously. Through our SDF strategy, we assemble two popular methods with moderate performance and outperform baseline by 4.3% in mAP and 2.5% in NDS, ranking first on the nuScenes benchmark. Extensive ablations demonstrate the effectiveness of our method and empirically align our analysis.
Inducing Neural Collapse to a Fixed Hierarchy-Aware Frame for Reducing Mistake Severity
There is a recently discovered and intriguing phenomenon called Neural Collapse: at the terminal phase of training a deep neural network for classification, the within-class penultimate feature means and the associated classifier vectors of all flat classes collapse to the vertices of a simplex Equiangular Tight Frame (ETF). Recent work has tried to exploit this phenomenon by fixing the related classifier weights to a pre-computed ETF to induce neural collapse and maximize the separation of the learned features when training with imbalanced data. In this work, we propose to fix the linear classifier of a deep neural network to a Hierarchy-Aware Frame (HAFrame), instead of an ETF, and use a cosine similarity-based auxiliary loss to learn hierarchy-aware penultimate features that collapse to the HAFrame. We demonstrate that our approach reduces the mistake severity of the model's predictions while maintaining its top-1 accuracy on several datasets of varying scales with hierarchies of heights ranging from 3 to 12. Code: https://github.com/ltong1130ztr/HAFrame
A Simple Baseline that Questions the Use of Pretrained-Models in Continual Learning
With the success of pretraining techniques in representation learning, a number of continual learning methods based on pretrained models have been proposed. Some of these methods design continual learning mechanisms on the pre-trained representations and only allow minimum updates or even no updates of the backbone models during the training of continual learning. In this paper, we question whether the complexity of these models is needed to achieve good performance by comparing them to a simple baseline that we designed. We argue that the pretrained feature extractor itself can be strong enough to achieve a competitive or even better continual learning performance on Split-CIFAR100 and CoRe 50 benchmarks. To validate this, we conduct a very simple baseline that 1) use the frozen pretrained model to extract image features for every class encountered during the continual learning stage and compute their corresponding mean features on training data, and 2) predict the class of the input based on the nearest neighbor distance between test samples and mean features of the classes; i.e., Nearest Mean Classifier (NMC). This baseline is single-headed, exemplar-free, and can be task-free (by updating the means continually). This baseline achieved 88.53% on 10-Split-CIFAR-100, surpassing most state-of-the-art continual learning methods that are all initialized using the same pretrained transformer model. We hope our baseline may encourage future progress in designing learning systems that can continually add quality to the learning representations even if they started from some pretrained weights.
ArFake: A Multi-Dialect Benchmark and Baselines for Arabic Spoof-Speech Detection
With the rise of generative text-to-speech models, distinguishing between real and synthetic speech has become challenging, especially for Arabic that have received limited research attention. Most spoof detection efforts have focused on English, leaving a significant gap for Arabic and its many dialects. In this work, we introduce the first multi-dialect Arabic spoofed speech dataset. To evaluate the difficulty of the synthesized audio from each model and determine which produces the most challenging samples, we aimed to guide the construction of our final dataset either by merging audios from multiple models or by selecting the best-performing model, we conducted an evaluation pipeline that included training classifiers using two approaches: modern embedding-based methods combined with classifier heads; classical machine learning algorithms applied to MFCC features; and the RawNet2 architecture. The pipeline further incorporated the calculation of Mean Opinion Score based on human ratings, as well as processing both original and synthesized datasets through an Automatic Speech Recognition model to measure the Word Error Rate. Our results demonstrate that FishSpeech outperforms other TTS models in Arabic voice cloning on the Casablanca corpus, producing more realistic and challenging synthetic speech samples. However, relying on a single TTS for dataset creation may limit generalizability.
Optimizing Feature Set for Click-Through Rate Prediction
Click-through prediction (CTR) models transform features into latent vectors and enumerate possible feature interactions to improve performance based on the input feature set. Therefore, when selecting an optimal feature set, we should consider the influence of both feature and its interaction. However, most previous works focus on either feature field selection or only select feature interaction based on the fixed feature set to produce the feature set. The former restricts search space to the feature field, which is too coarse to determine subtle features. They also do not filter useless feature interactions, leading to higher computation costs and degraded model performance. The latter identifies useful feature interaction from all available features, resulting in many redundant features in the feature set. In this paper, we propose a novel method named OptFS to address these problems. To unify the selection of feature and its interaction, we decompose the selection of each feature interaction into the selection of two correlated features. Such a decomposition makes the model end-to-end trainable given various feature interaction operations. By adopting feature-level search space, we set a learnable gate to determine whether each feature should be within the feature set. Because of the large-scale search space, we develop a learning-by-continuation training scheme to learn such gates. Hence, OptFS generates the feature set only containing features which improve the final prediction results. Experimentally, we evaluate OptFS on three public datasets, demonstrating OptFS can optimize feature sets which enhance the model performance and further reduce both the storage and computational cost.
