Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeScaling Up Dynamic Human-Scene Interaction Modeling
Confronting the challenges of data scarcity and advanced motion synthesis in human-scene interaction modeling, we introduce the TRUMANS dataset alongside a novel HSI motion synthesis method. TRUMANS stands as the most comprehensive motion-captured HSI dataset currently available, encompassing over 15 hours of human interactions across 100 indoor scenes. It intricately captures whole-body human motions and part-level object dynamics, focusing on the realism of contact. This dataset is further scaled up by transforming physical environments into exact virtual models and applying extensive augmentations to appearance and motion for both humans and objects while maintaining interaction fidelity. Utilizing TRUMANS, we devise a diffusion-based autoregressive model that efficiently generates HSI sequences of any length, taking into account both scene context and intended actions. In experiments, our approach shows remarkable zero-shot generalizability on a range of 3D scene datasets (e.g., PROX, Replica, ScanNet, ScanNet++), producing motions that closely mimic original motion-captured sequences, as confirmed by quantitative experiments and human studies.
DartControl: A Diffusion-Based Autoregressive Motion Model for Real-Time Text-Driven Motion Control
Text-conditioned human motion generation, which allows for user interaction through natural language, has become increasingly popular. Existing methods typically generate short, isolated motions based on a single input sentence. However, human motions are continuous and can extend over long periods, carrying rich semantics. Creating long, complex motions that precisely respond to streams of text descriptions, particularly in an online and real-time setting, remains a significant challenge. Furthermore, incorporating spatial constraints into text-conditioned motion generation presents additional challenges, as it requires aligning the motion semantics specified by text descriptions with geometric information, such as goal locations and 3D scene geometry. To address these limitations, we propose DartControl, in short DART, a Diffusion-based Autoregressive motion primitive model for Real-time Text-driven motion control. Our model effectively learns a compact motion primitive space jointly conditioned on motion history and text inputs using latent diffusion models. By autoregressively generating motion primitives based on the preceding history and current text input, DART enables real-time, sequential motion generation driven by natural language descriptions. Additionally, the learned motion primitive space allows for precise spatial motion control, which we formulate either as a latent noise optimization problem or as a Markov decision process addressed through reinforcement learning. We present effective algorithms for both approaches, demonstrating our model's versatility and superior performance in various motion synthesis tasks. Experiments show our method outperforms existing baselines in motion realism, efficiency, and controllability. Video results are available on the project page: https://zkf1997.github.io/DART/.
Diffusion Beats Autoregressive: An Evaluation of Compositional Generation in Text-to-Image Models
Text-to-image (T2I) generative models, such as Stable Diffusion and DALL-E, have shown remarkable proficiency in producing high-quality, realistic, and natural images from textual descriptions. However, these models sometimes fail to accurately capture all the details specified in the input prompts, particularly concerning entities, attributes, and spatial relationships. This issue becomes more pronounced when the prompt contains novel or complex compositions, leading to what are known as compositional generation failure modes. Recently, a new open-source diffusion-based T2I model, FLUX, has been introduced, demonstrating strong performance in high-quality image generation. Additionally, autoregressive T2I models like LlamaGen have claimed competitive visual quality performance compared to diffusion-based models. In this study, we evaluate the compositional generation capabilities of these newly introduced models against established models using the T2I-CompBench benchmark. Our findings reveal that LlamaGen, as a vanilla autoregressive model, is not yet on par with state-of-the-art diffusion models for compositional generation tasks under the same criteria, such as model size and inference time. On the other hand, the open-source diffusion-based model FLUX exhibits compositional generation capabilities comparable to the state-of-the-art closed-source model DALL-E3.
DreamForge: Motion-Aware Autoregressive Video Generation for Multi-View Driving Scenes
Recent advances in diffusion models have improved controllable streetscape generation and supported downstream perception and planning tasks. However, challenges remain in accurately modeling driving scenes and generating long videos. To alleviate these issues, we propose DreamForge, an advanced diffusion-based autoregressive video generation model tailored for 3D-controllable long-term generation. To enhance the lane and foreground generation, we introduce perspective guidance and integrate object-wise position encoding to incorporate local 3D correlation and improve foreground object modeling. We also propose motion-aware temporal attention to capture motion cues and appearance changes in videos. By leveraging motion frames and an autoregressive generation paradigm,we can autoregressively generate long videos (over 200 frames) using a model trained in short sequences, achieving superior quality compared to the baseline in 16-frame video evaluations. Finally, we integrate our method with the realistic simulator DriveArena to provide more reliable open-loop and closed-loop evaluations for vision-based driving agents. Project Page: https://pjlab-adg.github.io/DriveArena/dreamforge.
DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation
Several recent studies have attempted to autoregressively generate continuous speech representations without discrete speech tokens by combining diffusion and autoregressive models, yet they often face challenges with excessive computational loads or suboptimal outcomes. In this work, we propose Diffusion Transformer Autoregressive Modeling (DiTAR), a patch-based autoregressive framework combining a language model with a diffusion transformer. This approach significantly enhances the efficacy of autoregressive models for continuous tokens and reduces computational demands. DiTAR utilizes a divide-and-conquer strategy for patch generation, where the language model processes aggregated patch embeddings and the diffusion transformer subsequently generates the next patch based on the output of the language model. For inference, we propose defining temperature as the time point of introducing noise during the reverse diffusion ODE to balance diversity and determinism. We also show in the extensive scaling analysis that DiTAR has superb scalability. In zero-shot speech generation, DiTAR achieves state-of-the-art performance in robustness, speaker similarity, and naturalness.
ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer
The recent surge of interest in comprehensive multimodal models has necessitated the unification of diverse modalities. However, the unification suffers from disparate methodologies. Continuous visual generation necessitates the full-sequence diffusion-based approach, despite its divergence from the autoregressive modeling in the text domain. We posit that autoregressive modeling, i.e., predicting the future based on past deterministic experience, remains crucial in developing both a visual generation model and a potential unified multimodal model. In this paper, we explore an interpolation between the autoregressive modeling and full-parameters diffusion to model visual information. At its core, we present ACDiT, an Autoregressive blockwise Conditional Diffusion Transformer, where the block size of diffusion, i.e., the size of autoregressive units, can be flexibly adjusted to interpolate between token-wise autoregression and full-sequence diffusion. ACDiT is easy to implement, as simple as creating a Skip-Causal Attention Mask (SCAM) during training. During inference, the process iterates between diffusion denoising and autoregressive decoding that can make full use of KV-Cache. We verify the effectiveness of ACDiT on image and video generation tasks. We also demonstrate that benefitted from autoregressive modeling, ACDiT can be seamlessly used in visual understanding tasks despite being trained on the diffusion objective. The analysis of the trade-off between autoregressive modeling and diffusion demonstrates the potential of ACDiT to be used in long-horizon visual generation tasks. These strengths make it promising as the backbone of future unified models.
Energy-Based Diffusion Language Models for Text Generation
Despite remarkable progress in autoregressive language models, alternative generative paradigms beyond left-to-right generation are still being actively explored. Discrete diffusion models, with the capacity for parallel generation, have recently emerged as a promising alternative. Unfortunately, these models still underperform the autoregressive counterparts, with the performance gap increasing when reducing the number of sampling steps. Our analysis reveals that this degradation is a consequence of an imperfect approximation used by diffusion models. In this work, we propose Energy-based Diffusion Language Model (EDLM), an energy-based model operating at the full sequence level for each diffusion step, introduced to improve the underlying approximation used by diffusion models. More specifically, we introduce an EBM in a residual form, and show that its parameters can be obtained by leveraging a pretrained autoregressive model or by finetuning a bidirectional transformer via noise contrastive estimation. We also propose an efficient generation algorithm via parallel important sampling. Comprehensive experiments on language modeling benchmarks show that our model can consistently outperform state-of-the-art diffusion models by a significant margin, and approaches autoregressive models' perplexity. We further show that, without any generation performance drop, our framework offers a 1.3times sampling speedup over existing diffusion models.
Likelihood-Based Diffusion Language Models
Despite a growing interest in diffusion-based language models, existing work has not shown that these models can attain nontrivial likelihoods on standard language modeling benchmarks. In this work, we take the first steps towards closing the likelihood gap between autoregressive and diffusion-based language models, with the goal of building and releasing a diffusion model which outperforms a small but widely-known autoregressive model. We pursue this goal through algorithmic improvements, scaling laws, and increased compute. On the algorithmic front, we introduce several methodological improvements for the maximum-likelihood training of diffusion language models. We then study scaling laws for our diffusion models and find compute-optimal training regimes which differ substantially from autoregressive models. Using our methods and scaling analysis, we train and release Plaid 1B, a large diffusion language model which outperforms GPT-2 124M in likelihood on benchmark datasets and generates fluent samples in unconditional and zero-shot control settings.
Unifying Autoregressive and Diffusion-Based Sequence Generation
We present significant extensions to diffusion-based sequence generation models, blurring the line with autoregressive language models. We introduce hyperschedules, which assign distinct noise schedules to individual token positions, generalizing both autoregressive models (e.g., GPT) and conventional diffusion models (e.g., SEDD, MDLM) as special cases. Second, we propose two hybrid token-wise noising processes that interpolate between absorbing and uniform processes, enabling the model to fix past mistakes, and we introduce a novel inference algorithm that leverages this new feature in a simplified context inspired from MDLM. To support efficient training and inference, we design attention masks compatible with KV-caching. Our methods achieve state-of-the-art perplexity and generate diverse, high-quality sequences across standard benchmarks, suggesting a promising path for autoregressive diffusion-based sequence generation.
Fine-Tuning Visual Autoregressive Models for Subject-Driven Generation
Recent advances in text-to-image generative models have enabled numerous practical applications, including subject-driven generation, which fine-tunes pretrained models to capture subject semantics from only a few examples. While diffusion-based models produce high-quality images, their extensive denoising steps result in significant computational overhead, limiting real-world applicability. Visual autoregressive~(VAR) models, which predict next-scale tokens rather than spatially adjacent ones, offer significantly faster inference suitable for practical deployment. In this paper, we propose the first VAR-based approach for subject-driven generation. However, na\"{\i}ve fine-tuning VAR leads to computational overhead, language drift, and reduced diversity. To address these challenges, we introduce selective layer tuning to reduce complexity and prior distillation to mitigate language drift. Additionally, we found that the early stages have a greater influence on the generation of subject than the latter stages, which merely synthesize local details. Based on this finding, we propose scale-wise weighted tuning, which prioritizes coarser resolutions for promoting the model to focus on the subject-relevant information instead of local details. Extensive experiments validate that our method significantly outperforms diffusion-based baselines across various metrics and demonstrates its practical usage.
Self Speculative Decoding for Diffusion Large Language Models
Diffusion-based Large Language Models (dLLMs) have emerged as a competitive alternative to autoregressive models, offering unique advantages through bidirectional attention and parallel generation paradigms. However, the generation results of current parallel decoding methods deviate from stepwise decoding, introducing potential performance degradation, which limits their practical deployment. To address this problem, we propose Self Speculative Decoding (SSD), a lossless inference acceleration method that leverages the dLLM itself as both speculative decoding drafter and verifier without auxiliary modules. SSD introduces a self-drafting mechanism where the model generates predictions for multiple positions, then verifies them through hierarchical verification trees in a single forward pass. Unlike traditional speculative decoding that requires separate draft models, SSD eliminates model redundancy and memory overhead by exploiting the dLLM's inherent parallel prediction capability for multiple positions. This self-speculative approach allows the model to progressively verify and accept multiple tokens in a single forward pass. Our experiments demonstrate that SSD achieves up to 3.46times speedup while keeping the output identical to stepwise decoding on open source models such as LLaDA and Dream. Code will be made publicly available on GitHub.
ARTalk: Speech-Driven 3D Head Animation via Autoregressive Model
Speech-driven 3D facial animation aims to generate realistic lip movements and facial expressions for 3D head models from arbitrary audio clips. Although existing diffusion-based methods are capable of producing natural motions, their slow generation speed limits their application potential. In this paper, we introduce a novel autoregressive model that achieves real-time generation of highly synchronized lip movements and realistic head poses and eye blinks by learning a mapping from speech to a multi-scale motion codebook. Furthermore, our model can adapt to unseen speaking styles using sample motion sequences, enabling the creation of 3D talking avatars with unique personal styles beyond the identities seen during training. Extensive evaluations and user studies demonstrate that our method outperforms existing approaches in lip synchronization accuracy and perceived quality.
Visual Autoregressive Modeling for Instruction-Guided Image Editing
Recent advances in diffusion models have brought remarkable visual fidelity to instruction-guided image editing. However, their global denoising process inherently entangles the edited region with the entire image context, leading to unintended spurious modifications and compromised adherence to editing instructions. In contrast, autoregressive models offer a distinct paradigm by formulating image synthesis as a sequential process over discrete visual tokens. Their causal and compositional mechanism naturally circumvents the adherence challenges of diffusion-based methods. In this paper, we present VAREdit, a visual autoregressive (VAR) framework that reframes image editing as a next-scale prediction problem. Conditioned on source image features and text instructions, VAREdit generates multi-scale target features to achieve precise edits. A core challenge in this paradigm is how to effectively condition the source image tokens. We observe that finest-scale source features cannot effectively guide the prediction of coarser target features. To bridge this gap, we introduce a Scale-Aligned Reference (SAR) module, which injects scale-matched conditioning information into the first self-attention layer. VAREdit demonstrates significant advancements in both editing adherence and efficiency. On standard benchmarks, it outperforms leading diffusion-based methods by 30\%+ higher GPT-Balance score. Moreover, it completes a 512times512 editing in 1.2 seconds, making it 2.2times faster than the similarly sized UltraEdit. The models are available at https://github.com/HiDream-ai/VAREdit.
MagicProp: Diffusion-based Video Editing via Motion-aware Appearance Propagation
This paper addresses the issue of modifying the visual appearance of videos while preserving their motion. A novel framework, named MagicProp, is proposed, which disentangles the video editing process into two stages: appearance editing and motion-aware appearance propagation. In the first stage, MagicProp selects a single frame from the input video and applies image-editing techniques to modify the content and/or style of the frame. The flexibility of these techniques enables the editing of arbitrary regions within the frame. In the second stage, MagicProp employs the edited frame as an appearance reference and generates the remaining frames using an autoregressive rendering approach. To achieve this, a diffusion-based conditional generation model, called PropDPM, is developed, which synthesizes the target frame by conditioning on the reference appearance, the target motion, and its previous appearance. The autoregressive editing approach ensures temporal consistency in the resulting videos. Overall, MagicProp combines the flexibility of image-editing techniques with the superior temporal consistency of autoregressive modeling, enabling flexible editing of object types and aesthetic styles in arbitrary regions of input videos while maintaining good temporal consistency across frames. Extensive experiments in various video editing scenarios demonstrate the effectiveness of MagicProp.
EditAR: Unified Conditional Generation with Autoregressive Models
Recent progress in controllable image generation and editing is largely driven by diffusion-based methods. Although diffusion models perform exceptionally well in specific tasks with tailored designs, establishing a unified model is still challenging. In contrast, autoregressive models inherently feature a unified tokenized representation, which simplifies the creation of a single foundational model for various tasks. In this work, we propose EditAR, a single unified autoregressive framework for a variety of conditional image generation tasks, e.g., image editing, depth-to-image, edge-to-image, segmentation-to-image. The model takes both images and instructions as inputs, and predicts the edited images tokens in a vanilla next-token paradigm. To enhance the text-to-image alignment, we further propose to distill the knowledge from foundation models into the autoregressive modeling process. We evaluate its effectiveness across diverse tasks on established benchmarks, showing competitive performance to various state-of-the-art task-specific methods. Project page: https://jitengmu.github.io/EditAR/
Next-Scale Autoregressive Models are Zero-Shot Single-Image Object View Synthesizers
Methods based on diffusion backbones have recently revolutionized novel view synthesis (NVS). However, those models require pretrained 2D diffusion checkpoints (e.g., Stable Diffusion) as the basis for geometrical priors. Since such checkpoints require exorbitant amounts of data and compute to train, this greatly limits the scalability of diffusion-based NVS models. We present Next-Scale Autoregression Conditioned by View (ArchonView), a method that significantly exceeds state-of-the-art methods despite being trained from scratch with 3D rendering data only and no 2D pretraining. We achieve this by incorporating both global (pose-augmented semantics) and local (multi-scale hierarchical encodings) conditioning into a backbone based on the next-scale autoregression paradigm. Our model also exhibits robust performance even for difficult camera poses where previous methods fail, and is several times faster in inference speed compared to diffusion. We experimentally verify that performance scales with model and dataset size, and conduct extensive demonstration of our method's synthesis quality across several tasks. Our code is open-sourced at https://github.com/Shiran-Yuan/ArchonView.
