new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

SyncMV4D: Synchronized Multi-view Joint Diffusion of Appearance and Motion for Hand-Object Interaction Synthesis

Hand-Object Interaction (HOI) generation plays a critical role in advancing applications across animation and robotics. Current video-based methods are predominantly single-view, which impedes comprehensive 3D geometry perception and often results in geometric distortions or unrealistic motion patterns. While 3D HOI approaches can generate dynamically plausible motions, their dependence on high-quality 3D data captured in controlled laboratory settings severely limits their generalization to real-world scenarios. To overcome these limitations, we introduce SyncMV4D, the first model that jointly generates synchronized multi-view HOI videos and 4D motions by unifying visual prior, motion dynamics, and multi-view geometry. Our framework features two core innovations: (1) a Multi-view Joint Diffusion (MJD) model that co-generates HOI videos and intermediate motions, and (2) a Diffusion Points Aligner (DPA) that refines the coarse intermediate motion into globally aligned 4D metric point tracks. To tightly couple 2D appearance with 4D dynamics, we establish a closed-loop, mutually enhancing cycle. During the diffusion denoising process, the generated video conditions the refinement of the 4D motion, while the aligned 4D point tracks are reprojected to guide next-step joint generation. Experimentally, our method demonstrates superior performance to state-of-the-art alternatives in visual realism, motion plausibility, and multi-view consistency.

  • 7 authors
·
Nov 24 3

Masked Diffusion with Task-awareness for Procedure Planning in Instructional Videos

A key challenge with procedure planning in instructional videos lies in how to handle a large decision space consisting of a multitude of action types that belong to various tasks. To understand real-world video content, an AI agent must proficiently discern these action types (e.g., pour milk, pour water, open lid, close lid, etc.) based on brief visual observation. Moreover, it must adeptly capture the intricate semantic relation of the action types and task goals, along with the variable action sequences. Recently, notable progress has been made via the integration of diffusion models and visual representation learning to address the challenge. However, existing models employ rudimentary mechanisms to utilize task information to manage the decision space. To overcome this limitation, we introduce a simple yet effective enhancement - a masked diffusion model. The introduced mask acts akin to a task-oriented attention filter, enabling the diffusion/denoising process to concentrate on a subset of action types. Furthermore, to bolster the accuracy of task classification, we harness more potent visual representation learning techniques. In particular, we learn a joint visual-text embedding, where a text embedding is generated by prompting a pre-trained vision-language model to focus on human actions. We evaluate the method on three public datasets and achieve state-of-the-art performance on multiple metrics. Code is available at https://github.com/ffzzy840304/Masked-PDPP.

  • 5 authors
·
Sep 13, 2023

Semantics-Guided Diffusion for Deep Joint Source-Channel Coding in Wireless Image Transmission

Joint source-channel coding (JSCC) offers a promising avenue for enhancing transmission efficiency by jointly incorporating source and channel statistics into the system design. A key advancement in this area is the deep joint source and channel coding (DeepJSCC) technique that designs a direct mapping of input signals to channel symbols parameterized by a neural network, which can be trained for arbitrary channel models and semantic quality metrics. This paper advances the DeepJSCC framework toward a semantics-aligned, high-fidelity transmission approach, called semantics-guided diffusion DeepJSCC (SGD-JSCC). Existing schemes that integrate diffusion models (DMs) with JSCC face challenges in transforming random generation into accurate reconstruction and adapting to varying channel conditions. SGD-JSCC incorporates two key innovations: (1) utilizing some inherent information that contributes to the semantics of an image, such as text description or edge map, to guide the diffusion denoising process; and (2) enabling seamless adaptability to varying channel conditions with the help of a semantics-guided DM for channel denoising. The DM is guided by diverse semantic information and integrates seamlessly with DeepJSCC. In a slow fading channel, SGD-JSCC dynamically adapts to the instantaneous signal-to-noise ratio (SNR) directly estimated from the channel output, thereby eliminating the need for additional pilot transmissions for channel estimation. In a fast fading channel, we introduce a training-free denoising strategy, allowing SGD-JSCC to effectively adjust to fluctuations in channel gains. Numerical results demonstrate that, guided by semantic information and leveraging the powerful DM, our method outperforms existing DeepJSCC schemes, delivering satisfactory reconstruction performance even at extremely poor channel conditions.