CNN Features off-the-shelf: an Astounding Baseline for Recognition
Recent results indicate that the generic descriptors extracted from the convolutional neural networks are very powerful. This paper adds to the mounting evidence that this is indeed the case. We report on a series of experiments conducted for different recognition tasks using the publicly available code and model of the \overfeat network which was trained to perform object classification on ILSVRC13. We use features extracted from the \overfeat network as a generic image representation to tackle the diverse range of recognition tasks of object image classification, scene recognition, fine grained recognition, attribute detection and image retrieval applied to a diverse set of datasets. We selected these tasks and datasets as they gradually move further away from the original task and data the \overfeat network was trained to solve. Astonishingly, we report consistent superior results compared to the highly tuned state-of-the-art systems in all the visual classification tasks on various datasets. For instance retrieval it consistently outperforms low memory footprint methods except for sculptures dataset. The results are achieved using a linear SVM classifier (or L2 distance in case of retrieval) applied to a feature representation of size 4096 extracted from a layer in the net. The representations are further modified using simple augmentation techniques e.g. jittering. The results strongly suggest that features obtained from deep learning with convolutional nets should be the primary candidate in most visual recognition tasks.
Feature Selection with Distance Correlation
Choosing which properties of the data to use as input to multivariate decision algorithms -- a.k.a. feature selection -- is an important step in solving any problem with machine learning. While there is a clear trend towards training sophisticated deep networks on large numbers of relatively unprocessed inputs (so-called automated feature engineering), for many tasks in physics, sets of theoretically well-motivated and well-understood features already exist. Working with such features can bring many benefits, including greater interpretability, reduced training and run time, and enhanced stability and robustness. We develop a new feature selection method based on Distance Correlation (DisCo), and demonstrate its effectiveness on the tasks of boosted top- and W-tagging. Using our method to select features from a set of over 7,000 energy flow polynomials, we show that we can match the performance of much deeper architectures, by using only ten features and two orders-of-magnitude fewer model parameters.
On Generalizations of Some Distance Based Classifiers for HDLSS Data
In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean distances like the nearest neighbor classifier and the average distance classifier perform quite poorly if differences between locations of the underlying populations get masked by scale differences. To rectify this problem, several modifications of these classifiers have been proposed in the literature. However, existing methods are confined to location and scale differences only, and often fail to discriminate among populations differing outside of the first two moments. In this article, we propose some simple transformations of these classifiers resulting into improved performance even when the underlying populations have the same location and scale. We further propose a generalization of these classifiers based on the idea of grouping of variables. The high-dimensional behavior of the proposed classifiers is studied theoretically. Numerical experiments with a variety of simulated examples as well as an extensive analysis of real data sets exhibit advantages of the proposed methods.
Exploring the Potential of Feature Density in Estimating Machine Learning Classifier Performance with Application to Cyberbullying Detection
In this research. we analyze the potential of Feature Density (HD) as a way to comparatively estimate machine learning (ML) classifier performance prior to training. The goal of the study is to aid in solving the problem of resource-intensive training of ML models which is becoming a serious issue due to continuously increasing dataset sizes and the ever rising popularity of Deep Neural Networks (DNN). The issue of constantly increasing demands for more powerful computational resources is also affecting the environment, as training large-scale ML models are causing alarmingly-growing amounts of CO2, emissions. Our approach 1s to optimize the resource-intensive training of ML models for Natural Language Processing to reduce the number of required experiments iterations. We expand on previous attempts on improving classifier training efficiency with FD while also providing an insight to the effectiveness of various linguistically-backed feature preprocessing methods for dialog classification, specifically cyberbullying detection.
Understanding LLM Embeddings for Regression
With the rise of large language models (LLMs) for flexibly processing information as strings, a natural application is regression, specifically by preprocessing string representations into LLM embeddings as downstream features for metric prediction. In this paper, we provide one of the first comprehensive investigations into embedding-based regression and demonstrate that LLM embeddings as features can be better for high-dimensional regression tasks than using traditional feature engineering. This regression performance can be explained in part due to LLM embeddings over numeric data inherently preserving Lipschitz continuity over the feature space. Furthermore, we quantify the contribution of different model effects, most notably model size and language understanding, which we find surprisingly do not always improve regression performance.