DiffusER: Discrete Diffusion via Edit-based Reconstruction
In text generation, models that generate text from scratch one token at a time are currently the dominant paradigm. Despite being performant, these models lack the ability to revise existing text, which limits their usability in many practical scenarios. We look to address this, with DiffusER (Diffusion via Edit-based Reconstruction), a new edit-based generative model for text based on denoising diffusion models -- a class of models that use a Markov chain of denoising steps to incrementally generate data. DiffusER is not only a strong generative model in general, rivalling autoregressive models on several tasks spanning machine translation, summarization, and style transfer; it can also perform other varieties of generation that standard autoregressive models are not well-suited for. For instance, we demonstrate that DiffusER makes it possible for a user to condition generation on a prototype, or an incomplete sequence, and continue revising based on previous edit steps.
Attention Sinks in Diffusion Language Models
Masked Diffusion Language Models (DLMs) have recently emerged as a promising alternative to traditional Autoregressive Models (ARMs). DLMs employ transformer encoders with bidirectional attention, enabling parallel token generation while maintaining competitive performance. Although their efficiency and effectiveness have been extensively studied, the internal mechanisms that govern DLMs remain largely unexplored. In this work, we conduct an empirical analysis of DLM attention patterns, focusing on the attention sinking phenomenon, an effect previously observed in various transformer-based architectures. Our findings reveal that DLMs also exhibit attention sinks, but with distinct characteristics. First, unlike in ARMs, the sink positions in DLMs tend to shift throughout the generation process, displaying a dynamic behaviour. Second, while ARMs are highly sensitive to the removal of attention sinks, DLMs remain robust: masking sinks leads to only a minor degradation in performance. These results provide new insights into the inner workings of diffusion-based language models and highlight fundamental differences in how they allocate and utilize attention compared to autoregressive models.
UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion
Unified generation of sequence and structure for scientific data (e.g., materials, molecules, proteins) is a critical task. Existing approaches primarily rely on either autoregressive sequence models or diffusion models, each offering distinct advantages and facing notable limitations. Autoregressive models, such as GPT, Llama, and Phi-4, have demonstrated remarkable success in natural language generation and have been extended to multimodal tasks (e.g., image, video, and audio) using advanced encoders like VQ-VAE to represent complex modalities as discrete sequences. However, their direct application to scientific domains is challenging due to the high precision requirements and the diverse nature of scientific data. On the other hand, diffusion models excel at generating high-dimensional scientific data, such as protein, molecule, and material structures, with remarkable accuracy. Yet, their inability to effectively model sequences limits their potential as general-purpose multimodal foundation models. To address these challenges, we propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models. This integration leverages the strengths of autoregressive models to ease the training of conditional diffusion models, while diffusion-based generative heads enhance the precision of autoregressive predictions. We validate the effectiveness of UniGenX on material and small molecule generation tasks, achieving a significant leap in state-of-the-art performance for material crystal structure prediction and establishing new state-of-the-art results for small molecule structure prediction, de novo design, and conditional generation. Notably, UniGenX demonstrates significant improvements, especially in handling long sequences for complex structures, showcasing its efficacy as a versatile tool for scientific data generation.
InfinityStar: Unified Spacetime AutoRegressive Modeling for Visual Generation
We introduce InfinityStar, a unified spacetime autoregressive framework for high-resolution image and dynamic video synthesis. Building on the recent success of autoregressive modeling in both vision and language, our purely discrete approach jointly captures spatial and temporal dependencies within a single architecture. This unified design naturally supports a variety of generation tasks such as text-to-image, text-to-video, image-to-video, and long interactive video synthesis via straightforward temporal autoregression. Extensive experiments demonstrate that InfinityStar scores 83.74 on VBench, outperforming all autoregressive models by large margins, even surpassing some diffusion competitors like HunyuanVideo. Without extra optimizations, our model generates a 5s, 720p video approximately 10x faster than leading diffusion-based methods. To our knowledge, InfinityStar is the first discrete autoregressive video generator capable of producing industrial level 720p videos. We release all code and models to foster further research in efficient, high-quality video generation.
d$^2$Cache: Accelerating Diffusion-Based LLMs via Dual Adaptive Caching
Diffusion-based large language models (dLLMs), despite their promising performance, still suffer from inferior inference efficiency. This is because dLLMs rely on bidirectional attention and cannot directly benefit from the standard key-value (KV) cache as autoregressive models (ARMs) do. To tackle this issue, we introduce Dual aDaptive Cache (d^2Cache), which is a training-free approximate KV cache framework for accelerating dLLM inference. d^2Cache features a two-stage fine-grained selection strategy to identify tokens and adaptively update their KV states at each decoding step, while caching the KV states of the remaining tokens for reuse. Furthermore, d^2Cache naturally offers a more reliable decoding alternative, which can enable quasi left-to-right generation and mitigate premature overconfidence in tokens at the end of the sequence. Extensive experimental results on two representative dLLMs (\ie, LLaDA and Dream) demonstrate that d^2Cache not only achieves substantial inference speedups, but also yields consistent improvements in generation quality. The code is available at https://github.com/Kamichanw/d2Cache.
LiteVAR: Compressing Visual Autoregressive Modelling with Efficient Attention and Quantization
Visual Autoregressive (VAR) has emerged as a promising approach in image generation, offering competitive potential and performance comparable to diffusion-based models. However, current AR-based visual generation models require substantial computational resources, limiting their applicability on resource-constrained devices. To address this issue, we conducted analysis and identified significant redundancy in three dimensions of the VAR model: (1) the attention map, (2) the attention outputs when using classifier free guidance, and (3) the data precision. Correspondingly, we proposed efficient attention mechanism and low-bit quantization method to enhance the efficiency of VAR models while maintaining performance. With negligible performance lost (less than 0.056 FID increase), we could achieve 85.2% reduction in attention computation, 50% reduction in overall memory and 1.5x latency reduction. To ensure deployment feasibility, we developed efficient training-free compression techniques and analyze the deployment feasibility and efficiency gain of each technique.
LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding
Auto-Regressive (AR) models have recently gained prominence in image generation, often matching or even surpassing the performance of diffusion models. However, one major limitation of AR models is their sequential nature, which processes tokens one at a time, slowing down generation compared to models like GANs or diffusion-based methods that operate more efficiently. While speculative decoding has proven effective for accelerating LLMs by generating multiple tokens in a single forward, its application in visual AR models remains largely unexplored. In this work, we identify a challenge in this setting, which we term token selection ambiguity, wherein visual AR models frequently assign uniformly low probabilities to tokens, hampering the performance of speculative decoding. To overcome this challenge, we propose a relaxed acceptance condition referred to as LANTERN that leverages the interchangeability of tokens in latent space. This relaxation restores the effectiveness of speculative decoding in visual AR models by enabling more flexible use of candidate tokens that would otherwise be prematurely rejected. Furthermore, by incorporating a total variation distance bound, we ensure that these speed gains are achieved without significantly compromising image quality or semantic coherence. Experimental results demonstrate the efficacy of our method in providing a substantial speed-up over speculative decoding. In specific, compared to a na\"ive application of the state-of-the-art speculative decoding, LANTERN increases speed-ups by 1.75times and 1.76times, as compared to greedy decoding and random sampling, respectively, when applied to LlamaGen, a contemporary visual AR model.
Token-Shuffle: Towards High-Resolution Image Generation with Autoregressive Models
Autoregressive (AR) models, long dominant in language generation, are increasingly applied to image synthesis but are often considered less competitive than Diffusion-based models. A primary limitation is the substantial number of image tokens required for AR models, which constrains both training and inference efficiency, as well as image resolution. To address this, we present Token-Shuffle, a novel yet simple method that reduces the number of image tokens in Transformer. Our key insight is the dimensional redundancy of visual vocabularies in Multimodal Large Language Models (MLLMs), where low-dimensional visual codes from visual encoder are directly mapped to high-dimensional language vocabularies. Leveraging this, we consider two key operations: token-shuffle, which merges spatially local tokens along channel dimension to decrease the input token number, and token-unshuffle, which untangles the inferred tokens after Transformer blocks to restore the spatial arrangement for output. Jointly training with textual prompts, our strategy requires no additional pretrained text-encoder and enables MLLMs to support extremely high-resolution image synthesis in a unified next-token prediction way while maintaining efficient training and inference. For the first time, we push the boundary of AR text-to-image generation to a resolution of 2048x2048 with gratifying generation performance. In GenAI-benchmark, our 2.7B model achieves 0.77 overall score on hard prompts, outperforming AR models LlamaGen by 0.18 and diffusion models LDM by 0.15. Exhaustive large-scale human evaluations also demonstrate our prominent image generation ability in terms of text-alignment, visual flaw, and visual appearance. We hope that Token-Shuffle can serve as a foundational design for efficient high-resolution image generation within MLLMs.
Fine-Tuning Next-Scale Visual Autoregressive Models with Group Relative Policy Optimization
Fine-tuning pre-trained generative models with Reinforcement Learning (RL) has emerged as an effective approach for aligning outputs more closely with nuanced human preferences. In this paper, we investigate the application of Group Relative Policy Optimization (GRPO) to fine-tune next-scale visual autoregressive (VAR) models. Our empirical results demonstrate that this approach enables alignment to intricate reward signals derived from aesthetic predictors and CLIP embeddings, significantly enhancing image quality and enabling precise control over the generation style. Interestingly, by leveraging CLIP, our method can help VAR models generalize beyond their initial ImageNet distribution: through RL-driven exploration, these models can generate images aligned with prompts referencing image styles that were absent during pre-training. In summary, we show that RL-based fine-tuning is both efficient and effective for VAR models, benefiting particularly from their fast inference speeds, which are advantageous for online sampling, an aspect that poses significant challenges for diffusion-based alternatives.
LLaDA-VLA: Vision Language Diffusion Action Models
The rapid progress of auto-regressive vision-language models (VLMs) has inspired growing interest in vision-language-action models (VLA) for robotic manipulation. Recently, masked diffusion models, a paradigm distinct from autoregressive models, have begun to demonstrate competitive performance in text generation and multimodal applications, leading to the development of a series of diffusion-based VLMs (d-VLMs). However, leveraging such models for robot policy learning remains largely unexplored. In this work, we present LLaDA-VLA, the first Vision-Language-Diffusion-Action model built upon pretrained d-VLMs for robotic manipulation. To effectively adapt d-VLMs to robotic domain, we introduce two key designs: (1) a localized special-token classification strategy that replaces full-vocabulary classification with special action token classification, reducing adaptation difficulty; (2) a hierarchical action-structured decoding strategy that decodes action sequences hierarchically considering the dependencies within and across actions. Extensive experiments demonstrate that LLaDA-VLA significantly outperforms state-of-the-art VLAs on both simulation and real-world robots.
Lumina-mGPT 2.0: Stand-Alone AutoRegressive Image Modeling
We present Lumina-mGPT 2.0, a stand-alone, decoder-only autoregressive model that revisits and revitalizes the autoregressive paradigm for high-quality image generation and beyond. Unlike existing approaches that rely on pretrained components or hybrid architectures, Lumina-mGPT 2.0 is trained entirely from scratch, enabling unrestricted architectural design and licensing freedom. It achieves generation quality on par with state-of-the-art diffusion models such as DALL-E 3 and SANA, while preserving the inherent flexibility and compositionality of autoregressive modeling. Our unified tokenization scheme allows the model to seamlessly handle a wide spectrum of tasks-including subject-driven generation, image editing, controllable synthesis, and dense prediction-within a single generative framework. To further boost usability, we incorporate efficient decoding strategies like inference-time scaling and speculative Jacobi sampling to improve quality and speed, respectively. Extensive evaluations on standard text-to-image benchmarks (e.g., GenEval, DPG) demonstrate that Lumina-mGPT 2.0 not only matches but in some cases surpasses diffusion-based models. Moreover, we confirm its multi-task capabilities on the Graph200K benchmark, with the native Lumina-mGPT 2.0 performing exceptionally well. These results position Lumina-mGPT 2.0 as a strong, flexible foundation model for unified multimodal generation. We have released our training details, code, and models at https://github.com/Alpha-VLLM/Lumina-mGPT-2.0.
DiffuVST: Narrating Fictional Scenes with Global-History-Guided Denoising Models
Recent advances in image and video creation, especially AI-based image synthesis, have led to the production of numerous visual scenes that exhibit a high level of abstractness and diversity. Consequently, Visual Storytelling (VST), a task that involves generating meaningful and coherent narratives from a collection of images, has become even more challenging and is increasingly desired beyond real-world imagery. While existing VST techniques, which typically use autoregressive decoders, have made significant progress, they suffer from low inference speed and are not well-suited for synthetic scenes. To this end, we propose a novel diffusion-based system DiffuVST, which models the generation of a series of visual descriptions as a single conditional denoising process. The stochastic and non-autoregressive nature of DiffuVST at inference time allows it to generate highly diverse narratives more efficiently. In addition, DiffuVST features a unique design with bi-directional text history guidance and multimodal adapter modules, which effectively improve inter-sentence coherence and image-to-text fidelity. Extensive experiments on the story generation task covering four fictional visual-story datasets demonstrate the superiority of DiffuVST over traditional autoregressive models in terms of both text quality and inference speed.
CanvasMAR: Improving Masked Autoregressive Video Generation With Canvas
Masked autoregressive models (MAR) have recently emerged as a powerful paradigm for image and video generation, combining the flexibility of masked modeling with the potential of continuous tokenizer. However, video MAR models suffer from two major limitations: the slow-start problem, caused by the lack of a structured global prior at early sampling stages, and error accumulation across the autoregression in both spatial and temporal dimensions. In this work, we propose CanvasMAR, a novel video MAR model that mitigates these issues by introducing a canvas mechanism--a blurred, global prediction of the next frame, used as the starting point for masked generation. The canvas provides global structure early in sampling, enabling faster and more coherent frame synthesis. Furthermore, we introduce compositional classifier-free guidance that jointly enlarges spatial (canvas) and temporal conditioning, and employ noise-based canvas augmentation to enhance robustness. Experiments on the BAIR and Kinetics-600 benchmarks demonstrate that CanvasMAR produces high-quality videos with fewer autoregressive steps. Our approach achieves remarkable performance among autoregressive models on Kinetics-600 dataset and rivals diffusion-based methods.
CARP: Visuomotor Policy Learning via Coarse-to-Fine Autoregressive Prediction
In robotic visuomotor policy learning, diffusion-based models have achieved significant success in improving the accuracy of action trajectory generation compared to traditional autoregressive models. However, they suffer from inefficiency due to multiple denoising steps and limited flexibility from complex constraints. In this paper, we introduce Coarse-to-Fine AutoRegressive Policy (CARP), a novel paradigm for visuomotor policy learning that redefines the autoregressive action generation process as a coarse-to-fine, next-scale approach. CARP decouples action generation into two stages: first, an action autoencoder learns multi-scale representations of the entire action sequence; then, a GPT-style transformer refines the sequence prediction through a coarse-to-fine autoregressive process. This straightforward and intuitive approach produces highly accurate and smooth actions, matching or even surpassing the performance of diffusion-based policies while maintaining efficiency on par with autoregressive policies. We conduct extensive evaluations across diverse settings, including single-task and multi-task scenarios on state-based and image-based simulation benchmarks, as well as real-world tasks. CARP achieves competitive success rates, with up to a 10% improvement, and delivers 10x faster inference compared to state-of-the-art policies, establishing a high-performance, efficient, and flexible paradigm for action generation in robotic tasks.
