12 StereoSpace: Depth-Free Synthesis of Stereo Geometry via End-to-End Diffusion in a Canonical Space We introduce StereoSpace, a diffusion-based framework for monocular-to-stereo synthesis that models geometry purely through viewpoint conditioning, without explicit depth or warping. A canonical rectified space and the conditioning guide the generator to infer correspondences and fill disocclusions end-to-end. To ensure fair and leakage-free evaluation, we introduce an end-to-end protocol that excludes any ground truth or proxy geometry estimates at test time. The protocol emphasizes metrics reflecting downstream relevance: iSQoE for perceptual comfort and MEt3R for geometric consistency. StereoSpace surpasses other methods from the warp & inpaint, latent-warping, and warped-conditioning categories, achieving sharp parallax and strong robustness on layered and non-Lambertian scenes. This establishes viewpoint-conditioned diffusion as a scalable, depth-free solution for stereo generation. Photogrammetry and Remote Sensing Lab of ETH Zurich · Dec 11, 2025 2
- DynamicEval: Rethinking Evaluation for Dynamic Text-to-Video Synthesis Existing text-to-video (T2V) evaluation benchmarks, such as VBench and EvalCrafter, suffer from two limitations. (i) While the emphasis is on subject-centric prompts or static camera scenes, camera motion essential for producing cinematic shots and existing metrics under dynamic motion are largely unexplored. (ii) These benchmarks typically aggregate video-level scores into a single model-level score for ranking generative models. Such aggregation, however, overlook video-level evaluation, which is vital to selecting the better video among the candidate videos generated for a given prompt. To address these gaps, we introduce DynamicEval, a benchmark consisting of systematically curated prompts emphasizing dynamic camera motion, paired with 45k human annotations on video pairs from 3k videos generated by ten T2V models. DynamicEval evaluates two key dimensions of video quality: background scene consistency and foreground object consistency. For background scene consistency, we obtain the interpretable error maps based on the Vbench motion smoothness metric. We observe that while the Vbench motion smoothness metric shows promising alignment with human judgments, it fails in two cases: occlusions/disocclusions arising from camera and foreground object movements. Building on this, we propose a new background consistency metric that leverages object error maps to correct two failure cases in a principled manner. Our second innovation is the introduction of a foreground consistency metric that tracks points and their neighbors within each object instance to assess object fidelity. Extensive experiments demonstrate that our proposed metrics achieve stronger correlations with human preferences at both the video level and the model level (an improvement of more than 2% points), establishing DynamicEval as a more comprehensive benchmark for evaluating T2V models under dynamic camera motion. 5 authors · Oct 8, 2025