Visual Classification via Description from Large Language Models
Vision-language models (VLMs) such as CLIP have shown promising performance on a variety of recognition tasks using the standard zero-shot classification procedure -- computing similarity between the query image and the embedded words for each category. By only using the category name, they neglect to make use of the rich context of additional information that language affords. The procedure gives no intermediate understanding of why a category is chosen, and furthermore provides no mechanism for adjusting the criteria used towards this decision. We present an alternative framework for classification with VLMs, which we call classification by description. We ask VLMs to check for descriptive features rather than broad categories: to find a tiger, look for its stripes; its claws; and more. By basing decisions on these descriptors, we can provide additional cues that encourage using the features we want to be used. In the process, we can get a clear idea of what features the model uses to construct its decision; it gains some level of inherent explainability. We query large language models (e.g., GPT-3) for these descriptors to obtain them in a scalable way. Extensive experiments show our framework has numerous advantages past interpretability. We show improvements in accuracy on ImageNet across distribution shifts; demonstrate the ability to adapt VLMs to recognize concepts unseen during training; and illustrate how descriptors can be edited to effectively mitigate bias compared to the baseline.
Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination
Neural net classifiers trained on data with annotated class labels can also capture apparent visual similarity among categories without being directed to do so. We study whether this observation can be extended beyond the conventional domain of supervised learning: Can we learn a good feature representation that captures apparent similarity among instances, instead of classes, by merely asking the feature to be discriminative of individual instances? We formulate this intuition as a non-parametric classification problem at the instance-level, and use noise-contrastive estimation to tackle the computational challenges imposed by the large number of instance classes. Our experimental results demonstrate that, under unsupervised learning settings, our method surpasses the state-of-the-art on ImageNet classification by a large margin. Our method is also remarkable for consistently improving test performance with more training data and better network architectures. By fine-tuning the learned feature, we further obtain competitive results for semi-supervised learning and object detection tasks. Our non-parametric model is highly compact: With 128 features per image, our method requires only 600MB storage for a million images, enabling fast nearest neighbour retrieval at the run time.
Evaluating Unsupervised Text Classification: Zero-shot and Similarity-based Approaches
Text classification of unseen classes is a challenging Natural Language Processing task and is mainly attempted using two different types of approaches. Similarity-based approaches attempt to classify instances based on similarities between text document representations and class description representations. Zero-shot text classification approaches aim to generalize knowledge gained from a training task by assigning appropriate labels of unknown classes to text documents. Although existing studies have already investigated individual approaches to these categories, the experiments in literature do not provide a consistent comparison. This paper addresses this gap by conducting a systematic evaluation of different similarity-based and zero-shot approaches for text classification of unseen classes. Different state-of-the-art approaches are benchmarked on four text classification datasets, including a new dataset from the medical domain. Additionally, novel SimCSE and SBERT-based baselines are proposed, as other baselines used in existing work yield weak classification results and are easily outperformed. Finally, the novel similarity-based Lbl2TransformerVec approach is presented, which outperforms previous state-of-the-art approaches in unsupervised text classification. Our experiments show that similarity-based approaches significantly outperform zero-shot approaches in most cases. Additionally, using SimCSE or SBERT embeddings instead of simpler text representations increases similarity-based classification results even further.
MASIL: Towards Maximum Separable Class Representation for Few Shot Class Incremental Learning
Few Shot Class Incremental Learning (FSCIL) with few examples per class for each incremental session is the realistic setting of continual learning since obtaining large number of annotated samples is not feasible and cost effective. We present the framework MASIL as a step towards learning the maximal separable classifier. It addresses the common problem i.e forgetting of old classes and over-fitting to novel classes by learning the classifier weights to be maximally separable between classes forming a simplex Equiangular Tight Frame. We propose the idea of concept factorization explaining the collapsed features for base session classes in terms of concept basis and use these to induce classifier simplex for few shot classes. We further adds fine tuning to reduce any error occurred during factorization and train the classifier jointly on base and novel classes without retaining any base class samples in memory. Experimental results on miniImageNet, CIFAR-100 and CUB-200 demonstrate that MASIL outperforms all the benchmarks.
Language models are weak learners
A central notion in practical and theoretical machine learning is that of a weak learner, classifiers that achieve better-than-random performance (on any given distribution over data), even by a small margin. Such weak learners form the practical basis for canonical machine learning methods such as boosting. In this work, we illustrate that prompt-based large language models can operate effectively as said weak learners. Specifically, we illustrate the use of a large language model (LLM) as a weak learner in a boosting algorithm applied to tabular data. We show that by providing (properly sampled according to the distribution of interest) text descriptions of tabular data samples, LLMs can produce a summary of the samples that serves as a template for classification and achieves the aim of acting as a weak learner on this task. We incorporate these models into a boosting approach, which in some settings can leverage the knowledge within the LLM to outperform traditional tree-based boosting. The model outperforms both few-shot learning and occasionally even more involved fine-tuning procedures, particularly for tasks involving small numbers of data points. The results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
CLASSify: A Web-Based Tool for Machine Learning
Machine learning classification problems are widespread in bioinformatics, but the technical knowledge required to perform model training, optimization, and inference can prevent researchers from utilizing this technology. This article presents an automated tool for machine learning classification problems to simplify the process of training models and producing results while providing informative visualizations and insights into the data. This tool supports both binary and multiclass classification problems, and it provides access to a variety of models and methods. Synthetic data can be generated within the interface to fill missing values, balance class labels, or generate entirely new datasets. It also provides support for feature evaluation and generates explainability scores to indicate which features influence the output the most. We present CLASSify, an open-source tool for simplifying the user experience of solving classification problems without the need for knowledge of machine learning.
