new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

VAEmo: Efficient Representation Learning for Visual-Audio Emotion with Knowledge Injection

Audiovisual emotion recognition (AVER) aims to infer human emotions from nonverbal visual-audio (VA) cues, offering modality-complementary and language-agnostic advantages. However, AVER remains challenging due to the inherent ambiguity of emotional expressions, cross-modal expressive disparities, and the scarcity of reliably annotated data. Recent self-supervised AVER approaches have introduced strong multimodal representations, yet they predominantly rely on modality-specific encoders and coarse content-level alignment, limiting fine-grained emotional semantic modeling. To address these issues, we propose VAEmo, an efficient two-stage framework for emotion-centric joint VA representation learning with external knowledge injection. In Stage~1, a unified and lightweight representation network is pre-trained on large-scale speaker-centric VA corpora via masked reconstruction and contrastive objectives, mitigating the modality gap and learning expressive, complementary representations without emotion labels. In Stage~2, multimodal large language models automatically generate detailed affective descriptions according to our well-designed chain-of-thought prompting for only a small subset of VA samples; these rich textual semantics are then injected by aligning their corresponding embeddings with VA representations through dual-path contrastive learning, further bridging the emotion gap. Extensive experiments on multiple downstream AVER benchmarks show that VAEmo achieves state-of-the-art performance with a compact design, highlighting the benefit of unified cross-modal encoding and emotion-aware semantic guidance for efficient, generalizable VA emotion representations.

  • 7 authors
·
May 4, 2025

UniEmoX: Cross-modal Semantic-Guided Large-Scale Pretraining for Universal Scene Emotion Perception

Visual emotion analysis holds significant research value in both computer vision and psychology. However, existing methods for visual emotion analysis suffer from limited generalizability due to the ambiguity of emotion perception and the diversity of data scenarios. To tackle this issue, we introduce UniEmoX, a cross-modal semantic-guided large-scale pretraining framework. Inspired by psychological research emphasizing the inseparability of the emotional exploration process from the interaction between individuals and their environment, UniEmoX integrates scene-centric and person-centric low-level image spatial structural information, aiming to derive more nuanced and discriminative emotional representations. By exploiting the similarity between paired and unpaired image-text samples, UniEmoX distills rich semantic knowledge from the CLIP model to enhance emotional embedding representations more effectively. To the best of our knowledge, this is the first large-scale pretraining framework that integrates psychological theories with contemporary contrastive learning and masked image modeling techniques for emotion analysis across diverse scenarios. Additionally, we develop a visual emotional dataset titled Emo8. Emo8 samples cover a range of domains, including cartoon, natural, realistic, science fiction and advertising cover styles, covering nearly all common emotional scenes. Comprehensive experiments conducted on six benchmark datasets across two downstream tasks validate the effectiveness of UniEmoX. The source code is available at https://github.com/chincharles/u-emo.

  • 3 authors
·
Sep 27, 2024

Separating common from salient patterns with Contrastive Representation Learning

Contrastive Analysis is a sub-field of Representation Learning that aims at separating common factors of variation between two datasets, a background (i.e., healthy subjects) and a target (i.e., diseased subjects), from the salient factors of variation, only present in the target dataset. Despite their relevance, current models based on Variational Auto-Encoders have shown poor performance in learning semantically-expressive representations. On the other hand, Contrastive Representation Learning has shown tremendous performance leaps in various applications (classification, clustering, etc.). In this work, we propose to leverage the ability of Contrastive Learning to learn semantically expressive representations well adapted for Contrastive Analysis. We reformulate it under the lens of the InfoMax Principle and identify two Mutual Information terms to maximize and one to minimize. We decompose the first two terms into an Alignment and a Uniformity term, as commonly done in Contrastive Learning. Then, we motivate a novel Mutual Information minimization strategy to prevent information leakage between common and salient distributions. We validate our method, called SepCLR, on three visual datasets and three medical datasets, specifically conceived to assess the pattern separation capability in Contrastive Analysis. Code available at https://github.com/neurospin-projects/2024_rlouiset_sep_clr.

  • 4 authors
·
Feb 19, 2024

Training A Small Emotional Vision Language Model for Visual Art Comprehension

This paper develops small vision language models to understand visual art, which, given an art work, aims to identify its emotion category and explain this prediction with natural language. While small models are computationally efficient, their capacity is much limited compared with large models. To break this trade-off, this paper builds a small emotional vision language model (SEVLM) by emotion modeling and input-output feature alignment. On the one hand, based on valence-arousal-dominance (VAD) knowledge annotated by psychology experts, we introduce and fuse emotional features derived through VAD dictionary and a VAD head to align VAD vectors of predicted emotion explanation and the ground truth. This allows the vision language model to better understand and generate emotional texts, compared with using traditional text embeddings alone. On the other hand, we design a contrastive head to pull close embeddings of the image, its emotion class, and explanation, which aligns model outputs and inputs. On two public affective explanation datasets, we show that the proposed techniques consistently improve the visual art understanding performance of baseline SEVLMs. Importantly, the proposed model can be trained and evaluated on a single RTX 2080 Ti while exhibiting very strong performance: it not only outperforms the state-of-the-art small models but is also competitive compared with LLaVA 7B after fine-tuning and GPT4(V). The code is available at https://github.com/BetterZH/SEVLM-code.