  • 6 authors
·
Jan 2

Make-An-Audio 2: Temporal-Enhanced Text-to-Audio Generation

Large diffusion models have been successful in text-to-audio (T2A) synthesis tasks, but they often suffer from common issues such as semantic misalignment and poor temporal consistency due to limited natural language understanding and data scarcity. Additionally, 2D spatial structures widely used in T2A works lead to unsatisfactory audio quality when generating variable-length audio samples since they do not adequately prioritize temporal information. To address these challenges, we propose Make-an-Audio 2, a latent diffusion-based T2A method that builds on the success of Make-an-Audio. Our approach includes several techniques to improve semantic alignment and temporal consistency: Firstly, we use pre-trained large language models (LLMs) to parse the text into structured <event & order> pairs for better temporal information capture. We also introduce another structured-text encoder to aid in learning semantic alignment during the diffusion denoising process. To improve the performance of variable length generation and enhance the temporal information extraction, we design a feed-forward Transformer-based diffusion denoiser. Finally, we use LLMs to augment and transform a large amount of audio-label data into audio-text datasets to alleviate the problem of scarcity of temporal data. Extensive experiments show that our method outperforms baseline models in both objective and subjective metrics, and achieves significant gains in temporal information understanding, semantic consistency, and sound quality.

  • 10 authors
·
May 29, 2023 1

Mustango: Toward Controllable Text-to-Music Generation

With recent advancements in text-to-audio and text-to-music based on latent diffusion models, the quality of generated content has been reaching new heights. The controllability of musical aspects, however, has not been explicitly explored in text-to-music systems yet. In this paper, we present Mustango, a music-domain-knowledge-inspired text-to-music system based on diffusion, that expands the Tango text-to-audio model. Mustango aims to control the generated music, not only with general text captions, but from more rich captions that could include specific instructions related to chords, beats, tempo, and key. As part of Mustango, we propose MuNet, a Music-Domain-Knowledge-Informed UNet sub-module to integrate these music-specific features, which we predict from the text prompt, as well as the general text embedding, into the diffusion denoising process. To overcome the limited availability of open datasets of music with text captions, we propose a novel data augmentation method that includes altering the harmonic, rhythmic, and dynamic aspects of music audio and using state-of-the-art Music Information Retrieval methods to extract the music features which will then be appended to the existing descriptions in text format. We release the resulting MusicBench dataset which contains over 52K instances and includes music-theory-based descriptions in the caption text. Through extensive experiments, we show that the quality of the music generated by Mustango is state-of-the-art, and the controllability through music-specific text prompts greatly outperforms other models in terms of desired chords, beat, key, and tempo, on multiple datasets.

  • 6 authors
·
Nov 14, 2023 1

Unified Diffusion VLA: Vision-Language-Action Model via Joint Discrete Denoising Diffusion Process

Vision-language-action (VLA) models aim to understand natural language instructions and visual observations and to execute corresponding actions as an embodied agent. Recent work integrates future images into the understanding-acting loop, yielding unified VLAs that jointly understand, generate, and act -- reading text and images and producing future images and actions. However, these models either rely on external experts for modality unification or treat image generation and action prediction as separate processes, limiting the benefits of direct synergy between these tasks. Our core philosophy is to optimize generation and action jointly through a synchronous denoising process, where the iterative refinement enables actions to evolve from initialization, under constant and sufficient visual guidance. We ground this philosophy in our proposed Unified Diffusion VLA and Joint Discrete Denoising Diffusion Process (JD3P), which is a joint diffusion process that integrates multiple modalities into a single denoising trajectory to serve as the key mechanism enabling understanding, generation, and acting to be intrinsically synergistic. Our model and theory are built on a unified tokenized space of all modalities and a hybrid attention mechanism. We further propose a two-stage training pipeline and several inference-time techniques that optimize performance and efficiency. Our approach achieves state-of-the-art performance on benchmarks such as CALVIN, LIBERO, and SimplerEnv with 4times faster inference than autoregressive methods, and we demonstrate its effectiveness through in-depth analysis and real-world evaluations. Our project page is available at https://irpn-eai.github.io/UD-VLA.github.io/.