BaseTransformers: Attention over base data-points for One Shot Learning
Few shot classification aims to learn to recognize novel categories using only limited samples per category. Most current few shot methods use a base dataset rich in labeled examples to train an encoder that is used for obtaining representations of support instances for novel classes. Since the test instances are from a distribution different to the base distribution, their feature representations are of poor quality, degrading performance. In this paper we propose to make use of the well-trained feature representations of the base dataset that are closest to each support instance to improve its representation during meta-test time. To this end, we propose BaseTransformers, that attends to the most relevant regions of the base dataset feature space and improves support instance representations. Experiments on three benchmark data sets show that our method works well for several backbones and achieves state-of-the-art results in the inductive one shot setting. Code is available at github.com/mayug/BaseTransformers
Can Models Help Us Create Better Models? Evaluating LLMs as Data Scientists
We present a benchmark for large language models designed to tackle one of the most knowledge-intensive tasks in data science: writing feature engineering code, which requires domain knowledge in addition to a deep understanding of the underlying problem and data structure. The model is provided with a dataset description in a prompt and asked to generate code transforming it. The evaluation score is derived from the improvement achieved by an XGBoost model fit on the modified dataset compared to the original data. By an extensive evaluation of state-of-the-art models and comparison to well-established benchmarks, we demonstrate that the FeatEng of our proposal can cheaply and efficiently assess the broad capabilities of LLMs, in contrast to the existing methods.
LLM-FE: Automated Feature Engineering for Tabular Data with LLMs as Evolutionary Optimizers
Automated feature engineering plays a critical role in improving predictive model performance for tabular learning tasks. Traditional automated feature engineering methods are limited by their reliance on pre-defined transformations within fixed, manually designed search spaces, often neglecting domain knowledge. Recent advances using Large Language Models (LLMs) have enabled the integration of domain knowledge into the feature engineering process. However, existing LLM-based approaches use direct prompting or rely solely on validation scores for feature selection, failing to leverage insights from prior feature discovery experiments or establish meaningful reasoning between feature generation and data-driven performance. To address these challenges, we propose LLM-FE, a novel framework that combines evolutionary search with the domain knowledge and reasoning capabilities of LLMs to automatically discover effective features for tabular learning tasks. LLM-FE formulates feature engineering as a program search problem, where LLMs propose new feature transformation programs iteratively, and data-driven feedback guides the search process. Our results demonstrate that LLM-FE consistently outperforms state-of-the-art baselines, significantly enhancing the performance of tabular prediction models across diverse classification and regression benchmarks.
RETUYT in TASS 2017: Sentiment Analysis for Spanish Tweets using SVM and CNN
This article presents classifiers based on SVM and Convolutional Neural Networks (CNN) for the TASS 2017 challenge on tweets sentiment analysis. The classifier with the best performance in general uses a combination of SVM and CNN. The use of word embeddings was particularly useful for improving the classifiers performance.
node2vec: Scalable Feature Learning for Networks
Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node's network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks.
Stationary Representations: Optimally Approximating Compatibility and Implications for Improved Model Replacements
Learning compatible representations enables the interchangeable use of semantic features as models are updated over time. This is particularly relevant in search and retrieval systems where it is crucial to avoid reprocessing of the gallery images with the updated model. While recent research has shown promising empirical evidence, there is still a lack of comprehensive theoretical understanding about learning compatible representations. In this paper, we demonstrate that the stationary representations learned by the d-Simplex fixed classifier optimally approximate compatibility representation according to the two inequality constraints of its formal definition. This not only establishes a solid foundation for future works in this line of research but also presents implications that can be exploited in practical learning scenarios. An exemplary application is the now-standard practice of downloading and fine-tuning new pre-trained models. Specifically, we show the strengths and critical issues of stationary representations in the case in which a model undergoing sequential fine-tuning is asynchronously replaced by downloading a better-performing model pre-trained elsewhere. Such a representation enables seamless delivery of retrieval service (i.e., no reprocessing of gallery images) and offers improved performance without operational disruptions during model replacement. Code available at: https://github.com/miccunifi/iamcl2r.