  • 4 authors
·
Mar 17, 2024

Emo Pillars: Knowledge Distillation to Support Fine-Grained Context-Aware and Context-Less Emotion Classification

Most datasets for sentiment analysis lack context in which an opinion was expressed, often crucial for emotion understanding, and are mainly limited by a few emotion categories. Foundation large language models (LLMs) like GPT-4 suffer from over-predicting emotions and are too resource-intensive. We design an LLM-based data synthesis pipeline and leverage a large model, Mistral-7b, for the generation of training examples for more accessible, lightweight BERT-type encoder models. We focus on enlarging the semantic diversity of examples and propose grounding the generation into a corpus of narratives to produce non-repetitive story-character-centered utterances with unique contexts over 28 emotion classes. By running 700K inferences in 450 GPU hours, we contribute with the dataset of 100K contextual and also 300K context-less examples to cover both scenarios. We use it for fine-tuning pre-trained encoders, which results in several Emo Pillars models. We show that Emo Pillars models are highly adaptive to new domains when tuned to specific tasks such as GoEmotions, ISEAR, IEMOCAP, and EmoContext, reaching the SOTA performance on the first three. We also validate our dataset, conducting statistical analysis and human evaluation, and confirm the success of our measures in utterance diversification (although less for the neutral class) and context personalization, while pointing out the need for improved handling of out-of-taxonomy labels within the pipeline.

  • 1 authors
·
Apr 23, 2025

Do LLMs Feel? Teaching Emotion Recognition with Prompts, Retrieval, and Curriculum Learning

Emotion Recognition in Conversation (ERC) is a crucial task for understanding human emotions and enabling natural human-computer interaction. Although Large Language Models (LLMs) have recently shown great potential in this field, their ability to capture the intrinsic connections between explicit and implicit emotions remains limited. We propose a novel ERC training framework, PRC-Emo, which integrates Prompt engineering, demonstration Retrieval, and Curriculum learning, with the goal of exploring whether LLMs can effectively perceive emotions in conversational contexts. Specifically, we design emotion-sensitive prompt templates based on both explicit and implicit emotional cues to better guide the model in understanding the speaker's psychological states. We construct the first dedicated demonstration retrieval repository for ERC, which includes training samples from widely used datasets, as well as high-quality dialogue examples generated by LLMs and manually verified. Moreover, we introduce a curriculum learning strategy into the LoRA fine-tuning process, incorporating weighted emotional shifts between same-speaker and different-speaker utterances to assign difficulty levels to dialogue samples, which are then organized in an easy-to-hard training sequence. Experimental results on two benchmark datasets-- IEMOCAP and MELD --show that our method achieves new state-of-the-art (SOTA) performance, demonstrating the effectiveness and generalizability of our approach in improving LLM-based emotional understanding.

A Primer on Contrastive Pretraining in Language Processing: Methods, Lessons Learned and Perspectives

Modern natural language processing (NLP) methods employ self-supervised pretraining objectives such as masked language modeling to boost the performance of various application tasks. These pretraining methods are frequently extended with recurrence, adversarial or linguistic property masking, and more recently with contrastive learning objectives. Contrastive self-supervised training objectives enabled recent successes in image representation pretraining by learning to contrast input-input pairs of augmented images as either similar or dissimilar. However, in NLP, automated creation of text input augmentations is still very challenging because a single token can invert the meaning of a sentence. For this reason, some contrastive NLP pretraining methods contrast over input-label pairs, rather than over input-input pairs, using methods from Metric Learning and Energy Based Models. In this survey, we summarize recent self-supervised and supervised contrastive NLP pretraining methods and describe where they are used to improve language modeling, few or zero-shot learning, pretraining data-efficiency and specific NLP end-tasks. We introduce key contrastive learning concepts with lessons learned from prior research and structure works by applications and cross-field relations. Finally, we point to open challenges and future directions for contrastive NLP to encourage bringing contrastive NLP pretraining closer to recent successes in image representation pretraining.