StableVC: Style Controllable Zero-Shot Voice Conversion with Conditional Flow Matching
Zero-shot voice conversion (VC) aims to transfer the timbre from the source speaker to an arbitrary unseen speaker while preserving the original linguistic content. Despite recent advancements in zero-shot VC using language model-based or diffusion-based approaches, several challenges remain: 1) current approaches primarily focus on adapting timbre from unseen speakers and are unable to transfer style and timbre to different unseen speakers independently; 2) these approaches often suffer from slower inference speeds due to the autoregressive modeling methods or the need for numerous sampling steps; 3) the quality and similarity of the converted samples are still not fully satisfactory. To address these challenges, we propose a style controllable zero-shot VC approach named StableVC, which aims to transfer timbre and style from source speech to different unseen target speakers. Specifically, we decompose speech into linguistic content, timbre, and style, and then employ a conditional flow matching module to reconstruct the high-quality mel-spectrogram based on these decomposed features. To effectively capture timbre and style in a zero-shot manner, we introduce a novel dual attention mechanism with an adaptive gate, rather than using conventional feature concatenation. With this non-autoregressive design, StableVC can efficiently capture the intricate timbre and style from different unseen speakers and generate high-quality speech significantly faster than real-time. Experiments demonstrate that our proposed StableVC outperforms state-of-the-art baseline systems in zero-shot VC and achieves flexible control over timbre and style from different unseen speakers. Moreover, StableVC offers approximately 25x and 1.65x faster sampling compared to autoregressive and diffusion-based baselines.
MovieDreamer: Hierarchical Generation for Coherent Long Visual Sequence
Recent advancements in video generation have primarily leveraged diffusion models for short-duration content. However, these approaches often fall short in modeling complex narratives and maintaining character consistency over extended periods, which is essential for long-form video production like movies. We propose MovieDreamer, a novel hierarchical framework that integrates the strengths of autoregressive models with diffusion-based rendering to pioneer long-duration video generation with intricate plot progressions and high visual fidelity. Our approach utilizes autoregressive models for global narrative coherence, predicting sequences of visual tokens that are subsequently transformed into high-quality video frames through diffusion rendering. This method is akin to traditional movie production processes, where complex stories are factorized down into manageable scene capturing. Further, we employ a multimodal script that enriches scene descriptions with detailed character information and visual style, enhancing continuity and character identity across scenes. We present extensive experiments across various movie genres, demonstrating that our approach not only achieves superior visual and narrative quality but also effectively extends the duration of generated content significantly beyond current capabilities. Homepage: https://aim-uofa.github.io/MovieDreamer/.
Vision as a Dialect: Unifying Visual Understanding and Generation via Text-Aligned Representations
This paper presents a multimodal framework that attempts to unify visual understanding and generation within a shared discrete semantic representation. At its core is the Text-Aligned Tokenizer (TA-Tok), which converts images into discrete tokens using a text-aligned codebook projected from a large language model's (LLM) vocabulary. By integrating vision and text into a unified space with an expanded vocabulary, our multimodal LLM, Tar, enables cross-modal input and output through a shared interface, without the need for modality-specific designs. Additionally, we propose scale-adaptive encoding and decoding to balance efficiency and visual detail, along with a generative de-tokenizer to produce high-fidelity visual outputs. To address diverse decoding needs, we utilize two complementary de-tokenizers: a fast autoregressive model and a diffusion-based model. To enhance modality fusion, we investigate advanced pre-training tasks, demonstrating improvements in both visual understanding and generation. Experiments across benchmarks show that Tar matches or surpasses existing multimodal LLM methods, achieving faster convergence and greater training efficiency. Code, models, and data are available at https://tar.csuhan.com
SSD-LM: Semi-autoregressive Simplex-based Diffusion Language Model for Text Generation and Modular Control
Despite the growing success of diffusion models in continuous-valued domains (e.g., images), similar efforts for discrete domains such as text have yet to match the performance of autoregressive language models. In this work, we present SSD-LM -- a diffusion-based language model with two key design choices. First, SSD-LM is semi-autoregressive, iteratively generating blocks of text, allowing for flexible output length at decoding time while enabling local bidirectional context updates. Second, it is simplex-based, performing diffusion on the natural vocabulary space rather than a learned latent space, allowing us to incorporate classifier guidance and modular control using off-the-shelf classifiers without any adaptation. We evaluate SSD-LM on unconstrained text generation benchmarks, and show that it matches or outperforms strong autoregressive GPT-2 models across standard quality and diversity metrics, while vastly outperforming diffusion-based baselines. On controlled text generation, SSD-LM also outperforms competitive baselines, with an extra advantage in modularity.
Bidirectional Autoregressive Diffusion Model for Dance Generation
Dance serves as a powerful medium for expressing human emotions, but the lifelike generation of dance is still a considerable challenge. Recently, diffusion models have showcased remarkable generative abilities across various domains. They hold promise for human motion generation due to their adaptable many-to-many nature. Nonetheless, current diffusion-based motion generation models often create entire motion sequences directly and unidirectionally, lacking focus on the motion with local and bidirectional enhancement. When choreographing high-quality dance movements, people need to take into account not only the musical context but also the nearby music-aligned dance motions. To authentically capture human behavior, we propose a Bidirectional Autoregressive Diffusion Model (BADM) for music-to-dance generation, where a bidirectional encoder is built to enforce that the generated dance is harmonious in both the forward and backward directions. To make the generated dance motion smoother, a local information decoder is built for local motion enhancement. The proposed framework is able to generate new motions based on the input conditions and nearby motions, which foresees individual motion slices iteratively and consolidates all predictions. To further refine the synchronicity between the generated dance and the beat, the beat information is incorporated as an input to generate better music-aligned dance movements. Experimental results demonstrate that the proposed model achieves state-of-the-art performance compared to existing unidirectional approaches on the prominent benchmark for music-to-dance generation.
Latent Refinement Decoding: Enhancing Diffusion-Based Language Models by Refining Belief States
Autoregressive (AR) models remain the standard for natural language generation but still suffer from high latency due to strictly sequential decoding. Recent diffusion-inspired approaches, such as LlaDA and Dream, mitigate this by generating in parallel, yet they suffer from two core limitations: information loss, as predictive distributions for non-finalized tokens are discarded at each step, and premature commitment, where local decisions are made without sufficient global coordination. We introduce Latent Refinement Decoding (LRD), a two-stage framework with Latent Refinement and a Predictive Feedback Loop. The first stage maintains masked positions as distributional mixtures of predicted tokens and the mask embedding, allowing the model to establish more globally consistent beliefs. The second stage progressively finalizes confident tokens while retaining uncertain ones for iterative feedback. KL-divergence dynamics provide a principled and reliable criterion for convergence and early stopping. Experiments across coding (HumanEval +6.3, MBPP +2.6) and reasoning (GSM8K +2.9, MATH500 +3.8) show that LRD improves accuracy while delivering speedups of up to 10.6x, making it a strong and versatile alternative for parallel sequence generation.
Efficient Conditional Generation on Scale-based Visual Autoregressive Models
Recent advances in autoregressive (AR) models have demonstrated their potential to rival diffusion models in image synthesis. However, for complex spatially-conditioned generation, current AR approaches rely on fine-tuning the pre-trained model, leading to significant training costs. In this paper, we propose the Efficient Control Model (ECM), a plug-and-play framework featuring a lightweight control module that introduces control signals via a distributed architecture. This architecture consists of context-aware attention layers that refine conditional features using real-time generated tokens, and a shared gated feed-forward network (FFN) designed to maximize the utilization of its limited capacity and ensure coherent control feature learning. Furthermore, recognizing the critical role of early-stage generation in determining semantic structure, we introduce an early-centric sampling strategy that prioritizes learning early control sequences. This approach reduces computational cost by lowering the number of training tokens per iteration, while a complementary temperature scheduling during inference compensates for the resulting insufficient training of late-stage tokens. Extensive experiments on scale-based AR models validate that our method achieves high-fidelity and diverse control over image generation, surpassing existing baselines while significantly improving both training and inference efficiency.
OctGPT: Octree-based Multiscale Autoregressive Models for 3D Shape Generation
Autoregressive models have achieved remarkable success across various domains, yet their performance in 3D shape generation lags significantly behind that of diffusion models. In this paper, we introduce OctGPT, a novel multiscale autoregressive model for 3D shape generation that dramatically improves the efficiency and performance of prior 3D autoregressive approaches, while rivaling or surpassing state-of-the-art diffusion models. Our method employs a serialized octree representation to efficiently capture the hierarchical and spatial structures of 3D shapes. Coarse geometry is encoded via octree structures, while fine-grained details are represented by binary tokens generated using a vector quantized variational autoencoder (VQVAE), transforming 3D shapes into compact multiscale binary sequences suitable for autoregressive prediction. To address the computational challenges of handling long sequences, we incorporate octree-based transformers enhanced with 3D rotary positional encodings, scale-specific embeddings, and token-parallel generation schemes. These innovations reduce training time by 13 folds and generation time by 69 folds, enabling the efficient training of high-resolution 3D shapes, e.g.,1024^3, on just four NVIDIA 4090 GPUs only within days. OctGPT showcases exceptional versatility across various tasks, including text-, sketch-, and image-conditioned generation, as well as scene-level synthesis involving multiple objects. Extensive experiments demonstrate that OctGPT accelerates convergence and improves generation quality over prior autoregressive methods, offering a new paradigm for high-quality, scalable 3D content creation.
Towards Diverse and Efficient Audio Captioning via Diffusion Models
We introduce Diffusion-based Audio Captioning (DAC), a non-autoregressive diffusion model tailored for diverse and efficient audio captioning. Although existing captioning models relying on language backbones have achieved remarkable success in various captioning tasks, their insufficient performance in terms of generation speed and diversity impede progress in audio understanding and multimedia applications. Our diffusion-based framework offers unique advantages stemming from its inherent stochasticity and holistic context modeling in captioning. Through rigorous evaluation, we demonstrate that DAC not only achieves SOTA performance levels compared to existing benchmarks in the caption quality, but also significantly outperforms them in terms of generation speed and diversity. The success of DAC illustrates that text generation can also be seamlessly integrated with audio and visual generation tasks using a diffusion backbone, paving the way for a unified, audio-related generative model across different modalities.
Compressed and Smooth Latent Space for Text Diffusion Modeling
Autoregressive language models dominate modern text generation, yet their sequential nature introduces fundamental limitations: decoding is slow, and maintaining global coherence remains challenging. Diffusion models offer a promising alternative by enabling parallel generation and flexible control; however, their application to text generation is hindered by the high dimensionality of token-level representations. We introduce Cosmos, a novel approach to text generation that operates entirely in a compressed, smooth latent space tailored specifically for diffusion. This space is learned using an autoencoder trained simultaneously for token-level reconstruction and alignment with frozen activations from a pretrained language encoder, providing robust semantic grounding and enabling effective perturbation-based augmentations. Empirically, we demonstrate that text representations can be compressed by 8times while maintaining generation quality comparable to token-level diffusion models. Furthermore, increasing the latent sequence length allows Cosmos to surpass both diffusion-based and autoregressive baselines. We evaluate Cosmos on four diverse generative tasks including story generation, question generation, summarization, and detoxification and compare it with various generative paradigms. Cosmos achieves comparable or superior generation quality while offering more than 2times faster inference.
Esoteric Language Models
Diffusion-based language models offer a compelling alternative to autoregressive (AR) models by enabling parallel and controllable generation. Among this family of models, Masked Diffusion Models (MDMs) achieve the strongest performance but still underperform AR models in perplexity and lack key inference-time efficiency features--most notably, KV caching. In this work, we introduce Eso-LMs, a new family of models that fuses AR and MDM paradigms, enabling smooth interpolation between their perplexities while overcoming their respective limitations. Eso-LMs set a new state of the art on standard language modeling benchmarks. Crucially, we are the **first to introduce KV caching for MDMs** while preserving parallel generation, significantly improving inference efficiency. Combined with an optimized sampling schedule, our method achieves up to **65x** faster inference than standard MDMs and **4x** faster inference than prior semi-autoregressive approaches. We provide the code and model checkpoints on the project page: [http://s-sahoo.github.io/Eso-LMs](http://s-sahoo.github.io/Eso-LMs)
Think While You Generate: Discrete Diffusion with Planned Denoising
Discrete diffusion has achieved state-of-the-art performance, outperforming or approaching autoregressive models on standard benchmarks. In this work, we introduce Discrete Diffusion with Planned Denoising (DDPD), a novel framework that separates the generation process into two models: a planner and a denoiser. At inference time, the planner selects which positions to denoise next by identifying the most corrupted positions in need of denoising, including both initially corrupted and those requiring additional refinement. This plan-and-denoise approach enables more efficient reconstruction during generation by iteratively identifying and denoising corruptions in the optimal order. DDPD outperforms traditional denoiser-only mask diffusion methods, achieving superior results on language modeling benchmarks such as text8, OpenWebText, and token-based generation on ImageNet 256 times 256. Notably, in language modeling, DDPD significantly reduces the performance gap between diffusion-based and autoregressive methods in terms of generative perplexity. Code is available at https://github.com/liusulin/DDPD.
Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities
Recent years have seen remarkable progress in both multimodal understanding models and image generation models. Despite their respective successes, these two domains have evolved independently, leading to distinct architectural paradigms: While autoregressive-based architectures have dominated multimodal understanding, diffusion-based models have become the cornerstone of image generation. Recently, there has been growing interest in developing unified frameworks that integrate these tasks. The emergence of GPT-4o's new capabilities exemplifies this trend, highlighting the potential for unification. However, the architectural differences between the two domains pose significant challenges. To provide a clear overview of current efforts toward unification, we present a comprehensive survey aimed at guiding future research. First, we introduce the foundational concepts and recent advancements in multimodal understanding and text-to-image generation models. Next, we review existing unified models, categorizing them into three main architectural paradigms: diffusion-based, autoregressive-based, and hybrid approaches that fuse autoregressive and diffusion mechanisms. For each category, we analyze the structural designs and innovations introduced by related works. Additionally, we compile datasets and benchmarks tailored for unified models, offering resources for future exploration. Finally, we discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data. As this area is still in its early stages, we anticipate rapid advancements and will regularly update this survey. Our goal is to inspire further research and provide a valuable reference for the community. The references associated with this survey are available on GitHub (https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models).
Drax: Speech Recognition with Discrete Flow Matching
Diffusion and flow-based non-autoregressive (NAR) models have shown strong promise in large language modeling, however, their potential for automatic speech recognition (ASR) remains largely unexplored. We propose Drax, a discrete flow matching framework for ASR that enables efficient parallel decoding. To better align training with inference, we construct an audio-conditioned probability path that guides the model through trajectories resembling likely intermediate inference errors, rather than direct random noise to target transitions. Our theoretical analysis links the generalization gap to divergences between training and inference occupancies, controlled by cumulative velocity errors, thereby motivating our design choice. Empirical evaluation demonstrates that our approach attains recognition accuracy on par with state-of-the-art speech models while offering improved accuracy-efficiency trade-offs, highlighting discrete flow matching as a promising direction for advancing NAR ASR.
LoVA: Long-form Video-to-Audio Generation
Video-to-audio (V2A) generation is important for video editing and post-processing, enabling the creation of semantics-aligned audio for silent video. However, most existing methods focus on generating short-form audio for short video segment (less than 10 seconds), while giving little attention to the scenario of long-form video inputs. For current UNet-based diffusion V2A models, an inevitable problem when handling long-form audio generation is the inconsistencies within the final concatenated audio. In this paper, we first highlight the importance of long-form V2A problem. Besides, we propose LoVA, a novel model for Long-form Video-to-Audio generation. Based on the Diffusion Transformer (DiT) architecture, LoVA proves to be more effective at generating long-form audio compared to existing autoregressive models and UNet-based diffusion models. Extensive objective and subjective experiments demonstrate that LoVA achieves comparable performance on 10-second V2A benchmark and outperforms all other baselines on a benchmark with long-form video input.
[MASK] is All You Need
In generative models, two paradigms have gained attraction in various applications: next-set prediction-based Masked Generative Models and next-noise prediction-based Non-Autoregressive Models, e.g., Diffusion Models. In this work, we propose using discrete-state models to connect them and explore their scalability in the vision domain. First, we conduct a step-by-step analysis in a unified design space across two types of models including timestep-independence, noise schedule, temperature, guidance strength, etc in a scalable manner. Second, we re-cast typical discriminative tasks, e.g., image segmentation, as an unmasking process from [MASK]tokens on a discrete-state model. This enables us to perform various sampling processes, including flexible conditional sampling by only training once to model the joint distribution. All aforementioned explorations lead to our framework named Discrete Interpolants, which enables us to achieve state-of-the-art or competitive performance compared to previous discrete-state based methods in various benchmarks, like ImageNet256, MS COCO, and video dataset FaceForensics. In summary, by leveraging [MASK] in discrete-state models, we can bridge Masked Generative and Non-autoregressive Diffusion models, as well as generative and discriminative tasks.