Representation Learning: A Review and New Perspectives
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
Unicom: Universal and Compact Representation Learning for Image Retrieval
Modern image retrieval methods typically rely on fine-tuning pre-trained encoders to extract image-level descriptors. However, the most widely used models are pre-trained on ImageNet-1K with limited classes. The pre-trained feature representation is therefore not universal enough to generalize well to the diverse open-world classes. In this paper, we first cluster the large-scale LAION400M into one million pseudo classes based on the joint textual and visual features extracted by the CLIP model. Due to the confusion of label granularity, the automatically clustered dataset inevitably contains heavy inter-class conflict. To alleviate such conflict, we randomly select partial inter-class prototypes to construct the margin-based softmax loss. To further enhance the low-dimensional feature representation, we randomly select partial feature dimensions when calculating the similarities between embeddings and class-wise prototypes. The dual random partial selections are with respect to the class dimension and the feature dimension of the prototype matrix, making the classification conflict-robust and the feature embedding compact. Our method significantly outperforms state-of-the-art unsupervised and supervised image retrieval approaches on multiple benchmarks. The code and pre-trained models are released to facilitate future research https://github.com/deepglint/unicom.
I Bet You Did Not Mean That: Testing Semantic Importance via Betting
Recent works have extended notions of feature importance to semantic concepts that are inherently interpretable to the users interacting with a black-box predictive model. Yet, precise statistical guarantees, such as false positive rate control, are needed to communicate findings transparently and to avoid unintended consequences in real-world scenarios. In this paper, we formalize the global (i.e., over a population) and local (i.e., for a sample) statistical importance of semantic concepts for the predictions of opaque models, by means of conditional independence, which allows for rigorous testing. We use recent ideas of sequential kernelized testing (SKIT) to induce a rank of importance across concepts, and showcase the effectiveness and flexibility of our framework on synthetic datasets as well as on image classification tasks using vision-language models such as CLIP.
Word and Document Embeddings based on Neural Network Approaches
Data representation is a fundamental task in machine learning. The representation of data affects the performance of the whole machine learning system. In a long history, the representation of data is done by feature engineering, and researchers aim at designing better features for specific tasks. Recently, the rapid development of deep learning and representation learning has brought new inspiration to various domains. In natural language processing, the most widely used feature representation is the Bag-of-Words model. This model has the data sparsity problem and cannot keep the word order information. Other features such as part-of-speech tagging or more complex syntax features can only fit for specific tasks in most cases. This thesis focuses on word representation and document representation. We compare the existing systems and present our new model. First, for generating word embeddings, we make comprehensive comparisons among existing word embedding models. In terms of theory, we figure out the relationship between the two most important models, i.e., Skip-gram and GloVe. In our experiments, we analyze three key points in generating word embeddings, including the model construction, the training corpus and parameter design. We evaluate word embeddings with three types of tasks, and we argue that they cover the existing use of word embeddings. Through theory and practical experiments, we present some guidelines for how to generate a good word embedding. Second, in Chinese character or word representation. We introduce the joint training of Chinese character and word. ... Third, for document representation, we analyze the existing document representation models, including recursive NNs, recurrent NNs and convolutional NNs. We point out the drawbacks of these models and present our new model, the recurrent convolutional neural networks. ...
TAGLETS: A System for Automatic Semi-Supervised Learning with Auxiliary Data
Machine learning practitioners often have access to a spectrum of data: labeled data for the target task (which is often limited), unlabeled data, and auxiliary data, the many available labeled datasets for other tasks. We describe TAGLETS, a system built to study techniques for automatically exploiting all three types of data and creating high-quality, servable classifiers. The key components of TAGLETS are: (1) auxiliary data organized according to a knowledge graph, (2) modules encapsulating different methods for exploiting auxiliary and unlabeled data, and (3) a distillation stage in which the ensembled modules are combined into a servable model. We compare TAGLETS with state-of-the-art transfer learning and semi-supervised learning methods on four image classification tasks. Our study covers a range of settings, varying the amount of labeled data and the semantic relatedness of the auxiliary data to the target task. We find that the intelligent incorporation of auxiliary and unlabeled data into multiple learning techniques enables TAGLETS to match-and most often significantly surpass-these alternatives. TAGLETS is available as an open-source system at github.com/BatsResearch/taglets.