  • 2 authors
·
Feb 25, 2021

CWCL: Cross-Modal Transfer with Continuously Weighted Contrastive Loss

This paper considers contrastive training for cross-modal 0-shot transfer wherein a pre-trained model in one modality is used for representation learning in another domain using pairwise data. The learnt models in the latter domain can then be used for a diverse set of tasks in a zero-shot way, similar to ``Contrastive Language-Image Pre-training (CLIP)'' and ``Locked-image Tuning (LiT)'' that have recently gained considerable attention. Most existing works for cross-modal representation alignment (including CLIP and LiT) use the standard contrastive training objective, which employs sets of positive and negative examples to align similar and repel dissimilar training data samples. However, similarity amongst training examples has a more continuous nature, thus calling for a more `non-binary' treatment. To address this, we propose a novel loss function called Continuously Weighted Contrastive Loss (CWCL) that employs a continuous measure of similarity. With CWCL, we seek to align the embedding space of one modality with another. Owing to the continuous nature of similarity in the proposed loss function, these models outperform existing methods for 0-shot transfer across multiple models, datasets and modalities. Particularly, we consider the modality pairs of image-text and speech-text and our models achieve 5-8% (absolute) improvement over previous state-of-the-art methods in 0-shot image classification and 20-30% (absolute) improvement in 0-shot speech-to-intent classification and keyword classification.

  • 7 authors
·
Sep 25, 2023

Emotion-Qwen: Training Hybrid Experts for Unified Emotion and General Vision-Language Understanding

Emotion understanding in videos aims to accurately recognize and interpret individuals' emotional states by integrating contextual, visual, textual, and auditory cues. While Large Multimodal Models (LMMs) have demonstrated significant progress in general vision-language (VL) tasks, their performance in emotion-specific scenarios remains limited. Moreover, fine-tuning LMMs on emotion-related tasks often leads to catastrophic forgetting, hindering their ability to generalize across diverse tasks. To address these challenges, we present Emotion-Qwen, a tailored multimodal framework designed to enhance both emotion understanding and general VL reasoning. Emotion-Qwen incorporates a sophisticated Hybrid Compressor based on the Mixture of Experts (MoE) paradigm, which dynamically routes inputs to balance emotion-specific and general-purpose processing. The model is pre-trained in a three-stage pipeline on large-scale general and emotional image datasets to support robust multimodal representations. Furthermore, we construct the Video Emotion Reasoning (VER) dataset, comprising more than 40K bilingual video clips with fine-grained descriptive annotations, to further enrich Emotion-Qwen's emotional reasoning capability. Experimental results demonstrate that Emotion-Qwen achieves state-of-the-art performance on multiple emotion recognition benchmarks, while maintaining competitive results on general VL tasks. Code and models are available at https://github.com/24DavidHuang/Emotion-Qwen.

  • 10 authors
·
May 10, 2025

Emotion-Aware Transformer Encoder for Empathetic Dialogue Generation

Modern day conversational agents are trained to emulate the manner in which humans communicate. To emotionally bond with the user, these virtual agents need to be aware of the affective state of the user. Transformers are the recent state of the art in sequence-to-sequence learning that involves training an encoder-decoder model with word embeddings from utterance-response pairs. We propose an emotion-aware transformer encoder for capturing the emotional quotient in the user utterance in order to generate human-like empathetic responses. The contributions of our paper are as follows: 1) An emotion detector module trained on the input utterances determines the affective state of the user in the initial phase 2) A novel transformer encoder is proposed that adds and normalizes the word embedding with emotion embedding thereby integrating the semantic and affective aspects of the input utterance 3) The encoder and decoder stacks belong to the Transformer-XL architecture which is the recent state of the art in language modeling. Experimentation on the benchmark Facebook AI empathetic dialogue dataset confirms the efficacy of our model from the higher BLEU-4 scores achieved for the generated responses as compared to existing methods. Emotionally intelligent virtual agents are now a reality and inclusion of affect as a modality in all human-machine interfaces is foreseen in the immediate future.

  • 4 authors
·
Apr 24, 2022

Revisiting Modeling and Evaluation Approaches in Speech Emotion Recognition: Considering Subjectivity of Annotators and Ambiguity of Emotions

Over the past two decades, speech emotion recognition (SER) has received growing attention. To train SER systems, researchers collect emotional speech databases annotated by crowdsourced or in-house raters who select emotions from predefined categories. However, disagreements among raters are common. Conventional methods treat these disagreements as noise, aggregating labels into a single consensus target. While this simplifies SER as a single-label task, it ignores the inherent subjectivity of human emotion perception. This dissertation challenges such assumptions and asks: (1) Should minority emotional ratings be discarded? (2) Should SER systems learn from only a few individuals' perceptions? (3) Should SER systems predict only one emotion per sample? Psychological studies show that emotion perception is subjective and ambiguous, with overlapping emotional boundaries. We propose new modeling and evaluation perspectives: (1) Retain all emotional ratings and represent them with soft-label distributions. Models trained on individual annotator ratings and jointly optimized with standard SER systems improve performance on consensus-labeled tests. (2) Redefine SER evaluation by including all emotional data and allowing co-occurring emotions (e.g., sad and angry). We propose an ``all-inclusive rule'' that aggregates all ratings to maximize diversity in label representation. Experiments on four English emotion databases show superior performance over majority and plurality labeling. (3) Construct a penalization matrix to discourage unlikely emotion combinations during training. Integrating it into loss functions further improves performance. Overall, embracing minority ratings, multiple annotators, and multi-emotion predictions yields more robust and human-aligned SER systems.