OneFlow: Concurrent Mixed-Modal and Interleaved Generation with Edit Flows
We present OneFlow, the first non-autoregressive multimodal model that enables variable-length and concurrent mixed-modal generation. Unlike autoregressive models that enforce rigid causal ordering between text and image generation, OneFlow combines an insertion-based Edit Flow for discrete text tokens with Flow Matching for image latents. OneFlow enables concurrent text-image synthesis with hierarchical sampling that prioritizes content over grammar. Through controlled experiments across model sizes from 1B to 8B, we demonstrate that OneFlow outperforms autoregressive baselines on both generation and understanding tasks while using up to 50% fewer training FLOPs. OneFlow surpasses both autoregressive and diffusion-based approaches while unlocking new capabilities for concurrent generation, iterative refinement, and natural reasoning-like generation.
X-Actor: Emotional and Expressive Long-Range Portrait Acting from Audio
We present X-Actor, a novel audio-driven portrait animation framework that generates lifelike, emotionally expressive talking head videos from a single reference image and an input audio clip. Unlike prior methods that emphasize lip synchronization and short-range visual fidelity in constrained speaking scenarios, X-Actor enables actor-quality, long-form portrait performance capturing nuanced, dynamically evolving emotions that flow coherently with the rhythm and content of speech. Central to our approach is a two-stage decoupled generation pipeline: an audio-conditioned autoregressive diffusion model that predicts expressive yet identity-agnostic facial motion latent tokens within a long temporal context window, followed by a diffusion-based video synthesis module that translates these motions into high-fidelity video animations. By operating in a compact facial motion latent space decoupled from visual and identity cues, our autoregressive diffusion model effectively captures long-range correlations between audio and facial dynamics through a diffusion-forcing training paradigm, enabling infinite-length emotionally-rich motion prediction without error accumulation. Extensive experiments demonstrate that X-Actor produces compelling, cinematic-style performances that go beyond standard talking head animations and achieves state-of-the-art results in long-range, audio-driven emotional portrait acting.
Knot Forcing: Taming Autoregressive Video Diffusion Models for Real-time Infinite Interactive Portrait Animation
Real-time portrait animation is essential for interactive applications such as virtual assistants and live avatars, requiring high visual fidelity, temporal coherence, ultra-low latency, and responsive control from dynamic inputs like reference images and driving signals. While diffusion-based models achieve strong quality, their non-causal nature hinders streaming deployment. Causal autoregressive video generation approaches enable efficient frame-by-frame generation but suffer from error accumulation, motion discontinuities at chunk boundaries, and degraded long-term consistency. In this work, we present a novel streaming framework named Knot Forcing for real-time portrait animation that addresses these challenges through three key designs: (1) a chunk-wise generation strategy with global identity preservation via cached KV states of the reference image and local temporal modeling using sliding window attention; (2) a temporal knot module that overlaps adjacent chunks and propagates spatio-temporal cues via image-to-video conditioning to smooth inter-chunk motion transitions; and (3) A "running ahead" mechanism that dynamically updates the reference frame's temporal coordinate during inference, keeping its semantic context ahead of the current rollout frame to support long-term coherence. Knot Forcing enables high-fidelity, temporally consistent, and interactive portrait animation over infinite sequences, achieving real-time performance with strong visual stability on consumer-grade GPUs.
Epona: Autoregressive Diffusion World Model for Autonomous Driving
Diffusion models have demonstrated exceptional visual quality in video generation, making them promising for autonomous driving world modeling. However, existing video diffusion-based world models struggle with flexible-length, long-horizon predictions and integrating trajectory planning. This is because conventional video diffusion models rely on global joint distribution modeling of fixed-length frame sequences rather than sequentially constructing localized distributions at each timestep. In this work, we propose Epona, an autoregressive diffusion world model that enables localized spatiotemporal distribution modeling through two key innovations: 1) Decoupled spatiotemporal factorization that separates temporal dynamics modeling from fine-grained future world generation, and 2) Modular trajectory and video prediction that seamlessly integrate motion planning with visual modeling in an end-to-end framework. Our architecture enables high-resolution, long-duration generation while introducing a novel chain-of-forward training strategy to address error accumulation in autoregressive loops. Experimental results demonstrate state-of-the-art performance with 7.4\% FVD improvement and minutes longer prediction duration compared to prior works. The learned world model further serves as a real-time motion planner, outperforming strong end-to-end planners on NAVSIM benchmarks. Code will be publicly available at https://github.com/Kevin-thu/Epona/{https://github.com/Kevin-thu/Epona/}.
Discrete Noise Inversion for Next-scale Autoregressive Text-based Image Editing
Visual autoregressive models (VAR) have recently emerged as a promising class of generative models, achieving performance comparable to diffusion models in text-to-image generation tasks. While conditional generation has been widely explored, the ability to perform prompt-guided image editing without additional training is equally critical, as it supports numerous practical real-world applications. This paper investigates the text-to-image editing capabilities of VAR by introducing Visual AutoRegressive Inverse Noise (VARIN), the first noise inversion-based editing technique designed explicitly for VAR models. VARIN leverages a novel pseudo-inverse function for argmax sampling, named Location-aware Argmax Inversion (LAI), to generate inverse Gumbel noises. These inverse noises enable precise reconstruction of the source image and facilitate targeted, controllable edits aligned with textual prompts. Extensive experiments demonstrate that VARIN effectively modifies source images according to specified prompts while significantly preserving the original background and structural details, thus validating its efficacy as a practical editing approach.
GestureLSM: Latent Shortcut based Co-Speech Gesture Generation with Spatial-Temporal Modeling
Generating full-body human gestures based on speech signals remains challenges on quality and speed. Existing approaches model different body regions such as body, legs and hands separately, which fail to capture the spatial interactions between them and result in unnatural and disjointed movements. Additionally, their autoregressive/diffusion-based pipelines show slow generation speed due to dozens of inference steps. To address these two challenges, we propose GestureLSM, a flow-matching-based approach for Co-Speech Gesture Generation with spatial-temporal modeling. Our method i) explicitly model the interaction of tokenized body regions through spatial and temporal attention, for generating coherent full-body gestures. ii) introduce the flow matching to enable more efficient sampling by explicitly modeling the latent velocity space. To overcome the suboptimal performance of flow matching baseline, we propose latent shortcut learning and beta distribution time stamp sampling during training to enhance gesture synthesis quality and accelerate inference. Combining the spatial-temporal modeling and improved flow matching-based framework, GestureLSM achieves state-of-the-art performance on BEAT2 while significantly reducing inference time compared to existing methods, highlighting its potential for enhancing digital humans and embodied agents in real-world applications. Project Page: https://andypinxinliu.github.io/GestureLSM
Efficient Generative Modeling with Residual Vector Quantization-Based Tokens
We explore the use of Residual Vector Quantization (RVQ) for high-fidelity generation in vector-quantized generative models. This quantization technique maintains higher data fidelity by employing more in-depth tokens. However, increasing the token number in generative models leads to slower inference speeds. To this end, we introduce ResGen, an efficient RVQ-based discrete diffusion model that generates high-fidelity samples without compromising sampling speed. Our key idea is a direct prediction of vector embedding of collective tokens rather than individual ones. Moreover, we demonstrate that our proposed token masking and multi-token prediction method can be formulated within a principled probabilistic framework using a discrete diffusion process and variational inference. We validate the efficacy and generalizability of the proposed method on two challenging tasks across different modalities: conditional image generation} on ImageNet 256x256 and zero-shot text-to-speech synthesis. Experimental results demonstrate that ResGen outperforms autoregressive counterparts in both tasks, delivering superior performance without compromising sampling speed. Furthermore, as we scale the depth of RVQ, our generative models exhibit enhanced generation fidelity or faster sampling speeds compared to similarly sized baseline models. The project page can be found at https://resgen-genai.github.io
MENTOR: Efficient Multimodal-Conditioned Tuning for Autoregressive Vision Generation Models
Recent text-to-image models produce high-quality results but still struggle with precise visual control, balancing multimodal inputs, and requiring extensive training for complex multimodal image generation. To address these limitations, we propose MENTOR, a novel autoregressive (AR) framework for efficient Multimodal-conditioned Tuning for Autoregressive multimodal image generation. MENTOR combines an AR image generator with a two-stage training paradigm, enabling fine-grained, token-level alignment between multimodal inputs and image outputs without relying on auxiliary adapters or cross-attention modules. The two-stage training consists of: (1) a multimodal alignment stage that establishes robust pixel- and semantic-level alignment, followed by (2) a multimodal instruction tuning stage that balances the integration of multimodal inputs and enhances generation controllability. Despite modest model size, suboptimal base components, and limited training resources, MENTOR achieves strong performance on the DreamBench++ benchmark, outperforming competitive baselines in concept preservation and prompt following. Additionally, our method delivers superior image reconstruction fidelity, broad task adaptability, and improved training efficiency compared to diffusion-based methods. Dataset, code, and models are available at: https://github.com/HaozheZhao/MENTOR
Unifying Continuous and Discrete Text Diffusion with Non-simultaneous Diffusion Processes
Diffusion models have emerged as a promising approach for text generation, with recent works falling into two main categories: discrete and continuous diffusion models. Discrete diffusion models apply token corruption independently using categorical distributions, allowing for different diffusion progress across tokens but lacking fine-grained control. Continuous diffusion models map tokens to continuous spaces and apply fine-grained noise, but the diffusion progress is uniform across tokens, limiting their ability to capture semantic nuances. To address these limitations, we propose \underline{N}on-simultan\underline{e}ous C\underline{o}ntinuous \underline{Diff}usion Models (NeoDiff), a novel diffusion model that integrates the strengths of both discrete and continuous approaches. NeoDiff introduces a Poisson diffusion process for the forward process, enabling a flexible and fine-grained noising paradigm, and employs a time predictor for the reverse process to adaptively modulate the denoising progress based on token semantics. Furthermore, NeoDiff utilizes an optimized schedule for inference to ensure more precise noise control and improved performance. Our approach unifies the theories of discrete and continuous diffusion models, offering a more principled and effective framework for text generation. Experimental results on several text generation tasks demonstrate NeoDiff's superior performance compared to baselines of non-autoregressive continuous and discrete diffusion models, iterative-based methods and autoregressive diffusion-based methods. These results highlight NeoDiff's potential as a powerful tool for generating high-quality text and advancing the field of diffusion-based text generation.
Towards One-step Causal Video Generation via Adversarial Self-Distillation
Recent hybrid video generation models combine autoregressive temporal dynamics with diffusion-based spatial denoising, but their sequential, iterative nature leads to error accumulation and long inference times. In this work, we propose a distillation-based framework for efficient causal video generation that enables high-quality synthesis with extremely limited denoising steps. Our approach builds upon the Distribution Matching Distillation (DMD) framework and proposes a novel Adversarial Self-Distillation (ASD) strategy, which aligns the outputs of the student model's n-step denoising process with its (n+1)-step version at the distribution level. This design provides smoother supervision by bridging small intra-student gaps and more informative guidance by combining teacher knowledge with locally consistent student behavior, substantially improving training stability and generation quality in extremely few-step scenarios (e.g., 1-2 steps). In addition, we present a First-Frame Enhancement (FFE) strategy, which allocates more denoising steps to the initial frames to mitigate error propagation while applying larger skipping steps to later frames. Extensive experiments on VBench demonstrate that our method surpasses state-of-the-art approaches in both one-step and two-step video generation. Notably, our framework produces a single distilled model that flexibly supports multiple inference-step settings, eliminating the need for repeated re-distillation and enabling efficient, high-quality video synthesis.
Inverse Painting: Reconstructing The Painting Process
Given an input painting, we reconstruct a time-lapse video of how it may have been painted. We formulate this as an autoregressive image generation problem, in which an initially blank "canvas" is iteratively updated. The model learns from real artists by training on many painting videos. Our approach incorporates text and region understanding to define a set of painting "instructions" and updates the canvas with a novel diffusion-based renderer. The method extrapolates beyond the limited, acrylic style paintings on which it has been trained, showing plausible results for a wide range of artistic styles and genres.
DiffusionVL: Translating Any Autoregressive Models into Diffusion Vision Language Models
In recent multimodal research, the diffusion paradigm has emerged as a promising alternative to the autoregressive paradigm (AR), owing to its unique decoding advantages. However, due to the capability limitations of the base diffusion language model, the performance of the diffusion vision language model (dVLM) still lags significantly behind that of mainstream models. This leads to a simple yet fundamental question: Is it possible to construct dVLMs based on existing powerful AR models? In response, we propose DiffusionVL, a dVLM family that could be translated from any powerful AR models. Through simple fine-tuning, we successfully adapt AR pre-trained models into the diffusion paradigm. This approach yields two key observations: (1) The paradigm shift from AR-based multimodal models to diffusion is remarkably effective. (2) Direct conversion of an AR language model to a dVLM is also feasible, achieving performance competitive with LLaVA-style visual-instruction-tuning. Further, we introduce a block-decoding design into dVLMs that supports arbitrary-length generation and KV cache reuse, achieving a significant inference speedup. We conduct a large number of experiments. Despite training with less than 5% of the data required by prior methods, DiffusionVL achieves a comprehensive performance improvement-a 34.4% gain on the MMMU-Pro (vision) bench and 37.5% gain on the MME (Cog.) bench-alongside a 2x inference speedup. The model and code are released at https://github.com/hustvl/DiffusionVL.
A Comprehensive Study on Visual Token Redundancy for Discrete Diffusion-based Multimodal Large Language Models
Discrete diffusion-based multimodal large language models (dMLLMs) have emerged as a promising alternative to autoregressive MLLMs thanks to their advantages in parallel decoding and bidirectional context modeling, but most existing dMLLMs incur significant computational overhead during inference due to the full-sequence attention computation in each denoising step. Pioneer studies attempt to resolve this issue from a modality-agnostic perspective via key-value cache optimization or efficient sampling but most of them overlook modality-specific visual token redundancy. In this work, we conduct a comprehensive study on how visual token redundancy evolves with different dMLLM architectures and tasks and how visual token pruning affects dMLLM responses and efficiency. Specifically, our study reveals that visual redundancy emerges only in from-scratch dMLLMs while handling long-answer tasks. In addition, we validate that visual token pruning introduces non-negligible information loss in dMLLMs and only from-scratch dMLLMs can recover the lost information progressively during late denoising steps. Furthermore, our study shows that layer-skipping is promising for accelerating AR-to-diffusion dMLLMs, whereas progressive or late-step pruning is more effective for from-scratch dMLLMs. Overall, this work offers a new perspective on efficiency optimization for dMLLMs, greatly advancing their applicability across various multimodal understanding tasks.
LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation?
Diffusion models have exhibited remarkable capabilities in text-to-image generation. However, their performance in image-to-text generation, specifically image captioning, has lagged behind Auto-Regressive (AR) models, casting doubt on their applicability for such tasks. In this work, we revisit diffusion models, highlighting their capacity for holistic context modeling and parallel decoding. With these benefits, diffusion models can alleviate the inherent limitations of AR methods, including their slow inference speed, error propagation, and unidirectional constraints. Furthermore, we identify the prior underperformance of diffusion models stemming from the absence of an effective latent space for image-text alignment, and the discrepancy between continuous diffusion processes and discrete textual data. In response, we introduce a novel architecture, LaDiC, which utilizes a split BERT to create a dedicated latent space for captions and integrates a regularization module to manage varying text lengths. Our framework also includes a diffuser for semantic image-to-text conversion and a Back&Refine technique to enhance token interactivity during inference. LaDiC achieves state-of-the-art performance for diffusion-based methods on the MS COCO dataset with 38.2 BLEU@4 and 126.2 CIDEr, demonstrating exceptional performance without pre-training or ancillary modules. This indicates strong competitiveness with AR models, revealing the previously untapped potential of diffusion models in image-to-text generation.