Splines-Based Feature Importance in Kolmogorov-Arnold Networks: A Framework for Supervised Tabular Data Dimensionality Reduction
High-dimensional datasets require effective feature selection to improve predictive performance, interpretability, and robustness. We propose and evaluate feature selection methods for tabular datasets based on Kolmogorov-Arnold networks (KANs), which parameterize feature transformations through splines, enabling direct access to interpretable importance measures. We introduce four KAN-based selectors (KAN-L1, KAN-L2, KAN-SI, KAN-KO) and compare them against classical baselines (LASSO, Random Forest, Mutual Information, SVM-RFE) across multiple classification and regression tabular dataset benchmarks. Average (over three retention levels: 20\%, 40\%, and 60\%) F1 scores and R^2 score results reveal that KAN-based selectors, particularly KAN-L2, KAN-L1, KAN-SI, and KAN-KO, are competitive with and sometimes superior to classical baselines in structured and synthetic datasets. However, KAN-L1 is often too aggressive in regression, removing useful features, while KAN-L2 underperforms in classification, where simple coefficient shrinkage misses complex feature interactions. KAN-L2 and KAN-SI provide robust performance on noisy regression datasets and heterogeneous datasets, aligning closely with ensemble predictors. In classification tasks, KAN selectors such as KAN-L1, KAN-KO, and KAN-SI sometimes surpass the other selectors by eliminating redundancy, particularly in high-dimensional multi-class data. Overall, our findings demonstrate that KAN-based feature selection provides a powerful and interpretable alternative to traditional methods, capable of uncovering nonlinear and multivariate feature relevance beyond sparsity or impurity-based measures.
CL2R: Compatible Lifelong Learning Representations
In this paper, we propose a method to partially mimic natural intelligence for the problem of lifelong learning representations that are compatible. We take the perspective of a learning agent that is interested in recognizing object instances in an open dynamic universe in a way in which any update to its internal feature representation does not render the features in the gallery unusable for visual search. We refer to this learning problem as Compatible Lifelong Learning Representations (CL2R) as it considers compatible representation learning within the lifelong learning paradigm. We identify stationarity as the property that the feature representation is required to hold to achieve compatibility and propose a novel training procedure that encourages local and global stationarity on the learned representation. Due to stationarity, the statistical properties of the learned features do not change over time, making them interoperable with previously learned features. Extensive experiments on standard benchmark datasets show that our CL2R training procedure outperforms alternative baselines and state-of-the-art methods. We also provide novel metrics to specifically evaluate compatible representation learning under catastrophic forgetting in various sequential learning tasks. Code at https://github.com/NiccoBiondi/CompatibleLifelongRepresentation.
Infinite Feature Selection: A Graph-based Feature Filtering Approach
We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse settings with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process.
On Deep Multi-View Representation Learning: Objectives and Optimization
We consider learning representations (features) in the setting in which we have access to multiple unlabeled views of the data for learning while only one view is available for downstream tasks. Previous work on this problem has proposed several techniques based on deep neural networks, typically involving either autoencoder-like networks with a reconstruction objective or paired feedforward networks with a batch-style correlation-based objective. We analyze several techniques based on prior work, as well as new variants, and compare them empirically on image, speech, and text tasks. We find an advantage for correlation-based representation learning, while the best results on most tasks are obtained with our new variant, deep canonically correlated autoencoders (DCCAE). We also explore a stochastic optimization procedure for minibatch correlation-based objectives and discuss the time/performance trade-offs for kernel-based and neural network-based implementations.
OutRank: Speeding up AutoML-based Model Search for Large Sparse Data sets with Cardinality-aware Feature Ranking
The design of modern recommender systems relies on understanding which parts of the feature space are relevant for solving a given recommendation task. However, real-world data sets in this domain are often characterized by their large size, sparsity, and noise, making it challenging to identify meaningful signals. Feature ranking represents an efficient branch of algorithms that can help address these challenges by identifying the most informative features and facilitating the automated search for more compact and better-performing models (AutoML). We introduce OutRank, a system for versatile feature ranking and data quality-related anomaly detection. OutRank was built with categorical data in mind, utilizing a variant of mutual information that is normalized with regard to the noise produced by features of the same cardinality. We further extend the similarity measure by incorporating information on feature similarity and combined relevance. The proposed approach's feasibility is demonstrated by speeding up the state-of-the-art AutoML system on a synthetic data set with no performance loss. Furthermore, we considered a real-life click-through-rate prediction data set where it outperformed strong baselines such as random forest-based approaches. The proposed approach enables exploration of up to 300% larger feature spaces compared to AutoML-only approaches, enabling faster search for better models on off-the-shelf hardware.
Unified Embedding: Battle-Tested Feature Representations for Web-Scale ML Systems
Learning high-quality feature embeddings efficiently and effectively is critical for the performance of web-scale machine learning systems. A typical model ingests hundreds of features with vocabularies on the order of millions to billions of tokens. The standard approach is to represent each feature value as a d-dimensional embedding, introducing hundreds of billions of parameters for extremely high-cardinality features. This bottleneck has led to substantial progress in alternative embedding algorithms. Many of these methods, however, make the assumption that each feature uses an independent embedding table. This work introduces a simple yet highly effective framework, Feature Multiplexing, where one single representation space is used across many different categorical features. Our theoretical and empirical analysis reveals that multiplexed embeddings can be decomposed into components from each constituent feature, allowing models to distinguish between features. We show that multiplexed representations lead to Pareto-optimal parameter-accuracy tradeoffs for three public benchmark datasets. Further, we propose a highly practical approach called Unified Embedding with three major benefits: simplified feature configuration, strong adaptation to dynamic data distributions, and compatibility with modern hardware. Unified embedding gives significant improvements in offline and online metrics compared to highly competitive baselines across five web-scale search, ads, and recommender systems, where it serves billions of users across the world in industry-leading products.