Multimodal Emotion Recognition with Modality-Pairwise Unsupervised Contrastive Loss

Emotion recognition is involved in several real-world applications. With an increase in available modalities, automatic understanding of emotions is being performed more accurately. The success in Multimodal Emotion Recognition (MER), primarily relies on the supervised learning paradigm. However, data annotation is expensive, time-consuming, and as emotion expression and perception depends on several factors (e.g., age, gender, culture) obtaining labels with a high reliability is hard. Motivated by these, we focus on unsupervised feature learning for MER. We consider discrete emotions, and as modalities text, audio and vision are used. Our method, as being based on contrastive loss between pairwise modalities, is the first attempt in MER literature. Our end-to-end feature learning approach has several differences (and advantages) compared to existing MER methods: i) it is unsupervised, so the learning is lack of data labelling cost; ii) it does not require data spatial augmentation, modality alignment, large number of batch size or epochs; iii) it applies data fusion only at inference; and iv) it does not require backbones pre-trained on emotion recognition task. The experiments on benchmark datasets show that our method outperforms several baseline approaches and unsupervised learning methods applied in MER. Particularly, it even surpasses a few supervised MER state-of-the-art.

  • 6 authors
·
Jul 23, 2022

Explainable Multimodal Emotion Reasoning

Multimodal emotion recognition is an active research topic in artificial intelligence. Its primary objective is to integrate multi-modalities (such as acoustic, visual, and lexical clues) to identify human emotional states. Current works generally assume accurate emotion labels for benchmark datasets and focus on developing more effective architectures. But due to the inherent subjectivity of emotions, existing datasets often lack high annotation consistency, resulting in potentially inaccurate labels. Consequently, models built on these datasets may struggle to meet the demands of practical applications. To address this issue, it is crucial to enhance the reliability of emotion annotations. In this paper, we propose a novel task called ``Explainable Multimodal Emotion Reasoning (EMER)''. In contrast to previous works that primarily focus on predicting emotions, EMER takes a step further by providing explanations for these predictions. The prediction is considered correct as long as the reasoning process behind the predicted emotion is plausible. This paper presents our initial efforts on EMER, where we introduce a benchmark dataset, establish baseline models, and define evaluation metrics. Meanwhile, we observe the necessity of integrating multi-faceted capabilities to deal with EMER. Therefore, we propose the first multimodal large language model (LLM) in affective computing, called AffectGPT. We aim to tackle the long-standing challenge of label ambiguity and chart a path toward more reliable techniques. Furthermore, EMER offers an opportunity to evaluate the audio-video-text understanding capabilities of recent multimodal LLM. To facilitate further research, we make the code and data available at: https://github.com/zeroQiaoba/AffectGPT.

  • 9 authors
·
Jun 27, 2023 2

REDAffectiveLM: Leveraging Affect Enriched Embedding and Transformer-based Neural Language Model for Readers' Emotion Detection

Technological advancements in web platforms allow people to express and share emotions towards textual write-ups written and shared by others. This brings about different interesting domains for analysis; emotion expressed by the writer and emotion elicited from the readers. In this paper, we propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM. Within state-of-the-art NLP tasks, it is well understood that utilizing context-specific representations from transformer-based pre-trained language models helps achieve improved performance. Within this affective computing task, we explore how incorporating affective information can further enhance performance. Towards this, we leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention. For empirical evaluation, we procure a new dataset REN-20k, besides using RENh-4k and SemEval-2007. We evaluate the performance of our REDAffectiveLM rigorously across these datasets, against a vast set of state-of-the-art baselines, where our model consistently outperforms baselines and obtains statistically significant results. Our results establish that utilizing affect enriched representation along with context-specific representation within a neural architecture can considerably enhance readers' emotion detection. Since the impact of affect enrichment specifically in readers' emotion detection isn't well explored, we conduct a detailed analysis over affect enriched Bi-LSTM+Attention using qualitative and quantitative model behavior evaluation techniques. We observe that compared to conventional semantic embedding, affect enriched embedding increases ability of the network to effectively identify and assign weightage to key terms responsible for readers' emotion detection.