CubeDiff: Repurposing Diffusion-Based Image Models for Panorama Generation
We introduce a novel method for generating 360{\deg} panoramas from text prompts or images. Our approach leverages recent advances in 3D generation by employing multi-view diffusion models to jointly synthesize the six faces of a cubemap. Unlike previous methods that rely on processing equirectangular projections or autoregressive generation, our method treats each face as a standard perspective image, simplifying the generation process and enabling the use of existing multi-view diffusion models. We demonstrate that these models can be adapted to produce high-quality cubemaps without requiring correspondence-aware attention layers. Our model allows for fine-grained text control, generates high resolution panorama images and generalizes well beyond its training set, whilst achieving state-of-the-art results, both qualitatively and quantitatively. Project page: https://cubediff.github.io/
ReFusion: A Diffusion Large Language Model with Parallel Autoregressive Decoding
Autoregressive models (ARMs) are hindered by slow sequential inference. While masked diffusion models (MDMs) offer a parallel alternative, they suffer from critical drawbacks: high computational overhead from precluding Key-Value (KV) caching, and incoherent generation arising from learning dependencies over an intractable space of token combinations. To address these limitations, we introduce ReFusion, a novel masked diffusion model that achieves superior performance and efficiency by elevating parallel decoding from the token level to a higher slot level, where each slot is a fixed-length, contiguous sub-sequence. This is achieved through an iterative ``plan-and-infill'' decoding process: a diffusion-based planning step first identifies a set of weakly dependent slots, and an autoregressive infilling step then decodes these selected slots in parallel. The slot-based design simultaneously unlocks full KV cache reuse with a unified causal framework and reduces the learning complexity from the token combination space to a manageable slot-level permutation space. Extensive experiments on seven diverse benchmarks show that ReFusion not only overwhelmingly surpasses prior MDMs with 34% performance gains and an over 18times speedup on average, but also bridges the performance gap to strong ARMs while maintaining a 2.33times average speedup.
ARLON: Boosting Diffusion Transformers with Autoregressive Models for Long Video Generation
Text-to-video models have recently undergone rapid and substantial advancements. Nevertheless, due to limitations in data and computational resources, achieving efficient generation of long videos with rich motion dynamics remains a significant challenge. To generate high-quality, dynamic, and temporally consistent long videos, this paper presents ARLON, a novel framework that boosts diffusion Transformers with autoregressive models for long video generation, by integrating the coarse spatial and long-range temporal information provided by the AR model to guide the DiT model. Specifically, ARLON incorporates several key innovations: 1) A latent Vector Quantized Variational Autoencoder (VQ-VAE) compresses the input latent space of the DiT model into compact visual tokens, bridging the AR and DiT models and balancing the learning complexity and information density; 2) An adaptive norm-based semantic injection module integrates the coarse discrete visual units from the AR model into the DiT model, ensuring effective guidance during video generation; 3) To enhance the tolerance capability of noise introduced from the AR inference, the DiT model is trained with coarser visual latent tokens incorporated with an uncertainty sampling module. Experimental results demonstrate that ARLON significantly outperforms the baseline OpenSora-V1.2 on eight out of eleven metrics selected from VBench, with notable improvements in dynamic degree and aesthetic quality, while delivering competitive results on the remaining three and simultaneously accelerating the generation process. In addition, ARLON achieves state-of-the-art performance in long video generation. Detailed analyses of the improvements in inference efficiency are presented, alongside a practical application that demonstrates the generation of long videos using progressive text prompts. See demos of ARLON at http://aka.ms/arlon.
DEER: Draft with Diffusion, Verify with Autoregressive Models
Efficiency, as a critical practical challenge for LLM-driven agentic and reasoning systems, is increasingly constrained by the inherent latency of autoregressive (AR) decoding. Speculative decoding mitigates this cost through a draft-verify scheme, yet existing approaches rely on AR draft models (a.k.a., drafters), which introduce two fundamental issues: (1) step-wise uncertainty accumulation leads to a progressive collapse of trust between the target model and the drafter, and (2) inherently sequential decoding of AR drafters. Together, these factors cause limited speedups. In this paper, we show that a diffusion large language model (dLLM) drafters can naturally overcome these issues through its fundamentally different probabilistic modeling and efficient parallel decoding strategy. Building on this insight, we introduce DEER, an efficient speculative decoding framework that drafts with diffusion and verifies with AR models. To enable high-quality drafting, DEER employs a two-stage training pipeline to align the dLLM-based drafters with the target AR model, and further adopts single-step decoding to generate long draft segments. Experiments show DEER reaches draft acceptance lengths of up to 32 tokens, far surpassing the 10 tokens achieved by EAGLE-3. Moreover, on HumanEval with Qwen3-30B-A3B, DEER attains a 5.54x speedup, while EAGLE-3 achieves only 2.41x. Code, model, demo, etc, will be available at https://czc726.github.io/DEER/
Planner and Executor: Collaboration between Discrete Diffusion And Autoregressive Models in Reasoning
Current autoregressive language models (ARMs) achieve high accuracy but require long token sequences, making them costly. Discrete diffusion language models (DDLMs) enable parallel and flexible generation within a fixed number of steps and have recently emerged for their strong performance in complex reasoning and long-term planning tasks. We present a study exploring hybrid architectures that couple DDLMs with ARMs to assess whether their collaboration can yield complementary benefits. We first examine collaboration in text space, where one model plans the reasoning process and another executes the final answer based on that plan. We then extend this setup to latent-space communication, introducing a learned projector that maps DDLM latents into the ARM's embedding space, potentially bypassing some of the text-generation limitations of diffusion models. We find that shifting DDLM --> ARM communication from text space to latent space yields significant accuracy gains, for example increasing from 27.0% to 54.0% on DART-5 and from 0.0% to 14.0% on AIME24. We also find that combining a DDLM planner with an ARM executor can provide substantial computational savings with little to no impact on accuracy. For example, the latent-space pipeline, using 64 tokens for planning and roughly 5 for execution, surpasses Qwen3.1-7B on DART-5 and AIME, despite Qwen using 44 times more tokens. Overall, our study offers new insights into reasoning with DDLMs and highlights their potential in hybrid architectures.
PeriodGrad: Towards Pitch-Controllable Neural Vocoder Based on a Diffusion Probabilistic Model
This paper presents a neural vocoder based on a denoising diffusion probabilistic model (DDPM) incorporating explicit periodic signals as auxiliary conditioning signals. Recently, DDPM-based neural vocoders have gained prominence as non-autoregressive models that can generate high-quality waveforms. The neural vocoders based on DDPM have the advantage of training with a simple time-domain loss. In practical applications, such as singing voice synthesis, there is a demand for neural vocoders to generate high-fidelity speech waveforms with flexible pitch control. However, conventional DDPM-based neural vocoders struggle to generate speech waveforms under such conditions. Our proposed model aims to accurately capture the periodic structure of speech waveforms by incorporating explicit periodic signals. Experimental results show that our model improves sound quality and provides better pitch control than conventional DDPM-based neural vocoders.
Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data-and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We interpret this advantage as implicit data augmentation: masked diffusion exposes the model to a diverse distribution of token orderings and prediction tasks, unlike AR's fixed left-to-right factorization. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. These results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
Test-Time Scaling in Diffusion LLMs via Hidden Semi-Autoregressive Experts
Diffusion-based large language models (dLLMs) are trained flexibly to model extreme dependence in the data distribution; however, how to best utilize this information at inference time remains an open problem. In this work, we uncover an interesting property of these models: dLLMs trained on textual data implicitly learn a mixture of semi-autoregressive experts, where different generation orders reveal different specialized behaviors. We show that committing to any single, fixed inference time schedule, a common practice, collapses performance by failing to leverage this latent ensemble. To address this, we introduce HEX (Hidden semiautoregressive EXperts for test-time scaling), a training-free inference method that ensembles across heterogeneous block schedules. By doing a majority vote over diverse block-sized generation paths, HEX robustly avoids failure modes associated with any single fixed schedule. On reasoning benchmarks such as GSM8K, it boosts accuracy by up to 3.56X (from 24.72% to 88.10%), outperforming top-K margin inference and specialized fine-tuned methods like GRPO, without additional training. HEX even yields significant gains on MATH benchmark from 16.40% to 40.00%, scientific reasoning on ARC-C from 54.18% to 87.80%, and TruthfulQA from 28.36% to 57.46%. Our results establish a new paradigm for test-time scaling in diffusion-based LLMs (dLLMs), revealing that the sequence in which masking is performed plays a critical role in determining performance during inference.
dInfer: An Efficient Inference Framework for Diffusion Language Models
Diffusion-based large language models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs, leveraging denoising-based generation to enable inherent parallelism. Even more and more open-sourced dLLM models emerge, yet their widespread adoption remains constrained by the lack of a standardized and efficient inference framework. We present dInfer, an efficient and extensible framework for dLLM inference. dInfer decomposes the inference pipeline into four modular components--model, diffusion iteration manager, decoding strategy, and KV-cache manager--and integrates novel algorithms for each component alongside system-level optimizations. Through this combination of algorithmic innovations and system enhancements, dInfer achieves substantial efficiency gains without compromising output quality on LLaDA-MoE. At batch size 1, it surpasses 1,100 tokens per second on HumanEval and averages over 800 tokens per second across six benchmarks on 8times H800 GPUs. Compared to prior systems, dInfer delivers a 10times speedup over Fast-dLLM while maintaining similar model performance. Even compared to the AR model (with a comparable number of activation parameters and performance) QWen2.5-3B, which is highly optimized with the latest vLLM inference engine, dInfer still delivers a 2-3times speedup. The implementation of dInfer is open-sourced at https://github.com/inclusionAI/dInfer.
Long-Term Photometric Consistent Novel View Synthesis with Diffusion Models
Novel view synthesis from a single input image is a challenging task, where the goal is to generate a new view of a scene from a desired camera pose that may be separated by a large motion. The highly uncertain nature of this synthesis task due to unobserved elements within the scene (i.e. occlusion) and outside the field-of-view makes the use of generative models appealing to capture the variety of possible outputs. In this paper, we propose a novel generative model capable of producing a sequence of photorealistic images consistent with a specified camera trajectory, and a single starting image. Our approach is centred on an autoregressive conditional diffusion-based model capable of interpolating visible scene elements, and extrapolating unobserved regions in a view, in a geometrically consistent manner. Conditioning is limited to an image capturing a single camera view and the (relative) pose of the new camera view. To measure the consistency over a sequence of generated views, we introduce a new metric, the thresholded symmetric epipolar distance (TSED), to measure the number of consistent frame pairs in a sequence. While previous methods have been shown to produce high quality images and consistent semantics across pairs of views, we show empirically with our metric that they are often inconsistent with the desired camera poses. In contrast, we demonstrate that our method produces both photorealistic and view-consistent imagery.
Dream-VL & Dream-VLA: Open Vision-Language and Vision-Language-Action Models with Diffusion Language Model Backbone
While autoregressive Large Vision-Language Models (VLMs) have achieved remarkable success, their sequential generation often limits their efficacy in complex visual planning and dynamic robotic control. In this work, we investigate the potential of constructing Vision-Language Models upon diffusion-based large language models (dLLMs) to overcome these limitations. We introduce Dream-VL, an open diffusion-based VLM (dVLM) that achieves state-of-the-art performance among previous dVLMs. Dream-VL is comparable to top-tier AR-based VLMs trained on open data on various benchmarks but exhibits superior potential when applied to visual planning tasks. Building upon Dream-VL, we introduce Dream-VLA, a dLLM-based Vision-Language-Action model (dVLA) developed through continuous pre-training on open robotic datasets. We demonstrate that the natively bidirectional nature of this diffusion backbone serves as a superior foundation for VLA tasks, inherently suited for action chunking and parallel generation, leading to significantly faster convergence in downstream fine-tuning. Dream-VLA achieves top-tier performance of 97.2% average success rate on LIBERO, 71.4% overall average on SimplerEnv-Bridge, and 60.5% overall average on SimplerEnv-Fractal, surpassing leading models such as π_0 and GR00T-N1. We also validate that dVLMs surpass AR baselines on downstream tasks across different training objectives. We release both Dream-VL and Dream-VLA to facilitate further research in the community.
SongBloom: Coherent Song Generation via Interleaved Autoregressive Sketching and Diffusion Refinement
Generating music with coherent structure, harmonious instrumental and vocal elements remains a significant challenge in song generation. Existing language models and diffusion-based methods often struggle to balance global coherence with local fidelity, resulting in outputs that lack musicality or suffer from incoherent progression and mismatched lyrics. This paper introduces SongBloom, a novel framework for full-length song generation that leverages an interleaved paradigm of autoregressive sketching and diffusion-based refinement. SongBloom employs an autoregressive diffusion model that combines the high fidelity of diffusion models with the scalability of language models. Specifically, it gradually extends a musical sketch from short to long and refines the details from coarse to fine-grained. The interleaved generation paradigm effectively integrates prior semantic and acoustic context to guide the generation process. Experimental results demonstrate that SongBloom outperforms existing methods across both subjective and objective metrics and achieves performance comparable to the state-of-the-art commercial music generation platforms. Audio samples are available on our demo page: https://cypress-yang.github.io/SongBloom\_demo.
Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective
Latent-based image generative models, such as Latent Diffusion Models (LDMs) and Mask Image Models (MIMs), have achieved notable success in image generation tasks. These models typically leverage reconstructive autoencoders like VQGAN or VAE to encode pixels into a more compact latent space and learn the data distribution in the latent space instead of directly from pixels. However, this practice raises a pertinent question: Is it truly the optimal choice? In response, we begin with an intriguing observation: despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation. This finding contrasts sharply with the field of NLP, where the autoregressive model GPT has established a commanding presence. To address this discrepancy, we introduce a unified perspective on the relationship between latent space and generative models, emphasizing the stability of latent space in image generative modeling. Furthermore, we propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling. Experimental results show that image autoregressive modeling with our tokenizer (DiGIT) benefits both image understanding and image generation with the next token prediction principle, which is inherently straightforward for GPT models but challenging for other generative models. Remarkably, for the first time, a GPT-style autoregressive model for images outperforms LDMs, which also exhibits substantial improvement akin to GPT when scaling up model size. Our findings underscore the potential of an optimized latent space and the integration of discrete tokenization in advancing the capabilities of image generative models. The code is available at https://github.com/DAMO-NLP-SG/DiGIT.
Masked Diffusion Language Models with Frequency-Informed Training
We present a masked diffusion language modeling framework for data-efficient training for the BabyLM 2025 Challenge. Our approach applies diffusion training objectives to language modeling under strict data constraints, incorporating frequency-informed masking that prioritizes learning from rare tokens while maintaining theoretical validity. We explore multiple noise scheduling strategies, including two-mode approaches, and investigate different noise weighting schemes within the NELBO objective. We evaluate our method on the BabyLM benchmark suite, measuring linguistic competence, world knowledge, and human-likeness. Results show performance competitive to hybrid autoregressive-masked baselines, demonstrating that diffusion-based training offers a viable alternative for data-restricted language learning.
DIFFA: Large Language Diffusion Models Can Listen and Understand
Recent advances in Large language models (LLMs) have shown remarkable capabilities across textual and multimodal domains. In parallel, diffusion-based language models have emerged as a promising alternative to the autoregressive paradigm, offering improved controllability, bidirectional context modeling, and robust generation. However, their application to the audio modality remains underexplored. In this work, we introduce DIFFA, the first diffusion-based Large Audio-Language Model designed to perform spoken language understanding. DIFFA integrates a frozen diffusion language model with a lightweight dual-adapter architecture that bridges speech understanding and natural language reasoning. We employ a two-stage training pipeline: first, aligning semantic representations via an ASR objective; then, learning instruction-following abilities through synthetic audio-caption pairs automatically generated by prompting LLMs. Despite being trained on only 960 hours of ASR and 127 hours of synthetic instruction data, DIFFA demonstrates competitive performance on major benchmarks, including MMSU, MMAU, and VoiceBench, outperforming several autoregressive open-source baselines. Our results reveal the potential of diffusion-based language models for efficient and scalable audio understanding, opening a new direction for speech-driven AI. Our code will be available at https://github.com/NKU-HLT/DIFFA.git.