HKUSTGZ
·
Nov 3 1

AUDIT: Audio Editing by Following Instructions with Latent Diffusion Models

Audio editing is applicable for various purposes, such as adding background sound effects, replacing a musical instrument, and repairing damaged audio. Recently, some diffusion-based methods achieved zero-shot audio editing by using a diffusion and denoising process conditioned on the text description of the output audio. However, these methods still have some problems: 1) they have not been trained on editing tasks and cannot ensure good editing effects; 2) they can erroneously modify audio segments that do not require editing; 3) they need a complete description of the output audio, which is not always available or necessary in practical scenarios. In this work, we propose AUDIT, an instruction-guided audio editing model based on latent diffusion models. Specifically, AUDIT has three main design features: 1) we construct triplet training data (instruction, input audio, output audio) for different audio editing tasks and train a diffusion model using instruction and input (to be edited) audio as conditions and generating output (edited) audio; 2) it can automatically learn to only modify segments that need to be edited by comparing the difference between the input and output audio; 3) it only needs edit instructions instead of full target audio descriptions as text input. AUDIT achieves state-of-the-art results in both objective and subjective metrics for several audio editing tasks (e.g., adding, dropping, replacement, inpainting, super-resolution). Demo samples are available at https://audit-demo.github.io/.

  • 7 authors
·
Apr 3, 2023 1

ADDP: Learning General Representations for Image Recognition and Generation with Alternating Denoising Diffusion Process

Image recognition and generation have long been developed independently of each other. With the recent trend towards general-purpose representation learning, the development of general representations for both recognition and generation tasks is also promoted. However, preliminary attempts mainly focus on generation performance, but are still inferior on recognition tasks. These methods are modeled in the vector-quantized (VQ) space, whereas leading recognition methods use pixels as inputs. Our key insights are twofold: (1) pixels as inputs are crucial for recognition tasks; (2) VQ tokens as reconstruction targets are beneficial for generation tasks. These observations motivate us to propose an Alternating Denoising Diffusion Process (ADDP) that integrates these two spaces within a single representation learning framework. In each denoising step, our method first decodes pixels from previous VQ tokens, then generates new VQ tokens from the decoded pixels. The diffusion process gradually masks out a portion of VQ tokens to construct the training samples. The learned representations can be used to generate diverse high-fidelity images and also demonstrate excellent transfer performance on recognition tasks. Extensive experiments show that our method achieves competitive performance on unconditional generation, ImageNet classification, COCO detection, and ADE20k segmentation. Importantly, our method represents the first successful development of general representations applicable to both generation and dense recognition tasks. Code shall be released.

  • 10 authors
·
Jun 8, 2023

Beyond Fixed: Variable-Length Denoising for Diffusion Large Language Models

Diffusion Large Language Models (DLLMs) are emerging as a powerful alternative to the dominant Autoregressive Large Language Models, offering efficient parallel generation and capable global context modeling. However, the practical application of DLLMs is hindered by a critical architectural constraint: the need for a statically predefined generation length. This static length allocation leads to a problematic trade-off: insufficient lengths cripple performance on complex tasks, while excessive lengths incur significant computational overhead and sometimes result in performance degradation. While the inference framework is rigid, we observe that the model itself possesses internal signals that correlate with the optimal response length for a given task. To bridge this gap, we leverage these latent signals and introduce DAEDAL, a novel training-free denoising strategy that enables Dynamic Adaptive Length Expansion for Diffusion Large Language Models. DAEDAL operates in two phases: 1) Before the denoising process, DAEDAL starts from a short initial length and iteratively expands it to a coarse task-appropriate length, guided by a sequence completion metric. 2) During the denoising process, DAEDAL dynamically intervenes by pinpointing and expanding insufficient generation regions through mask token insertion, ensuring the final output is fully developed. Extensive experiments on DLLMs demonstrate that DAEDAL achieves performance comparable, and in some cases superior, to meticulously tuned fixed-length baselines, while simultaneously enhancing computational efficiency by achieving a higher effective token ratio. By resolving the static length constraint, DAEDAL unlocks new potential for DLLMs, bridging a critical gap with their Autoregressive counterparts and paving the way for more efficient and capable generation.

  • 6 authors
·
Aug 1 2

Resfusion: Denoising Diffusion Probabilistic Models for Image Restoration Based on Prior Residual Noise

Recently, research on denoising diffusion models has expanded its application to the field of image restoration. Traditional diffusion-based image restoration methods utilize degraded images as conditional input to effectively guide the reverse generation process, without modifying the original denoising diffusion process. However, since the degraded images already include low-frequency information, starting from Gaussian white noise will result in increased sampling steps. We propose Resfusion, a general framework that incorporates the residual term into the diffusion forward process, starting the reverse process directly from the noisy degraded images. The form of our inference process is consistent with the DDPM. We introduced a weighted residual noise, named resnoise, as the prediction target and explicitly provide the quantitative relationship between the residual term and the noise term in resnoise. By leveraging a smooth equivalence transformation, Resfusion determine the optimal acceleration step and maintains the integrity of existing noise schedules, unifying the training and inference processes. The experimental results demonstrate that Resfusion exhibits competitive performance on ISTD dataset, LOL dataset and Raindrop dataset with only five sampling steps. Furthermore, Resfusion can be easily applied to image generation and emerges with strong versatility. Our code and model are available at https://github.com/nkicsl/Resfusion.