  • 5 authors
·
Jan 21, 2023

Decoding Emotion in the Deep: A Systematic Study of How LLMs Represent, Retain, and Express Emotion

Large Language Models (LLMs) are increasingly expected to navigate the nuances of human emotion. While research confirms that LLMs can simulate emotional intelligence, their internal emotional mechanisms remain largely unexplored. This paper investigates the latent emotional representations within modern LLMs by asking: how, where, and for how long is emotion encoded in their neural architecture? To address this, we introduce a novel, large-scale Reddit corpus of approximately 400,000 utterances, balanced across seven basic emotions through a multi-stage process of classification, rewriting, and synthetic generation. Using this dataset, we employ lightweight "probes" to read out information from the hidden layers of various Qwen3 and LLaMA models without altering their parameters. Our findings reveal that LLMs develop a surprisingly well-defined internal geometry of emotion, which sharpens with model scale and significantly outperforms zero-shot prompting. We demonstrate that this emotional signal is not a final-layer phenomenon but emerges early and peaks mid-network. Furthermore, the internal states are both malleable (they can be influenced by simple system prompts) and persistent, as the initial emotional tone remains detectable for hundreds of subsequent tokens. We contribute our dataset, an open-source probing toolkit, and a detailed map of the emotional landscape within LLMs, offering crucial insights for developing more transparent and aligned AI systems. The code and dataset are open-sourced.

  • 2 authors
·
Oct 5, 2025

AffectGPT: A New Dataset, Model, and Benchmark for Emotion Understanding with Multimodal Large Language Models

The emergence of multimodal large language models (MLLMs) advances multimodal emotion recognition (MER) to the next level-from naive discriminative tasks to complex emotion understanding with advanced video understanding abilities and natural language description. However, the current community suffers from a lack of large-scale datasets with intensive, descriptive emotion annotations, as well as a multimodal-centric framework to maximize the potential of MLLMs for emotion understanding. To address this, we establish a new benchmark for MLLM-based emotion understanding with a novel dataset (MER-Caption), and a new model (AffectGPT). Utilizing our model-based crowd-sourcing data collection strategy, we construct the largest descriptive emotion dataset to date (by far), featuring over 2K fine-grained emotion categories across 115K samples. We also introduce the AffectGPT model, designed with pre-fusion operations to enhance multimodal integration. Finally, we present MER-UniBench, a unified benchmark with evaluation metrics tailored for both typical MER tasks and the free-form, natural language output style of MLLMs. Extensive experimental results demonstrate AffectGPT's robust performance across various MER tasks. We are publicly releasing both the AffectGPT model and the MER-Caption dataset to foster further research and development in emotion understanding.

  • 12 authors
·
Jan 27, 2025 1

Rethinking Positive Pairs in Contrastive Learning

Contrastive learning, a prominent approach to representation learning, traditionally assumes positive pairs are closely related samples (the same image or class) and negative pairs are distinct samples. We challenge this assumption by proposing to learn from arbitrary pairs, allowing any pair of samples to be positive within our framework.The primary challenge of the proposed approach lies in applying contrastive learning to disparate pairs which are semantically distant. Motivated by the discovery that SimCLR can separate given arbitrary pairs (e.g., garter snake and table lamp) in a subspace, we propose a feature filter in the condition of class pairs that creates the requisite subspaces by gate vectors selectively activating or deactivating dimensions. This filter can be optimized through gradient descent within a conventional contrastive learning mechanism. We present Hydra, a universal contrastive learning framework for visual representations that extends conventional contrastive learning to accommodate arbitrary pairs. Our approach is validated using IN1K, where 1K diverse classes compose 500,500 pairs, most of them being distinct. Surprisingly, Hydra achieves superior performance in this challenging setting. Additional benefits include the prevention of dimensional collapse and the discovery of class relationships. Our work highlights the value of learning common features of arbitrary pairs and potentially broadens the applicability of contrastive learning techniques on the sample pairs with weak relationships.

  • 6 authors
·
Oct 23, 2024

VidEmo: Affective-Tree Reasoning for Emotion-Centric Video Foundation Models

Understanding and predicting emotion from videos has gathered significant attention in recent studies, driven by advancements in video large language models (VideoLLMs). While advanced methods have made progress in video emotion analysis, the intrinsic nature of emotions poses significant challenges. Emotions are characterized by dynamic and cues-dependent properties, making it difficult to understand complex and evolving emotional states with reasonable rationale. To tackle these challenges, we propose a novel affective cues-guided reasoning framework that unifies fundamental attribute perception, expression analysis, and high-level emotional understanding in a stage-wise manner. At the core of our approach is a family of video emotion foundation models (VidEmo), specifically designed for emotion reasoning and instruction-following. These models undergo a two-stage tuning process: first, curriculum emotion learning for injecting emotion knowledge, followed by affective-tree reinforcement learning for emotion reasoning. Moreover, we establish a foundational data infrastructure and introduce a emotion-centric fine-grained dataset (Emo-CFG) consisting of 2.1M diverse instruction-based samples. Emo-CFG includes explainable emotional question-answering, fine-grained captions, and associated rationales, providing essential resources for advancing emotion understanding tasks. Experimental results demonstrate that our approach achieves competitive performance, setting a new milestone across 15 face perception tasks.