Direct Discriminative Optimization: Your Likelihood-Based Visual Generative Model is Secretly a GAN Discriminator
While likelihood-based generative models, particularly diffusion and autoregressive models, have achieved remarkable fidelity in visual generation, the maximum likelihood estimation (MLE) objective inherently suffers from a mode-covering tendency that limits the generation quality under limited model capacity. In this work, we propose Direct Discriminative Optimization (DDO) as a unified framework that bridges likelihood-based generative training and the GAN objective to bypass this fundamental constraint. Our key insight is to parameterize a discriminator implicitly using the likelihood ratio between a learnable target model and a fixed reference model, drawing parallels with the philosophy of Direct Preference Optimization (DPO). Unlike GANs, this parameterization eliminates the need for joint training of generator and discriminator networks, allowing for direct, efficient, and effective finetuning of a well-trained model to its full potential beyond the limits of MLE. DDO can be performed iteratively in a self-play manner for progressive model refinement, with each round requiring less than 1% of pretraining epochs. Our experiments demonstrate the effectiveness of DDO by significantly advancing the previous SOTA diffusion model EDM, reducing FID scores from 1.79/1.58 to new records of 1.30/0.97 on CIFAR-10/ImageNet-64 datasets, and by consistently improving both guidance-free and CFG-enhanced FIDs of visual autoregressive models on ImageNet 256times256.
MADFormer: Mixed Autoregressive and Diffusion Transformers for Continuous Image Generation
Recent progress in multimodal generation has increasingly combined autoregressive (AR) and diffusion-based approaches, leveraging their complementary strengths: AR models capture long-range dependencies and produce fluent, context-aware outputs, while diffusion models operate in continuous latent spaces to refine high-fidelity visual details. However, existing hybrids often lack systematic guidance on how and why to allocate model capacity between these paradigms. In this work, we introduce MADFormer, a Mixed Autoregressive and Diffusion Transformer that serves as a testbed for analyzing AR-diffusion trade-offs. MADFormer partitions image generation into spatial blocks, using AR layers for one-pass global conditioning across blocks and diffusion layers for iterative local refinement within each block. Through controlled experiments on FFHQ-1024 and ImageNet, we identify two key insights: (1) block-wise partitioning significantly improves performance on high-resolution images, and (2) vertically mixing AR and diffusion layers yields better quality-efficiency balances--improving FID by up to 75% under constrained inference compute. Our findings offer practical design principles for future hybrid generative models.
Bridging the Gap between Learning and Inference for Diffusion-Based Molecule Generation
The efficacy of diffusion models in generating a spectrum of data modalities, including images, text, and videos, has spurred inquiries into their utility in molecular generation, yielding significant advancements in the field. However, the molecular generation process with diffusion models involves multiple autoregressive steps over a finite time horizon, leading to exposure bias issues inherently. To address the exposure bias issue, we propose a training framework named GapDiff. The core idea of GapDiff is to utilize model-predicted conformations as ground truth probabilistically during training, aiming to mitigate the data distributional disparity between training and inference, thereby enhancing the affinity of generated molecules. We conduct experiments using a 3D molecular generation model on the CrossDocked2020 dataset, and the vina energy and diversity demonstrate the potency of our framework with superior affinity. GapDiff is available at https://github.com/HUGHNew/gapdiff.
Discrete Diffusion in Large Language and Multimodal Models: A Survey
In this work, we provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs). Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm using full attention and a denoising-based generation strategy. This paradigm naturally enables parallel generation, fine-grained output controllability, and dynamic, response-aware perception. These capabilities are previously difficult to achieve with AR models. Recently, a growing number of industrial-scale proprietary d(M)LLMs, as well as a large number of open-source academic d(M)LLMs, have demonstrated performance comparable to their autoregressive counterparts, while achieving up to 10x acceleration in inference speed. The advancement of discrete diffusion LLMs and MLLMs has been largely driven by progress in two domains. The first is the development of autoregressive LLMs and MLLMs, which has accumulated vast amounts of data, benchmarks, and foundational infrastructure for training and inference. The second contributing domain is the evolution of the mathematical models underlying discrete diffusion. Together, these advancements have catalyzed a surge in dLLMs and dMLLMs research in early 2025. In this work, we present a comprehensive overview of the research in the dLLM and dMLLM domains. We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, and categorize representative models. We further analyze key techniques for training and inference, and summarize emerging applications across language, vision-language, and biological domains. We conclude by discussing future directions for research and deployment. Paper collection: https://github.com/LiQiiiii/DLLM-Survey
Dimple: Discrete Diffusion Multimodal Large Language Model with Parallel Decoding
In this work, we propose Dimple, the first Discrete Diffusion Multimodal Large Language Model (DMLLM). We observe that training with a purely discrete diffusion approach leads to significant training instability, suboptimal performance, and severe length bias issues. To address these challenges, we design a novel training paradigm that combines an initial autoregressive phase with a subsequent diffusion phase. This approach yields the Dimple-7B model, trained on the same dataset and using a similar training pipeline as LLaVA-NEXT. Dimple-7B ultimately surpasses LLaVA-NEXT in performance by 3.9%, demonstrating that DMLLM can achieve performance comparable to that of autoregressive models. To improve inference efficiency, we propose a decoding strategy termed confident decoding, which dynamically adjusts the number of tokens generated at each step, significantly reducing the number of generation iterations. In autoregressive models, the number of forward iterations during generation equals the response length. With confident decoding, however, the number of iterations needed by Dimple is even only text{response length}{3}. We also re-implement the prefilling technique in autoregressive models and demonstrate that it does not significantly impact performance on most benchmark evaluations, while offering a speedup of 1.5x to 7x. Additionally, we explore Dimple's capability to precisely control its response using structure priors. These priors enable structured responses in a manner distinct from instruction-based or chain-of-thought prompting, and allow fine-grained control over response format and length, which is difficult to achieve in autoregressive models. Overall, this work validates the feasibility and advantages of DMLLM and enhances its inference efficiency and controllability. Code and models are available at https://github.com/yu-rp/Dimple.
TaDiCodec: Text-aware Diffusion Speech Tokenizer for Speech Language Modeling
Speech tokenizers serve as foundational components for speech language models, yet current designs exhibit several limitations, including: 1) dependence on multi-layer residual vector quantization structures or high frame rates, 2) reliance on auxiliary pre-trained models for semantic distillation, and 3) requirements for complex two-stage training processes. In this work, we introduce the Text-aware Diffusion Transformer Speech Codec (TaDiCodec), a novel approach designed to overcome these challenges. TaDiCodec employs end-to-end optimization for quantization and reconstruction through a diffusion autoencoder, while integrating text guidance into the diffusion decoder to enhance reconstruction quality and achieve optimal compression. TaDiCodec achieves an extremely low frame rate of 6.25 Hz and a corresponding bitrate of 0.0875 kbps with a single-layer codebook for 24 kHz speech, while maintaining superior performance on critical speech generation evaluation metrics such as Word Error Rate (WER), speaker similarity (SIM), and speech quality (UTMOS). Notably, TaDiCodec employs a single-stage, end-to-end training paradigm, and obviating the need for auxiliary pre-trained models. We also validate the compatibility of TaDiCodec in language model based zero-shot text-to-speech with both autoregressive modeling and masked generative modeling, demonstrating its effectiveness and efficiency for speech language modeling, as well as a significantly small reconstruction-generation gap. We will open source our code and model checkpoints. Audio samples are are available at https:/tadicodec.github.io/. We release code and model checkpoints at https:/github.com/HeCheng0625/Diffusion-Speech-Tokenizer.
LLaDA-V: Large Language Diffusion Models with Visual Instruction Tuning
In this work, we introduce LLaDA-V, a purely diffusion-based Multimodal Large Language Model (MLLM) that integrates visual instruction tuning with masked diffusion models, representing a departure from the autoregressive paradigms dominant in current multimodal approaches. Built upon LLaDA, a representative large language diffusion model, LLaDA-V incorporates a vision encoder and MLP connector that projects visual features into the language embedding space, enabling effective multimodal alignment. Our empirical investigation reveals several intriguing results: First, LLaDA-V demonstrates promising multimodal performance despite its language model being weaker on purely textual tasks than counterparts like LLaMA3-8B and Qwen2-7B. When trained on the same instruction data, LLaDA-V is highly competitive to LLaMA3-V across multimodal tasks with better data scalability. It also narrows the performance gap to Qwen2-VL, suggesting the effectiveness of its architecture for multimodal tasks. Second, LLaDA-V achieves state-of-the-art performance in multimodal understanding compared to existing hybrid autoregressive-diffusion and purely diffusion-based MLLMs. Our findings suggest that large language diffusion models show promise in multimodal contexts and warrant further investigation in future research. Project page and codes: https://ml-gsai.github.io/LLaDA-V-demo/.
DiffuSpec: Unlocking Diffusion Language Models for Speculative Decoding
As large language models (LLMs) scale up, accuracy improves, but the autoregressive (AR) nature of decoding increases latency since each token requires a serial forward pass. Speculative decoding addresses this by employing a fast drafter to propose multi-token drafts, which are then verified in parallel by the target model. However, many deployments still rely on AR drafters, where sequential passes limit wall-clock gains. We revisit the drafting stage and present DiffuSpec, a training-free drop-in framework that uses a pretrained diffusion language model (DLM) to produce multi-token drafts in a single forward pass, while remaining compatible with standard AR verifiers. Because DLM drafts are generated under bidirectional conditioning, parallel per-position candidates form a token lattice in which the locally highest-probability token at each position need not form a causal left-to-right path. Moreover, DLM drafting requires pre-specifying a draft length, inducing a speed-quality trade-off. To address these challenges, we introduce two practical components: (i) a causal-consistency path search (CPS) over this lattice that extracts a left-to-right path aligned with AR verification; and (ii) an adaptive draft-length (ADL) controller that adjusts next proposal size based on recent acceptance feedback and realized generated length. Across benchmarks, DiffuSpec yields up to 3x wall-clock speedup, establishing diffusion-based drafting as a robust alternative to autoregressive drafters for speculative decoding.
E-CAR: Efficient Continuous Autoregressive Image Generation via Multistage Modeling
Recent advances in autoregressive (AR) models with continuous tokens for image generation show promising results by eliminating the need for discrete tokenization. However, these models face efficiency challenges due to their sequential token generation nature and reliance on computationally intensive diffusion-based sampling. We present ECAR (Efficient Continuous Auto-Regressive Image Generation via Multistage Modeling), an approach that addresses these limitations through two intertwined innovations: (1) a stage-wise continuous token generation strategy that reduces computational complexity and provides progressively refined token maps as hierarchical conditions, and (2) a multistage flow-based distribution modeling method that transforms only partial-denoised distributions at each stage comparing to complete denoising in normal diffusion models. Holistically, ECAR operates by generating tokens at increasing resolutions while simultaneously denoising the image at each stage. This design not only reduces token-to-image transformation cost by a factor of the stage number but also enables parallel processing at the token level. Our approach not only enhances computational efficiency but also aligns naturally with image generation principles by operating in continuous token space and following a hierarchical generation process from coarse to fine details. Experimental results demonstrate that ECAR achieves comparable image quality to DiT Peebles & Xie [2023] while requiring 10times FLOPs reduction and 5times speedup to generate a 256times256 image.
CSD-VAR: Content-Style Decomposition in Visual Autoregressive Models
Disentangling content and style from a single image, known as content-style decomposition (CSD), enables recontextualization of extracted content and stylization of extracted styles, offering greater creative flexibility in visual synthesis. While recent personalization methods have explored the decomposition of explicit content style, they remain tailored for diffusion models. Meanwhile, Visual Autoregressive Modeling (VAR) has emerged as a promising alternative with a next-scale prediction paradigm, achieving performance comparable to that of diffusion models. In this paper, we explore VAR as a generative framework for CSD, leveraging its scale-wise generation process for improved disentanglement. To this end, we propose CSD-VAR, a novel method that introduces three key innovations: (1) a scale-aware alternating optimization strategy that aligns content and style representation with their respective scales to enhance separation, (2) an SVD-based rectification method to mitigate content leakage into style representations, and (3) an Augmented Key-Value (K-V) memory enhancing content identity preservation. To benchmark this task, we introduce CSD-100, a dataset specifically designed for content-style decomposition, featuring diverse subjects rendered in various artistic styles. Experiments demonstrate that CSD-VAR outperforms prior approaches, achieving superior content preservation and stylization fidelity.
Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding
Diffusion-based large language models (Diffusion LLMs) have shown promise for non-autoregressive text generation with parallel decoding capabilities. However, the practical inference speed of open-sourced Diffusion LLMs often lags behind autoregressive models due to the lack of Key-Value (KV) Cache and quality degradation when decoding multiple tokens simultaneously. To bridge this gap, we introduce a novel block-wise approximate KV Cache mechanism tailored for bidirectional diffusion models, enabling cache reuse with negligible performance drop. Additionally, we identify the root cause of generation quality degradation in parallel decoding as the disruption of token dependencies under the conditional independence assumption. To address this, we propose a confidence-aware parallel decoding strategy that selectively decodes tokens exceeding a confidence threshold, mitigating dependency violations and maintaining generation quality. Experimental results on LLaDA and Dream models across multiple LLM benchmarks demonstrate up to 27.6times throughput improvement with minimal accuracy loss, closing the performance gap with autoregressive models and paving the way for practical deployment of Diffusion LLMs.
The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs
Diffusion-based large language models (dLLMs) have recently emerged as a powerful alternative to autoregressive LLMs, offering faster inference and greater interactivity via parallel decoding and bidirectional modeling. However, despite strong performance in code generation and text infilling, we identify a fundamental safety concern: existing alignment mechanisms fail to safeguard dLLMs against context-aware, masked-input adversarial prompts, exposing novel vulnerabilities. To this end, we present DIJA, the first systematic study and jailbreak attack framework that exploits unique safety weaknesses of dLLMs. Specifically, our proposed DIJA constructs adversarial interleaved mask-text prompts that exploit the text generation mechanisms of dLLMs, i.e., bidirectional modeling and parallel decoding. Bidirectional modeling drives the model to produce contextually consistent outputs for masked spans, even when harmful, while parallel decoding limits model dynamic filtering and rejection sampling of unsafe content. This causes standard alignment mechanisms to fail, enabling harmful completions in alignment-tuned dLLMs, even when harmful behaviors or unsafe instructions are directly exposed in the prompt. Through comprehensive experiments, we demonstrate that DIJA significantly outperforms existing jailbreak methods, exposing a previously overlooked threat surface in dLLM architectures. Notably, our method achieves up to 100% keyword-based ASR on Dream-Instruct, surpassing the strongest prior baseline, ReNeLLM, by up to 78.5% in evaluator-based ASR on JailbreakBench and by 37.7 points in StrongREJECT score, while requiring no rewriting or hiding of harmful content in the jailbreak prompt. Our findings underscore the urgent need for rethinking safety alignment in this emerging class of language models. Code is available at https://github.com/ZichenWen1/DIJA.
Audio-Conditioned Diffusion LLMs for ASR and Deliberation Processing
Diffusion-based large language models (DLLMs) have recently attracted growing interest as an alternative to autoregressive decoders. In this work, we present an empirical study on using the diffusion-based large language model LLaDA for automatic speech recognition (ASR). We first investigate its use as an external deliberation-based processing module for Whisper-LLaMA transcripts. By leveraging the bidirectional attention and denoising capabilities of LLaDA, we explore random masking, low-confidence masking, and semi-autoregressive strategies, showing that Whisper-LLaDA substantially reduces WER compared with the baseline. On LibriSpeech, the best cascade system achieves 2.25%/4.94% WER on test-clean/test-other, representing a 12.3% relative improvement over the Whisper-LLaMA baseline on the test-other split. In contrast, a plain-text LLaDA without acoustic features fails to improve accuracy, highlighting the importance of audio-conditioned embeddings. We further evaluate Whisper-LLaDA as a standalone decoder for ASR with diffusion-based and semi-autoregressive decoding. Most experimental configurations achieve faster inference than the Whisper-LLaMA baseline, although recognition accuracy is slightly lower. These findings offer an empirical view of diffusion-based LLMs for ASR and point to promising directions for improvements.