  • 9 authors
·
Nov 24, 2023

SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D Object Pose Estimation

In this paper, we introduce an SE(3) diffusion model-based point cloud registration framework for 6D object pose estimation in real-world scenarios. Our approach formulates the 3D registration task as a denoising diffusion process, which progressively refines the pose of the source point cloud to obtain a precise alignment with the model point cloud. Training our framework involves two operations: An SE(3) diffusion process and an SE(3) reverse process. The SE(3) diffusion process gradually perturbs the optimal rigid transformation of a pair of point clouds by continuously injecting noise (perturbation transformation). By contrast, the SE(3) reverse process focuses on learning a denoising network that refines the noisy transformation step-by-step, bringing it closer to the optimal transformation for accurate pose estimation. Unlike standard diffusion models used in linear Euclidean spaces, our diffusion model operates on the SE(3) manifold. This requires exploiting the linear Lie algebra se(3) associated with SE(3) to constrain the transformation transitions during the diffusion and reverse processes. Additionally, to effectively train our denoising network, we derive a registration-specific variational lower bound as the optimization objective for model learning. Furthermore, we show that our denoising network can be constructed with a surrogate registration model, making our approach applicable to different deep registration networks. Extensive experiments demonstrate that our diffusion registration framework presents outstanding pose estimation performance on the real-world TUD-L, LINEMOD, and Occluded-LINEMOD datasets.

  • 5 authors
·
Oct 26, 2023

A Variational Perspective on Solving Inverse Problems with Diffusion Models

Diffusion models have emerged as a key pillar of foundation models in visual domains. One of their critical applications is to universally solve different downstream inverse tasks via a single diffusion prior without re-training for each task. Most inverse tasks can be formulated as inferring a posterior distribution over data (e.g., a full image) given a measurement (e.g., a masked image). This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable. To cope with this challenge, we propose a variational approach that by design seeks to approximate the true posterior distribution. We show that our approach naturally leads to regularization by denoising diffusion process (RED-Diff) where denoisers at different timesteps concurrently impose different structural constraints over the image. To gauge the contribution of denoisers from different timesteps, we propose a weighting mechanism based on signal-to-noise-ratio (SNR). Our approach provides a new variational perspective for solving inverse problems with diffusion models, allowing us to formulate sampling as stochastic optimization, where one can simply apply off-the-shelf solvers with lightweight iterates. Our experiments for image restoration tasks such as inpainting and superresolution demonstrate the strengths of our method compared with state-of-the-art sampling-based diffusion models.

  • 4 authors
·
May 7, 2023

Diffusion-Based Hierarchical Multi-Label Object Detection to Analyze Panoramic Dental X-rays

Due to the necessity for precise treatment planning, the use of panoramic X-rays to identify different dental diseases has tremendously increased. Although numerous ML models have been developed for the interpretation of panoramic X-rays, there has not been an end-to-end model developed that can identify problematic teeth with dental enumeration and associated diagnoses at the same time. To develop such a model, we structure the three distinct types of annotated data hierarchically following the FDI system, the first labeled with only quadrant, the second labeled with quadrant-enumeration, and the third fully labeled with quadrant-enumeration-diagnosis. To learn from all three hierarchies jointly, we introduce a novel diffusion-based hierarchical multi-label object detection framework by adapting a diffusion-based method that formulates object detection as a denoising diffusion process from noisy boxes to object boxes. Specifically, to take advantage of the hierarchically annotated data, our method utilizes a novel noisy box manipulation technique by adapting the denoising process in the diffusion network with the inference from the previously trained model in hierarchical order. We also utilize a multi-label object detection method to learn efficiently from partial annotations and to give all the needed information about each abnormal tooth for treatment planning. Experimental results show that our method significantly outperforms state-of-the-art object detection methods, including RetinaNet, Faster R-CNN, DETR, and DiffusionDet for the analysis of panoramic X-rays, demonstrating the great potential of our method for hierarchically and partially annotated datasets. The code and the data are available at: https://github.com/ibrahimethemhamamci/HierarchicalDet.