  • 7 authors
·
Nov 4, 2025 1

StyDeco: Unsupervised Style Transfer with Distilling Priors and Semantic Decoupling

Diffusion models have emerged as the dominant paradigm for style transfer, but their text-driven mechanism is hindered by a core limitation: it treats textual descriptions as uniform, monolithic guidance. This limitation overlooks the semantic gap between the non-spatial nature of textual descriptions and the spatially-aware attributes of visual style, often leading to the loss of semantic structure and fine-grained details during stylization. In this paper, we propose StyDeco, an unsupervised framework that resolves this limitation by learning text representations specifically tailored for the style transfer task. Our framework first employs Prior-Guided Data Distillation (PGD), a strategy designed to distill stylistic knowledge without human supervision. It leverages a powerful frozen generative model to automatically synthesize pseudo-paired data. Subsequently, we introduce Contrastive Semantic Decoupling (CSD), a task-specific objective that adapts a text encoder using domain-specific weights. CSD performs a two-class clustering in the semantic space, encouraging source and target representations to form distinct clusters. Extensive experiments on three classic benchmarks demonstrate that our framework outperforms several existing approaches in both stylistic fidelity and structural preservation, highlighting its effectiveness in style transfer with semantic preservation. In addition, our framework supports a unique de-stylization process, further demonstrating its extensibility. Our code is vailable at https://github.com/QuanjianSong/StyDeco.

  • 6 authors
·
Aug 2, 2025

Benchmarking and Bridging Emotion Conflicts for Multimodal Emotion Reasoning

Despite their strong performance in multimodal emotion reasoning, existing Multimodal Large Language Models (MLLMs) often overlook the scenarios involving emotion conflicts, where emotional cues from different modalities are inconsistent. To fill this gap, we first introduce CA-MER, a new benchmark designed to examine MLLMs under realistic emotion conflicts. It consists of three subsets: video-aligned, audio-aligned, and consistent, where only one or all modalities reflect the true emotion. However, evaluations on our CA-MER reveal that current state-of-the-art emotion MLLMs systematically over-rely on audio signal during emotion conflicts, neglecting critical cues from visual modality. To mitigate this bias, we propose MoSEAR, a parameter-efficient framework that promotes balanced modality integration. MoSEAR consists of two modules: (1)MoSE, modality-specific experts with a regularized gating mechanism that reduces modality bias in the fine-tuning heads; and (2)AR, an attention reallocation mechanism that rebalances modality contributions in frozen backbones during inference. Our framework offers two key advantages: it mitigates emotion conflicts and improves performance on consistent samples-without incurring a trade-off between audio and visual modalities. Experiments on multiple benchmarks-including MER2023, EMER, DFEW, and our CA-MER-demonstrate that MoSEAR achieves state-of-the-art performance, particularly under modality conflict conditions.

  • 5 authors
·
Aug 2, 2025

Improving Arabic Multi-Label Emotion Classification using Stacked Embeddings and Hybrid Loss Function

In multi-label emotion classification, particularly for low-resource languages like Arabic, the challenges of class imbalance and label correlation hinder model performance, especially in accurately predicting minority emotions. To address these issues, this study proposes a novel approach that combines stacked embeddings, meta-learning, and a hybrid loss function to enhance multi-label emotion classification for the Arabic language. The study extracts contextual embeddings from three fine-tuned language models-ArabicBERT, MarBERT, and AraBERT-which are then stacked to form enriched embeddings. A meta-learner is trained on these stacked embeddings, and the resulting concatenated representations are provided as input to a Bi-LSTM model, followed by a fully connected neural network for multi-label classification. To further improve performance, a hybrid loss function is introduced, incorporating class weighting, label correlation matrix, and contrastive learning, effectively addressing class imbalances and improving the handling of label correlations. Extensive experiments validate the proposed model's performance across key metrics such as Precision, Recall, F1-Score, Jaccard Accuracy, and Hamming Loss. The class-wise performance analysis demonstrates the hybrid loss function's ability to significantly reduce disparities between majority and minority classes, resulting in a more balanced emotion classification. An ablation study highlights the contribution of each component, showing the superiority of the model compared to baseline approaches and other loss functions. This study not only advances multi-label emotion classification for Arabic but also presents a generalizable framework that can be adapted to other languages and domains, providing a significant step forward in addressing the challenges of low-resource emotion classification tasks.