AdaBlock-dLLM: Semantic-Aware Diffusion LLM Inference via Adaptive Block Size
Diffusion-based large language models (dLLMs) are gaining attention for their inherent capacity for parallel decoding, offering a compelling alternative to autoregressive LLMs. Among various decoding strategies, blockwise semi-autoregressive (semi-AR) approaches are widely adopted due to their natural support for KV caching and their favorable accuracy-speed trade-off. However, this paper identifies two fundamental limitations in the conventional semi-AR decoding approach that applies a fixed block size: i) late decoding overhead, where the unmasking of high-confidence tokens outside the current block is unnecessarily delayed, and ii) premature decoding error, where low-confidence tokens inside the current block are committed too early, leading to incorrect tokens. This paper presents the first systematic investigation challenging the fixed block size assumption in semi-AR decoding. Through a statistical analysis of confidence dynamics during the denoising process, we identify a volatility band (VB) region during dLLM decoding, which encodes local semantic structure and can be used to guide adaptive block sizing. Leveraging these insights, we introduce AdaBlock-dLLM, a training-free, plug-and-play scheduler that adaptively aligns block boundaries with semantic steps by adjusting block size during runtime. Extensive experiments across diverse benchmarks show that AdaBlock-dLLM achieves up to 5.3% accuracy improvement under the same throughput budget. Beyond inference-time optimization, we hope our semantics-aware adaptive scheduling approach and confidence-based analysis will inspire future training strategies for dLLMs.
Unlocking Pretrained LLMs for Motion-Related Multimodal Generation: A Fine-Tuning Approach to Unify Diffusion and Next-Token Prediction
In this paper, we propose a unified framework that leverages a single pretrained LLM for Motion-related Multimodal Generation, referred to as MoMug. MoMug integrates diffusion-based continuous motion generation with the model's inherent autoregressive discrete text prediction capabilities by fine-tuning a pretrained LLM. This enables seamless switching between continuous motion output and discrete text token prediction within a single model architecture, effectively combining the strengths of both diffusion- and LLM-based approaches. Experimental results show that, compared to the most recent LLM-based baseline, MoMug improves FID by 38% and mean accuracy across seven metrics by 16.61% on the text-to-motion task. Additionally, it improves mean accuracy across eight metrics by 8.44% on the text-to-motion task. To the best of our knowledge, this is the first approach to integrate diffusion- and LLM-based generation within a single model for motion-related multimodal tasks while maintaining low training costs. This establishes a foundation for future advancements in motion-related generation, paving the way for high-quality yet cost-efficient motion synthesis.
$\bf{D^3}$QE: Learning Discrete Distribution Discrepancy-aware Quantization Error for Autoregressive-Generated Image Detection
The emergence of visual autoregressive (AR) models has revolutionized image generation while presenting new challenges for synthetic image detection. Unlike previous GAN or diffusion-based methods, AR models generate images through discrete token prediction, exhibiting both marked improvements in image synthesis quality and unique characteristics in their vector-quantized representations. In this paper, we propose to leverage Discrete Distribution Discrepancy-aware Quantization Error (D^3QE) for autoregressive-generated image detection that exploits the distinctive patterns and the frequency distribution bias of the codebook existing in real and fake images. We introduce a discrete distribution discrepancy-aware transformer that integrates dynamic codebook frequency statistics into its attention mechanism, fusing semantic features and quantization error latent. To evaluate our method, we construct a comprehensive dataset termed ARForensics covering 7 mainstream visual AR models. Experiments demonstrate superior detection accuracy and strong generalization of D^3QE across different AR models, with robustness to real-world perturbations. Code is available at https://github.com/Zhangyr2022/D3QE{https://github.com/Zhangyr2022/D3QE}.
Scalable Language Models with Posterior Inference of Latent Thought Vectors
We propose a novel family of language models, Latent-Thought Language Models (LTMs), which incorporate explicit latent thought vectors that follow an explicit prior model in latent space. These latent thought vectors guide the autoregressive generation of ground tokens through a Transformer decoder. Training employs a dual-rate optimization process within the classical variational Bayes framework: fast learning of local variational parameters for the posterior distribution of latent vectors, and slow learning of global decoder parameters. Empirical studies reveal that LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space. Higher sample efficiency can be achieved by increasing training compute per token, with further gains possible by trading model size for more inference steps. Designed based on these scaling properties, LTMs demonstrate superior sample and parameter efficiency compared to conventional autoregressive models and discrete diffusion models. They significantly outperform these counterparts in validation perplexity and zero-shot language modeling. Additionally, LTMs exhibit emergent few-shot in-context reasoning capabilities that scale with model and latent size, and achieve competitive performance in conditional and unconditional text generation.
Seed-TTS: A Family of High-Quality Versatile Speech Generation Models
We introduce Seed-TTS, a family of large-scale autoregressive text-to-speech (TTS) models capable of generating speech that is virtually indistinguishable from human speech. Seed-TTS serves as a foundation model for speech generation and excels in speech in-context learning, achieving performance in speaker similarity and naturalness that matches ground truth human speech in both objective and subjective evaluations. With fine-tuning, we achieve even higher subjective scores across these metrics. Seed-TTS offers superior controllability over various speech attributes such as emotion and is capable of generating highly expressive and diverse speech for speakers in the wild. Furthermore, we propose a self-distillation method for speech factorization, as well as a reinforcement learning approach to enhance model robustness, speaker similarity, and controllability. We additionally present a non-autoregressive (NAR) variant of the Seed-TTS model, named Seed-TTS_DiT, which utilizes a fully diffusion-based architecture. Unlike previous NAR-based TTS systems, Seed-TTS_DiT does not depend on pre-estimated phoneme durations and performs speech generation through end-to-end processing. We demonstrate that this variant achieves comparable performance to the language model-based variant and showcase its effectiveness in speech editing. We encourage readers to listen to demos at https://bytedancespeech.github.io/seedtts_tech_report.
Autoregressive Speech Synthesis with Next-Distribution Prediction
We introduce KALL-E, a novel autoregressive (AR) language modeling approach with next-distribution prediction for text-to-speech (TTS) synthesis. Unlike existing methods, KALL-E directly models and predicts the continuous speech distribution conditioned on text without relying on VAE- or diffusion-based components. Specifically, we use WaveVAE to extract continuous speech distributions from waveforms instead of using discrete speech tokens. A single AR language model predicts these continuous speech distributions from text, with a Kullback-Leibler divergence loss as the constraint. Experimental results show that KALL-E outperforms open-source implementations of YourTTS, VALL-E, NaturalSpeech 2, and CosyVoice in terms of naturalness and speaker similarity in zero-shot TTS scenarios. Moreover, KALL-E demonstrates exceptional zero-shot capabilities in emotion and accent cloning. Importantly, KALL-E presents a more straightforward and effective paradigm for using continuous speech representations in TTS. Audio samples are available at: https://zxf-icpc.github.io/kalle/.
OneCAT: Decoder-Only Auto-Regressive Model for Unified Understanding and Generation
We introduce OneCAT, a unified multimodal model that seamlessly integrates understanding, generation, and editing within a novel, pure decoder-only transformer architecture. Our framework uniquely eliminates the need for external components such as Vision Transformers (ViT) or vision tokenizer during inference, leading to significant efficiency gains, especially for high-resolution inputs. This is achieved through a modality-specific Mixture-of-Experts (MoE) structure trained with a single autoregressive (AR) objective, which also natively supports dynamic resolutions. Furthermore, we pioneer a multi-scale visual autoregressive mechanism within the Large Language Model (LLM) that drastically reduces decoding steps compared to diffusion-based methods while maintaining state-of-the-art performance. Our findings demonstrate the powerful potential of pure autoregressive modeling as a sufficient and elegant foundation for unified multimodal intelligence. As a result, OneCAT sets a new performance standard, outperforming existing open-source unified multimodal models across benchmarks for multimodal generation, editing, and understanding.
Reconstruction Alignment Improves Unified Multimodal Models
Unified multimodal models (UMMs) unify visual understanding and generation within a single architecture. However, conventional training relies on image-text pairs (or sequences) whose captions are typically sparse and miss fine-grained visual details--even when they use hundreds of words to describe a simple image. We introduce Reconstruction Alignment (RecA), a resource-efficient post-training method that leverages visual understanding encoder embeddings as dense "text prompts," providing rich supervision without captions. Concretely, RecA conditions a UMM on its own visual understanding embeddings and optimizes it to reconstruct the input image with a self-supervised reconstruction loss, thereby realigning understanding and generation. Despite its simplicity, RecA is broadly applicable: across autoregressive, masked-autoregressive, and diffusion-based UMMs, it consistently improves generation and editing fidelity. With only 27 GPU-hours, post-training with RecA substantially improves image generation performance on GenEval (0.73rightarrow0.90) and DPGBench (80.93rightarrow88.15), while also boosting editing benchmarks (ImgEdit 3.38rightarrow3.75, GEdit 6.94rightarrow7.25). Notably, RecA surpasses much larger open-source models and applies broadly across diverse UMM architectures, establishing it as an efficient and general post-training alignment strategy for UMMs
Teller: Real-Time Streaming Audio-Driven Portrait Animation with Autoregressive Motion Generation
In this work, we introduce the first autoregressive framework for real-time, audio-driven portrait animation, a.k.a, talking head. Beyond the challenge of lengthy animation times, a critical challenge in realistic talking head generation lies in preserving the natural movement of diverse body parts. To this end, we propose Teller, the first streaming audio-driven protrait animation framework with autoregressive motion generation. Specifically, Teller first decomposes facial and body detail animation into two components: Facial Motion Latent Generation (FMLG) based on an autoregressive transfromer, and movement authenticity refinement using a Efficient Temporal Module (ETM).Concretely, FMLG employs a Residual VQ model to map the facial motion latent from the implicit keypoint-based model into discrete motion tokens, which are then temporally sliced with audio embeddings. This enables the AR tranformer to learn real-time, stream-based mappings from audio to motion. Furthermore, Teller incorporate ETM to capture finer motion details. This module ensures the physical consistency of body parts and accessories, such as neck muscles and earrings, improving the realism of these movements. Teller is designed to be efficient, surpassing the inference speed of diffusion-based models (Hallo 20.93s vs. Teller 0.92s for one second video generation), and achieves a real-time streaming performance of up to 25 FPS. Extensive experiments demonstrate that our method outperforms recent audio-driven portrait animation models, especially in small movements, as validated by human evaluations with a significant margin in quality and realism.
Scale-Wise VAR is Secretly Discrete Diffusion
Autoregressive (AR) transformers have emerged as a powerful paradigm for visual generation, largely due to their scalability, computational efficiency and unified architecture with language and vision. Among them, next scale prediction Visual Autoregressive Generation (VAR) has recently demonstrated remarkable performance, even surpassing diffusion-based models. In this work, we revisit VAR and uncover a theoretical insight: when equipped with a Markovian attention mask, VAR is mathematically equivalent to a discrete diffusion. We term this reinterpretation as Scalable Visual Refinement with Discrete Diffusion (SRDD), establishing a principled bridge between AR transformers and diffusion models. Leveraging this new perspective, we show how one can directly import the advantages of diffusion such as iterative refinement and reduce architectural inefficiencies into VAR, yielding faster convergence, lower inference cost, and improved zero-shot reconstruction. Across multiple datasets, we show that the diffusion based perspective of VAR leads to consistent gains in efficiency and generation.
LongScape: Advancing Long-Horizon Embodied World Models with Context-Aware MoE
Video-based world models hold significant potential for generating high-quality embodied manipulation data. However, current video generation methods struggle to achieve stable long-horizon generation: classical diffusion-based approaches often suffer from temporal inconsistency and visual drift over multiple rollouts, while autoregressive methods tend to compromise on visual detail. To solve this, we introduce LongScape, a hybrid framework that adaptively combines intra-chunk diffusion denoising with inter-chunk autoregressive causal generation. Our core innovation is an action-guided, variable-length chunking mechanism that partitions video based on the semantic context of robotic actions. This ensures each chunk represents a complete, coherent action, enabling the model to flexibly generate diverse dynamics. We further introduce a Context-aware Mixture-of-Experts (CMoE) framework that adaptively activates specialized experts for each chunk during generation, guaranteeing high visual quality and seamless chunk transitions. Extensive experimental results demonstrate that our method achieves stable and consistent long-horizon generation over extended rollouts. Our code is available at: https://github.com/tsinghua-fib-lab/Longscape.
MineWorld: a Real-Time and Open-Source Interactive World Model on Minecraft
World modeling is a crucial task for enabling intelligent agents to effectively interact with humans and operate in dynamic environments. In this work, we propose MineWorld, a real-time interactive world model on Minecraft, an open-ended sandbox game which has been utilized as a common testbed for world modeling. MineWorld is driven by a visual-action autoregressive Transformer, which takes paired game scenes and corresponding actions as input, and generates consequent new scenes following the actions. Specifically, by transforming visual game scenes and actions into discrete token ids with an image tokenizer and an action tokenizer correspondingly, we consist the model input with the concatenation of the two kinds of ids interleaved. The model is then trained with next token prediction to learn rich representations of game states as well as the conditions between states and actions simultaneously. In inference, we develop a novel parallel decoding algorithm that predicts the spatial redundant tokens in each frame at the same time, letting models in different scales generate 4 to 7 frames per second and enabling real-time interactions with game players. In evaluation, we propose new metrics to assess not only visual quality but also the action following capacity when generating new scenes, which is crucial for a world model. Our comprehensive evaluation shows the efficacy of MineWorld, outperforming SoTA open-sourced diffusion based world models significantly. The code and model have been released.
Playable Game Generation
In recent years, Artificial Intelligence Generated Content (AIGC) has advanced from text-to-image generation to text-to-video and multimodal video synthesis. However, generating playable games presents significant challenges due to the stringent requirements for real-time interaction, high visual quality, and accurate simulation of game mechanics. Existing approaches often fall short, either lacking real-time capabilities or failing to accurately simulate interactive mechanics. To tackle the playability issue, we propose a novel method called PlayGen, which encompasses game data generation, an autoregressive DiT-based diffusion model, and a comprehensive playability-based evaluation framework. Validated on well-known 2D and 3D games, PlayGen achieves real-time interaction, ensures sufficient visual quality, and provides accurate interactive mechanics simulation. Notably, these results are sustained even after over 1000 frames of gameplay on an NVIDIA RTX 2060 GPU. Our code is publicly available: https://github.com/GreatX3/Playable-Game-Generation. Our playable demo generated by AI is: http://124.156.151.207.
Motion Anything: Any to Motion Generation
Conditional motion generation has been extensively studied in computer vision, yet two critical challenges remain. First, while masked autoregressive methods have recently outperformed diffusion-based approaches, existing masking models lack a mechanism to prioritize dynamic frames and body parts based on given conditions. Second, existing methods for different conditioning modalities often fail to integrate multiple modalities effectively, limiting control and coherence in generated motion. To address these challenges, we propose Motion Anything, a multimodal motion generation framework that introduces an Attention-based Mask Modeling approach, enabling fine-grained spatial and temporal control over key frames and actions. Our model adaptively encodes multimodal conditions, including text and music, improving controllability. Additionally, we introduce Text-Music-Dance (TMD), a new motion dataset consisting of 2,153 pairs of text, music, and dance, making it twice the size of AIST++, thereby filling a critical gap in the community. Extensive experiments demonstrate that Motion Anything surpasses state-of-the-art methods across multiple benchmarks, achieving a 15% improvement in FID on HumanML3D and showing consistent performance gains on AIST++ and TMD. See our project website https://steve-zeyu-zhang.github.io/MotionAnything
CASIM: Composite Aware Semantic Injection for Text to Motion Generation
Recent advances in generative modeling and tokenization have driven significant progress in text-to-motion generation, leading to enhanced quality and realism in generated motions. However, effectively leveraging textual information for conditional motion generation remains an open challenge. We observe that current approaches, primarily relying on fixed-length text embeddings (e.g., CLIP) for global semantic injection, struggle to capture the composite nature of human motion, resulting in suboptimal motion quality and controllability. To address this limitation, we propose the Composite Aware Semantic Injection Mechanism (CASIM), comprising a composite-aware semantic encoder and a text-motion aligner that learns the dynamic correspondence between text and motion tokens. Notably, CASIM is model and representation-agnostic, readily integrating with both autoregressive and diffusion-based methods. Experiments on HumanML3D and KIT benchmarks demonstrate that CASIM consistently improves motion quality, text-motion alignment, and retrieval scores across state-of-the-art methods. Qualitative analyses further highlight the superiority of our composite-aware approach over fixed-length semantic injection, enabling precise motion control from text prompts and stronger generalization to unseen text inputs.