Not All Language Model Features Are Linear
Recent work has proposed the linear representation hypothesis: that language models perform computation by manipulating one-dimensional representations of concepts ("features") in activation space. In contrast, we explore whether some language model representations may be inherently multi-dimensional. We begin by developing a rigorous definition of irreducible multi-dimensional features based on whether they can be decomposed into either independent or non-co-occurring lower-dimensional features. Motivated by these definitions, we design a scalable method that uses sparse autoencoders to automatically find multi-dimensional features in GPT-2 and Mistral 7B. These auto-discovered features include strikingly interpretable examples, e.g. circular features representing days of the week and months of the year. We identify tasks where these exact circles are used to solve computational problems involving modular arithmetic in days of the week and months of the year. Finally, we provide evidence that these circular features are indeed the fundamental unit of computation in these tasks with intervention experiments on Mistral 7B and Llama 3 8B, and we find further circular representations by breaking down the hidden states for these tasks into interpretable components.
Using the Tsetlin Machine to Learn Human-Interpretable Rules for High-Accuracy Text Categorization with Medical Applications
Medical applications challenge today's text categorization techniques by demanding both high accuracy and ease-of-interpretation. Although deep learning has provided a leap ahead in accuracy, this leap comes at the sacrifice of interpretability. To address this accuracy-interpretability challenge, we here introduce, for the first time, a text categorization approach that leverages the recently introduced Tsetlin Machine. In all brevity, we represent the terms of a text as propositional variables. From these, we capture categories using simple propositional formulae, such as: if "rash" and "reaction" and "penicillin" then Allergy. The Tsetlin Machine learns these formulae from a labelled text, utilizing conjunctive clauses to represent the particular facets of each category. Indeed, even the absence of terms (negated features) can be used for categorization purposes. Our empirical comparison with Na\"ive Bayes, decision trees, linear support vector machines (SVMs), random forest, long short-term memory (LSTM) neural networks, and other techniques, is quite conclusive. The Tsetlin Machine either performs on par with or outperforms all of the evaluated methods on both the 20 Newsgroups and IMDb datasets, as well as on a non-public clinical dataset. On average, the Tsetlin Machine delivers the best recall and precision scores across the datasets. Finally, our GPU implementation of the Tsetlin Machine executes 5 to 15 times faster than the CPU implementation, depending on the dataset. We thus believe that our novel approach can have a significant impact on a wide range of text analysis applications, forming a promising starting point for deeper natural language understanding with the Tsetlin Machine.
Prototype Based Classification from Hierarchy to Fairness
Artificial neural nets can represent and classify many types of data but are often tailored to particular applications -- e.g., for "fair" or "hierarchical" classification. Once an architecture has been selected, it is often difficult for humans to adjust models for a new task; for example, a hierarchical classifier cannot be easily transformed into a fair classifier that shields a protected field. Our contribution in this work is a new neural network architecture, the concept subspace network (CSN), which generalizes existing specialized classifiers to produce a unified model capable of learning a spectrum of multi-concept relationships. We demonstrate that CSNs reproduce state-of-the-art results in fair classification when enforcing concept independence, may be transformed into hierarchical classifiers, or even reconcile fairness and hierarchy within a single classifier. The CSN is inspired by existing prototype-based classifiers that promote interpretability.
Domain Generalization via Rationale Invariance
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments. Our design focuses on the decision-making process in the final classifier layer. Specifically, we propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix. For a well-generalized model, we suggest the rationale matrices for samples belonging to the same category should be similar, indicating the model relies on domain-invariant clues to make decisions, thereby ensuring robust results. To implement this idea, we introduce a rationale invariance loss as a simple regularization technique, requiring only a few lines of code. Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity. Code is available at https://github.com/liangchen527/RIDG.