  • 8 authors
·
Oct 4, 2024

EmoDubber: Towards High Quality and Emotion Controllable Movie Dubbing

Given a piece of text, a video clip, and a reference audio, the movie dubbing task aims to generate speech that aligns with the video while cloning the desired voice. The existing methods have two primary deficiencies: (1) They struggle to simultaneously hold audio-visual sync and achieve clear pronunciation; (2) They lack the capacity to express user-defined emotions. To address these problems, we propose EmoDubber, an emotion-controllable dubbing architecture that allows users to specify emotion type and emotional intensity while satisfying high-quality lip sync and pronunciation. Specifically, we first design Lip-related Prosody Aligning (LPA), which focuses on learning the inherent consistency between lip motion and prosody variation by duration level contrastive learning to incorporate reasonable alignment. Then, we design Pronunciation Enhancing (PE) strategy to fuse the video-level phoneme sequences by efficient conformer to improve speech intelligibility. Next, the speaker identity adapting module aims to decode acoustics prior and inject the speaker style embedding. After that, the proposed Flow-based User Emotion Controlling (FUEC) is used to synthesize waveform by flow matching prediction network conditioned on acoustics prior. In this process, the FUEC determines the gradient direction and guidance scale based on the user's emotion instructions by the positive and negative guidance mechanism, which focuses on amplifying the desired emotion while suppressing others. Extensive experimental results on three benchmark datasets demonstrate favorable performance compared to several state-of-the-art methods.

  • 8 authors
·
Dec 12, 2024

L3Cube-MahaEmotions: A Marathi Emotion Recognition Dataset with Synthetic Annotations using CoTR prompting and Large Language Models

Emotion recognition in low-resource languages like Marathi remains challenging due to limited annotated data. We present L3Cube-MahaEmotions, a high-quality Marathi emotion recognition dataset with 11 fine-grained emotion labels. The training data is synthetically annotated using large language models (LLMs), while the validation and test sets are manually labeled to serve as a reliable gold-standard benchmark. Building on the MahaSent dataset, we apply the Chain-of-Translation (CoTR) prompting technique, where Marathi sentences are translated into English and emotion labeled via a single prompt. GPT-4 and Llama3-405B were evaluated, with GPT-4 selected for training data annotation due to superior label quality. We evaluate model performance using standard metrics and explore label aggregation strategies (e.g., Union, Intersection). While GPT-4 predictions outperform fine-tuned BERT models, BERT-based models trained on synthetic labels fail to surpass GPT-4. This highlights both the importance of high-quality human-labeled data and the inherent complexity of emotion recognition. An important finding of this work is that generic LLMs like GPT-4 and Llama3-405B generalize better than fine-tuned BERT for complex low-resource emotion recognition tasks. The dataset and model are shared publicly at https://github.com/l3cube-pune/MarathiNLP

  • 2 authors
·
Jun 1, 2025

Facial-R1: Aligning Reasoning and Recognition for Facial Emotion Analysis

Facial Emotion Analysis (FEA) extends traditional facial emotion recognition by incorporating explainable, fine-grained reasoning. The task integrates three subtasks: emotion recognition, facial Action Unit (AU) recognition, and AU-based emotion reasoning to model affective states jointly. While recent approaches leverage Vision-Language Models (VLMs) and achieve promising results, they face two critical limitations: (1) hallucinated reasoning, where VLMs generate plausible but inaccurate explanations due to insufficient emotion-specific knowledge; and (2) misalignment between emotion reasoning and recognition, caused by fragmented connections between observed facial features and final labels. We propose Facial-R1, a three-stage alignment framework that effectively addresses both challenges with minimal supervision. First, we employ instruction fine-tuning to establish basic emotional reasoning capability. Second, we introduce reinforcement training guided by emotion and AU labels as reward signals, which explicitly aligns the generated reasoning process with the predicted emotion. Third, we design a data synthesis pipeline that iteratively leverages the prior stages to expand the training dataset, enabling scalable self-improvement of the model. Built upon this framework, we introduce FEA-20K, a benchmark dataset comprising 17,737 training and 1,688 test samples with fine-grained emotion analysis annotations. Extensive experiments across eight standard benchmarks demonstrate that Facial-R1 achieves state-of-the-art performance in FEA, with strong generalization and robust interpretability.