FlashVideo: A Framework for Swift Inference in Text-to-Video Generation
In the evolving field of machine learning, video generation has witnessed significant advancements with autoregressive-based transformer models and diffusion models, known for synthesizing dynamic and realistic scenes. However, these models often face challenges with prolonged inference times, even for generating short video clips such as GIFs. This paper introduces FlashVideo, a novel framework tailored for swift Text-to-Video generation. FlashVideo represents the first successful adaptation of the RetNet architecture for video generation, bringing a unique approach to the field. Leveraging the RetNet-based architecture, FlashVideo reduces the time complexity of inference from O(L^2) to O(L) for a sequence of length L, significantly accelerating inference speed. Additionally, we adopt a redundant-free frame interpolation method, enhancing the efficiency of frame interpolation. Our comprehensive experiments demonstrate that FlashVideo achieves a times9.17 efficiency improvement over a traditional autoregressive-based transformer model, and its inference speed is of the same order of magnitude as that of BERT-based transformer models.
Diffusion vs. Autoregressive Language Models: A Text Embedding Perspective
Large language model (LLM)-based embedding models, benefiting from large scale pre-training and post-training, have begun to surpass BERT and T5-based models on general-purpose text embedding tasks such as document retrieval. However, a fundamental limitation of LLM embeddings lies in the unidirectional attention used during autoregressive pre-training, which misaligns with the bidirectional nature of text embedding tasks. To this end, We propose adopting diffusion language models for text embeddings, motivated by their inherent bidirectional architecture and recent success in matching or surpassing LLMs especially on reasoning tasks. We present the first systematic study of the diffusion language embedding model, which outperforms the LLM-based embedding model by 20% on long-document retrieval, 8% on reasoning-intensive retrieval, 2% on instruction-following retrieval, and achieve competitive performance on traditional text embedding benchmarks. Our analysis verifies that bidirectional attention is crucial for encoding global context in long and complex text.
Autoregressive Diffusion Models
We introduce Autoregressive Diffusion Models (ARDMs), a model class encompassing and generalizing order-agnostic autoregressive models (Uria et al., 2014) and absorbing discrete diffusion (Austin et al., 2021), which we show are special cases of ARDMs under mild assumptions. ARDMs are simple to implement and easy to train. Unlike standard ARMs, they do not require causal masking of model representations, and can be trained using an efficient objective similar to modern probabilistic diffusion models that scales favourably to highly-dimensional data. At test time, ARDMs support parallel generation which can be adapted to fit any given generation budget. We find that ARDMs require significantly fewer steps than discrete diffusion models to attain the same performance. Finally, we apply ARDMs to lossless compression, and show that they are uniquely suited to this task. Contrary to existing approaches based on bits-back coding, ARDMs obtain compelling results not only on complete datasets, but also on compressing single data points. Moreover, this can be done using a modest number of network calls for (de)compression due to the model's adaptable parallel generation.
Controllable Motion Synthesis and Reconstruction with Autoregressive Diffusion Models
Data-driven and controllable human motion synthesis and prediction are active research areas with various applications in interactive media and social robotics. Challenges remain in these fields for generating diverse motions given past observations and dealing with imperfect poses. This paper introduces MoDiff, an autoregressive probabilistic diffusion model over motion sequences conditioned on control contexts of other modalities. Our model integrates a cross-modal Transformer encoder and a Transformer-based decoder, which are found effective in capturing temporal correlations in motion and control modalities. We also introduce a new data dropout method based on the diffusion forward process to provide richer data representations and robust generation. We demonstrate the superior performance of MoDiff in controllable motion synthesis for locomotion with respect to two baselines and show the benefits of diffusion data dropout for robust synthesis and reconstruction of high-fidelity motion close to recorded data.
Dream-Coder 7B: An Open Diffusion Language Model for Code
We present Dream-Coder 7B, an open-source discrete diffusion language model for code generation that exhibits emergent any-order generation capabilities. Unlike traditional autoregressive (AR) models that decode strictly left-to-right, Dream-Coder 7B adaptively determines its decoding strategy based on the coding task: sketch-first generation for complex algorithms, left-to-right generation for straightforward completions, and interleaved reasoning generation for code understanding tasks. We adapt a pretrained AR checkpoint to a discrete diffusion frameworks with a continuous-time weighted cross-entropy objective. Our post-training recipe comprises (i) supervised fine-tuning, where we mitigate padding pathologies via random truncation and a padding penalty to improve sample efficiency and stabilize generation; and (ii) reinforcement learning with verifiable rewards over a curated high-quality prompt set drawn from open-source datasets, using a tailored reinforcement learning recipe for diffusion language models. The resulting Dream-Coder 7B Instruct attains 21.4\% pass@1 on LiveCodeBench (2410--2505) and demonstrates competitive performance on HumanEval, MBPP, BigCodeBench, and CRUXEval. We release Dream-Coder-7B and Dream-Coder-7B-Instruct checkpoints, training recipes, preprocessing pipelines, and inference code to facilitate reproducibility and further research.
d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning
Recent large language models (LLMs) have demonstrated strong reasoning capabilities that benefits from online reinforcement learning (RL). These capabilities have primarily been demonstrated within the left-to-right autoregressive (AR) generation paradigm. In contrast, non-autoregressive paradigms based on diffusion generate text in a coarse-to-fine manner. Although recent diffusion-based large language models (dLLMs) have achieved competitive language modeling performance compared to their AR counterparts, it remains unclear if dLLMs can also leverage recent advances in LLM reasoning. To this end, we propose d1, a framework to adapt pre-trained masked dLLMs into reasoning models via a combination of supervised finetuning (SFT) and RL. Specifically, we develop and extend techniques to improve reasoning in pretrained dLLMs: (a) we utilize a masked SFT technique to distill knowledge and instill self-improvement behavior directly from existing datasets, and (b) we introduce a novel critic-free, policy-gradient based RL algorithm called diffu-GRPO. Through empirical studies, we investigate the performance of different post-training recipes on multiple mathematical and logical reasoning benchmarks. We find that d1 yields the best performance and significantly improves performance of a state-of-the-art dLLM.
Swift: An Autoregressive Consistency Model for Efficient Weather Forecasting
Diffusion models offer a physically grounded framework for probabilistic weather forecasting, but their typical reliance on slow, iterative solvers during inference makes them impractical for subseasonal-to-seasonal (S2S) applications where long lead-times and domain-driven calibration are essential. To address this, we introduce Swift, a single-step consistency model that, for the first time, enables autoregressive finetuning of a probability flow model with a continuous ranked probability score (CRPS) objective. This eliminates the need for multi-model ensembling or parameter perturbations. Results show that Swift produces skillful 6-hourly forecasts that remain stable for up to 75 days, running 39times faster than state-of-the-art diffusion baselines while achieving forecast skill competitive with the numerical-based, operational IFS ENS. This marks a step toward efficient and reliable ensemble forecasting from medium-range to seasonal-scales.
Continuous Speech Synthesis using per-token Latent Diffusion
The success of autoregressive transformer models with discrete tokens has inspired quantization-based approaches for continuous modalities, though these often limit reconstruction quality. We therefore introduce SALAD, a per-token latent diffusion model for zero-shot text-to-speech, that operates on continuous representations. SALAD builds upon the recently proposed expressive diffusion head for image generation, and extends it to generate variable-length outputs. Our approach utilizes semantic tokens for providing contextual information and determining the stopping condition. We suggest three continuous variants for our method, extending popular discrete speech synthesis techniques. Additionally, we implement discrete baselines for each variant and conduct a comparative analysis of discrete versus continuous speech modeling techniques. Our results demonstrate that both continuous and discrete approaches are highly competent, and that SALAD achieves a superior intelligibility score while obtaining speech quality and speaker similarity on par with the ground-truth audio.
DART: Denoising Autoregressive Transformer for Scalable Text-to-Image Generation
Diffusion models have become the dominant approach for visual generation. They are trained by denoising a Markovian process that gradually adds noise to the input. We argue that the Markovian property limits the models ability to fully utilize the generation trajectory, leading to inefficiencies during training and inference. In this paper, we propose DART, a transformer-based model that unifies autoregressive (AR) and diffusion within a non-Markovian framework. DART iteratively denoises image patches spatially and spectrally using an AR model with the same architecture as standard language models. DART does not rely on image quantization, enabling more effective image modeling while maintaining flexibility. Furthermore, DART seamlessly trains with both text and image data in a unified model. Our approach demonstrates competitive performance on class-conditioned and text-to-image generation tasks, offering a scalable, efficient alternative to traditional diffusion models. Through this unified framework, DART sets a new benchmark for scalable, high-quality image synthesis.
Diffusion-LM Improves Controllable Text Generation
Controlling the behavior of language models (LMs) without re-training is a major open problem in natural language generation. While recent works have demonstrated successes on controlling simple sentence attributes (e.g., sentiment), there has been little progress on complex, fine-grained controls (e.g., syntactic structure). To address this challenge, we develop a new non-autoregressive language model based on continuous diffusions that we call Diffusion-LM. Building upon the recent successes of diffusion models in continuous domains, Diffusion-LM iteratively denoises a sequence of Gaussian vectors into word vectors, yielding a sequence of intermediate latent variables. The continuous, hierarchical nature of these intermediate variables enables a simple gradient-based algorithm to perform complex, controllable generation tasks. We demonstrate successful control of Diffusion-LM for six challenging fine-grained control tasks, significantly outperforming prior work.
EZ-VC: Easy Zero-shot Any-to-Any Voice Conversion
Voice Conversion research in recent times has increasingly focused on improving the zero-shot capabilities of existing methods. Despite remarkable advancements, current architectures still tend to struggle in zero-shot cross-lingual settings. They are also often unable to generalize for speakers of unseen languages and accents. In this paper, we adopt a simple yet effective approach that combines discrete speech representations from self-supervised models with a non-autoregressive Diffusion-Transformer based conditional flow matching speech decoder. We show that this architecture allows us to train a voice-conversion model in a purely textless, self-supervised fashion. Our technique works without requiring multiple encoders to disentangle speech features. Our model also manages to excel in zero-shot cross-lingual settings even for unseen languages. For Demo: https://ez-vc.github.io/EZ-VC-Demo/
Structured Denoising Diffusion Models in Discrete State-Spaces
Denoising diffusion probabilistic models (DDPMs) (Ho et al. 2020) have shown impressive results on image and waveform generation in continuous state spaces. Here, we introduce Discrete Denoising Diffusion Probabilistic Models (D3PMs), diffusion-like generative models for discrete data that generalize the multinomial diffusion model of Hoogeboom et al. 2021, by going beyond corruption processes with uniform transition probabilities. This includes corruption with transition matrices that mimic Gaussian kernels in continuous space, matrices based on nearest neighbors in embedding space, and matrices that introduce absorbing states. The third allows us to draw a connection between diffusion models and autoregressive and mask-based generative models. We show that the choice of transition matrix is an important design decision that leads to improved results in image and text domains. We also introduce a new loss function that combines the variational lower bound with an auxiliary cross entropy loss. For text, this model class achieves strong results on character-level text generation while scaling to large vocabularies on LM1B. On the image dataset CIFAR-10, our models approach the sample quality and exceed the log-likelihood of the continuous-space DDPM model.
DiffSpectra: Molecular Structure Elucidation from Spectra using Diffusion Models
Molecular structure elucidation from spectra is a foundational problem in chemistry, with profound implications for compound identification, synthesis, and drug development. Traditional methods rely heavily on expert interpretation and lack scalability. Pioneering machine learning methods have introduced retrieval-based strategies, but their reliance on finite libraries limits generalization to novel molecules. Generative models offer a promising alternative, yet most adopt autoregressive SMILES-based architectures that overlook 3D geometry and struggle to integrate diverse spectral modalities. In this work, we present DiffSpectra, a generative framework that directly infers both 2D and 3D molecular structures from multi-modal spectral data using diffusion models. DiffSpectra formulates structure elucidation as a conditional generation process. Its denoising network is parameterized by Diffusion Molecule Transformer, an SE(3)-equivariant architecture that integrates topological and geometric information. Conditioning is provided by SpecFormer, a transformer-based spectral encoder that captures intra- and inter-spectral dependencies from multi-modal spectra. Extensive experiments demonstrate that DiffSpectra achieves high accuracy in structure elucidation, recovering exact structures with 16.01% top-1 accuracy and 96.86% top-20 accuracy through sampling. The model benefits significantly from 3D geometric modeling, SpecFormer pre-training, and multi-modal conditioning. These results highlight the effectiveness of spectrum-conditioned diffusion modeling in addressing the challenge of molecular structure elucidation. To our knowledge, DiffSpectra is the first framework to unify multi-modal spectral reasoning and joint 2D/3D generative modeling for de novo molecular structure elucidation.
SimpleSpeech: Towards Simple and Efficient Text-to-Speech with Scalar Latent Transformer Diffusion Models
In this study, we propose a simple and efficient Non-Autoregressive (NAR) text-to-speech (TTS) system based on diffusion, named SimpleSpeech. Its simpleness shows in three aspects: (1) It can be trained on the speech-only dataset, without any alignment information; (2) It directly takes plain text as input and generates speech through an NAR way; (3) It tries to model speech in a finite and compact latent space, which alleviates the modeling difficulty of diffusion. More specifically, we propose a novel speech codec model (SQ-Codec) with scalar quantization, SQ-Codec effectively maps the complex speech signal into a finite and compact latent space, named scalar latent space. Benefits from SQ-Codec, we apply a novel transformer diffusion model in the scalar latent space of SQ-Codec. We train SimpleSpeech on 4k hours of a speech-only dataset, it shows natural prosody and voice cloning ability. Compared with previous large-scale TTS models, it presents significant speech quality and generation speed improvement. Demos are released.
Instruction-Guided Autoregressive Neural Network Parameter Generation
Learning to generate neural network parameters conditioned on task descriptions and architecture specifications is pivotal for advancing model adaptability and transfer learning. Existing methods especially those based on diffusion models suffer from limited scalability to large architectures, rigidity in handling varying network depths, and disjointed parameter generation that undermines inter-layer coherence. In this work, we propose IGPG (Instruction Guided Parameter Generation), an autoregressive framework that unifies parameter synthesis across diverse tasks and architectures. IGPG leverages a VQ-VAE and an autoregressive model to generate neural network parameters, conditioned on task instructions, dataset, and architecture details. By autoregressively generating neural network weights' tokens, IGPG ensures inter-layer coherence and enables efficient adaptation across models and datasets. Operating at the token level, IGPG effectively captures complex parameter distributions aggregated from a broad spectrum of pretrained models. Extensive experiments on multiple vision datasets demonstrate that IGPG consolidates diverse pretrained models into a single, flexible generative framework. The synthesized parameters achieve competitive or superior performance relative to state-of-the-art methods, especially in terms of scalability and efficiency when applied to large architectures. These results underscore ICPG potential as a powerful tool for pretrained weight retrieval, model selection, and rapid task-specific fine-tuning.
GALIP: Generative Adversarial CLIPs for Text-to-Image Synthesis
Synthesizing high-fidelity complex images from text is challenging. Based on large pretraining, the autoregressive and diffusion models can synthesize photo-realistic images. Although these large models have shown notable progress, there remain three flaws. 1) These models require tremendous training data and parameters to achieve good performance. 2) The multi-step generation design slows the image synthesis process heavily. 3) The synthesized visual features are difficult to control and require delicately designed prompts. To enable high-quality, efficient, fast, and controllable text-to-image synthesis, we propose Generative Adversarial CLIPs, namely GALIP. GALIP leverages the powerful pretrained CLIP model both in the discriminator and generator. Specifically, we propose a CLIP-based discriminator. The complex scene understanding ability of CLIP enables the discriminator to accurately assess the image quality. Furthermore, we propose a CLIP-empowered generator that induces the visual concepts from CLIP through bridge features and prompts. The CLIP-integrated generator and discriminator boost training efficiency, and as a result, our model only requires about 3% training data and 6% learnable parameters, achieving comparable results to large pretrained autoregressive and diffusion models. Moreover, our model achieves 120 times faster synthesis speed and inherits the smooth latent space from GAN. The extensive experimental results demonstrate the excellent performance of our GALIP. Code is available at https://github.com/tobran/GALIP.