Active Self-Paced Learning for Cost-Effective and Progressive Face Identification
This paper aims to develop a novel cost-effective framework for face identification, which progressively maintains a batch of classifiers with the increasing face images of different individuals. By naturally combining two recently rising techniques: active learning (AL) and self-paced learning (SPL), our framework is capable of automatically annotating new instances and incorporating them into training under weak expert re-certification. We first initialize the classifier using a few annotated samples for each individual, and extract image features using the convolutional neural nets. Then, a number of candidates are selected from the unannotated samples for classifier updating, in which we apply the current classifiers ranking the samples by the prediction confidence. In particular, our approach utilizes the high-confidence and low-confidence samples in the self-paced and the active user-query way, respectively. The neural nets are later fine-tuned based on the updated classifiers. Such heuristic implementation is formulated as solving a concise active SPL optimization problem, which also advances the SPL development by supplementing a rational dynamic curriculum constraint. The new model finely accords with the "instructor-student-collaborative" learning mode in human education. The advantages of this proposed framework are two-folds: i) The required number of annotated samples is significantly decreased while the comparable performance is guaranteed. A dramatic reduction of user effort is also achieved over other state-of-the-art active learning techniques. ii) The mixture of SPL and AL effectively improves not only the classifier accuracy compared to existing AL/SPL methods but also the robustness against noisy data. We evaluate our framework on two challenging datasets, and demonstrate very promising results. (http://hcp.sysu.edu.cn/projects/aspl/)
Learning Concise and Descriptive Attributes for Visual Recognition
Recent advances in foundation models present new opportunities for interpretable visual recognition -- one can first query Large Language Models (LLMs) to obtain a set of attributes that describe each class, then apply vision-language models to classify images via these attributes. Pioneering work shows that querying thousands of attributes can achieve performance competitive with image features. However, our further investigation on 8 datasets reveals that LLM-generated attributes in a large quantity perform almost the same as random words. This surprising finding suggests that significant noise may be present in these attributes. We hypothesize that there exist subsets of attributes that can maintain the classification performance with much smaller sizes, and propose a novel learning-to-search method to discover those concise sets of attributes. As a result, on the CUB dataset, our method achieves performance close to that of massive LLM-generated attributes (e.g., 10k attributes for CUB), yet using only 32 attributes in total to distinguish 200 bird species. Furthermore, our new paradigm demonstrates several additional benefits: higher interpretability and interactivity for humans, and the ability to summarize knowledge for a recognition task.
Vietnamese Word Segmentation with SVM: Ambiguity Reduction and Suffix Capture
In this paper, we approach Vietnamese word segmentation as a binary classification by using the Support Vector Machine classifier. We inherit features from prior works such as n-gram of syllables, n-gram of syllable types, and checking conjunction of adjacent syllables in the dictionary. We propose two novel ways to feature extraction, one to reduce the overlap ambiguity and the other to increase the ability to predict unknown words containing suffixes. Different from UETsegmenter and RDRsegmenter, two state-of-the-art Vietnamese word segmentation methods, we do not employ the longest matching algorithm as an initial processing step or any post-processing technique. According to experimental results on benchmark Vietnamese datasets, our proposed method obtained a better F1-score than the prior state-of-the-art methods UETsegmenter, and RDRsegmenter.
FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning
Exemplar-free class-incremental learning is very challenging due to the negative effect of catastrophic forgetting. A balance between stability and plasticity of the incremental process is needed in order to obtain good accuracy for past as well as new classes. Existing exemplar-free class-incremental methods focus either on successive fine tuning of the model, thus favoring plasticity, or on using a feature extractor fixed after the initial incremental state, thus favoring stability. We introduce a method which combines a fixed feature extractor and a pseudo-features generator to improve the stability-plasticity balance. The generator uses a simple yet effective geometric translation of new class features to create representations of past classes, made of pseudo-features. The translation of features only requires the storage of the centroid representations of past classes to produce their pseudo-features. Actual features of new classes and pseudo-features of past classes are fed into a linear classifier which is trained incrementally to discriminate between all classes. The incremental process is much faster with the proposed method compared to mainstream ones which update the entire deep model. Experiments are performed with three challenging datasets, and different incremental settings. A comparison with ten existing methods shows that our method outperforms the others in most cases.
Utilizing Semantic Textual Similarity for Clinical Survey Data Feature Selection
Survey data can contain a high number of features while having a comparatively low quantity of examples. Machine learning models that attempt to predict outcomes from survey data under these conditions can overfit and result in poor generalizability. One remedy to this issue is feature selection, which attempts to select an optimal subset of features to learn upon. A relatively unexplored source of information in the feature selection process is the usage of textual names of features, which may be semantically indicative of which features are relevant to a target outcome. The relationships between feature names and target names can be evaluated using language models (LMs) to produce semantic textual similarity (STS) scores, which can then be used to select features. We examine the performance using STS to select features directly and in the minimal-redundancy-maximal-relevance (mRMR) algorithm. The performance of STS as a feature selection metric is evaluated against preliminary survey data collected as a part of a clinical study on persistent post-surgical pain (PPSP). The results suggest that features selected with STS can result in higher performance models compared to traditional feature selection algorithms.