  • 7 authors
·
Nov 13, 2025

Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Unsupervised domain adaptation which aims to adapt models trained on a labeled source domain to a completely unlabeled target domain has attracted much attention in recent years. While many domain adaptation techniques have been proposed for images, the problem of unsupervised domain adaptation in videos remains largely underexplored. In this paper, we introduce Contrast and Mix (CoMix), a new contrastive learning framework that aims to learn discriminative invariant feature representations for unsupervised video domain adaptation. First, unlike existing methods that rely on adversarial learning for feature alignment, we utilize temporal contrastive learning to bridge the domain gap by maximizing the similarity between encoded representations of an unlabeled video at two different speeds as well as minimizing the similarity between different videos played at different speeds. Second, we propose a novel extension to the temporal contrastive loss by using background mixing that allows additional positives per anchor, thus adapting contrastive learning to leverage action semantics shared across both domains. Moreover, we also integrate a supervised contrastive learning objective using target pseudo-labels to enhance discriminability of the latent space for video domain adaptation. Extensive experiments on several benchmark datasets demonstrate the superiority of our proposed approach over state-of-the-art methods. Project page: https://cvir.github.io/projects/comix

  • 5 authors
·
Oct 28, 2021

CoDiEmb: A Collaborative yet Distinct Framework for Unified Representation Learning in Information Retrieval and Semantic Textual Similarity

Learning unified text embeddings that excel across diverse downstream tasks is a central goal in representation learning, yet negative transfer remains a persistent obstacle. This challenge is particularly pronounced when jointly training a single encoder for Information Retrieval (IR) and Semantic Textual Similarity (STS), two essential but fundamentally disparate tasks for which naive co-training typically yields steep performance trade-offs. We argue that resolving this conflict requires systematically decoupling task-specific learning signals throughout the training pipeline. To this end, we introduce CoDiEmb, a unified framework that reconciles the divergent requirements of IR and STS in a collaborative yet distinct manner. CoDiEmb integrates three key innovations for effective joint optimization: (1) Task-specialized objectives paired with a dynamic sampler that forms single-task batches and balances per-task updates, thereby preventing gradient interference. For IR, we employ a contrastive loss with multiple positives and hard negatives, augmented by cross-device sampling. For STS, we adopt order-aware objectives that directly optimize correlation and ranking consistency. (2) A delta-guided model fusion strategy that computes fine-grained merging weights for checkpoints by analyzing each parameter's deviation from its pre-trained initialization, proving more effective than traditional Model Soups. (3) An efficient, single-stage training pipeline that is simple to implement and converges stably. Extensive experiments on 15 standard IR and STS benchmarks across three base encoders validate CoDiEmb. Our results and analysis demonstrate that the framework not only mitigates cross-task trade-offs but also measurably improves the geometric properties of the embedding space.

  • 6 authors
·
Aug 15, 2025

Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation

Recent advances in Talking Head Generation (THG) have achieved impressive lip synchronization and visual quality through diffusion models; yet existing methods struggle to generate emotionally expressive portraits while preserving speaker identity. We identify three critical limitations in current emotional talking head generation: insufficient utilization of audio's inherent emotional cues, identity leakage in emotion representations, and isolated learning of emotion correlations. To address these challenges, we propose a novel framework dubbed as DICE-Talk, following the idea of disentangling identity with emotion, and then cooperating emotions with similar characteristics. First, we develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention, representing emotions as identity-agnostic Gaussian distributions. Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks that explicitly capture inter-emotion relationships through vector quantization and attention-based feature aggregation. Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process through latent-space classification. Extensive experiments on MEAD and HDTF datasets demonstrate our method's superiority, outperforming state-of-the-art approaches in emotion accuracy while maintaining competitive lip-sync performance. Qualitative results and user studies further confirm our method's ability to generate identity-preserving portraits with rich, correlated emotional expressions that naturally adapt to unseen identities.

  • 9 authors
·
Apr 25, 2025 2

Customizing Visual Emotion Evaluation for MLLMs: An Open-vocabulary, Multifaceted, and Scalable Approach

Recently, Multimodal Large Language Models (MLLMs) have achieved exceptional performance across diverse tasks, continually surpassing previous expectations regarding their capabilities. Nevertheless, their proficiency in perceiving emotions from images remains debated, with studies yielding divergent results in zero-shot scenarios. We argue that this inconsistency stems partly from constraints in existing evaluation methods, including the oversight of plausible responses, limited emotional taxonomies, neglect of contextual factors, and labor-intensive annotations. To facilitate customized visual emotion evaluation for MLLMs, we propose an Emotion Statement Judgment task that overcomes these constraints. Complementing this task, we devise an automated pipeline that efficiently constructs emotion-centric statements with minimal human effort. Through systematically evaluating prevailing MLLMs, our study showcases their stronger performance in emotion interpretation and context-based emotion judgment, while revealing relative limitations in comprehending perception subjectivity. When compared to humans, even top-performing MLLMs like GPT4o demonstrate remarkable performance gaps, underscoring key areas for future improvement. By developing a fundamental evaluation framework and conducting a comprehensive MLLM assessment, we hope this work contributes to advancing emotional intelligence in MLLMs. Project page: https://github.com/wdqqdw/MVEI.

  • 5 authors
·
Sep 26, 2025