  • 8 authors
·
Mar 11, 2023

Lotus: Diffusion-based Visual Foundation Model for High-quality Dense Prediction

Leveraging the visual priors of pre-trained text-to-image diffusion models offers a promising solution to enhance zero-shot generalization in dense prediction tasks. However, existing methods often uncritically use the original diffusion formulation, which may not be optimal due to the fundamental differences between dense prediction and image generation. In this paper, we provide a systemic analysis of the diffusion formulation for the dense prediction, focusing on both quality and efficiency. And we find that the original parameterization type for image generation, which learns to predict noise, is harmful for dense prediction; the multi-step noising/denoising diffusion process is also unnecessary and challenging to optimize. Based on these insights, we introduce Lotus, a diffusion-based visual foundation model with a simple yet effective adaptation protocol for dense prediction. Specifically, Lotus is trained to directly predict annotations instead of noise, thereby avoiding harmful variance. We also reformulate the diffusion process into a single-step procedure, simplifying optimization and significantly boosting inference speed. Additionally, we introduce a novel tuning strategy called detail preserver, which achieves more accurate and fine-grained predictions. Without scaling up the training data or model capacity, Lotus achieves SoTA performance in zero-shot depth and normal estimation across various datasets. It also significantly enhances efficiency, being hundreds of times faster than most existing diffusion-based methods.

  • 9 authors
·
Sep 26, 2024 2

Using Human Feedback to Fine-tune Diffusion Models without Any Reward Model

Using reinforcement learning with human feedback (RLHF) has shown significant promise in fine-tuning diffusion models. Previous methods start by training a reward model that aligns with human preferences, then leverage RL techniques to fine-tune the underlying models. However, crafting an efficient reward model demands extensive datasets, optimal architecture, and manual hyperparameter tuning, making the process both time and cost-intensive. The direct preference optimization (DPO) method, effective in fine-tuning large language models, eliminates the necessity for a reward model. However, the extensive GPU memory requirement of the diffusion model's denoising process hinders the direct application of the DPO method. To address this issue, we introduce the Direct Preference for Denoising Diffusion Policy Optimization (D3PO) method to directly fine-tune diffusion models. The theoretical analysis demonstrates that although D3PO omits training a reward model, it effectively functions as the optimal reward model trained using human feedback data to guide the learning process. This approach requires no training of a reward model, proving to be more direct, cost-effective, and minimizing computational overhead. In experiments, our method uses the relative scale of objectives as a proxy for human preference, delivering comparable results to methods using ground-truth rewards. Moreover, D3PO demonstrates the ability to reduce image distortion rates and generate safer images, overcoming challenges lacking robust reward models.

  • 9 authors
·
Nov 22, 2023 5

DiffusionLane: Diffusion Model for Lane Detection

In this paper, we present a novel diffusion-based model for lane detection, called DiffusionLane, which treats the lane detection task as a denoising diffusion process in the parameter space of the lane. Firstly, we add the Gaussian noise to the parameters (the starting point and the angle) of ground truth lanes to obtain noisy lane anchors, and the model learns to refine the noisy lane anchors in a progressive way to obtain the target lanes. Secondly, we propose a hybrid decoding strategy to address the poor feature representation of the encoder, resulting from the noisy lane anchors. Specifically, we design a hybrid diffusion decoder to combine global-level and local-level decoders for high-quality lane anchors. Then, to improve the feature representation of the encoder, we employ an auxiliary head in the training stage to adopt the learnable lane anchors for enriching the supervision on the encoder. Experimental results on four benchmarks, Carlane, Tusimple, CULane, and LLAMAS, show that DiffusionLane possesses a strong generalization ability and promising detection performance compared to the previous state-of-the-art methods. For example, DiffusionLane with ResNet18 surpasses the existing methods by at least 1\% accuracy on the domain adaptation dataset Carlane. Besides, DiffusionLane with MobileNetV4 gets 81.32\% F1 score on CULane, 96.89\% accuracy on Tusimple with ResNet34, and 97.59\% F1 score on LLAMAS with ResNet101. Code will be available at https://github.com/zkyntu/UnLanedet.

ConsistencyDet: Robust Object Detector with Denoising Paradigm of Consistency Model

Object detection, a quintessential task in the realm of perceptual computing, can be tackled using a generative methodology. In the present study, we introduce a novel framework designed to articulate object detection as a denoising diffusion process, which operates on perturbed bounding boxes of annotated entities. This framework, termed ConsistencyDet, leverages an innovative denoising concept known as the Consistency Model. The hallmark of this model is its self-consistency feature, which empowers the model to map distorted information from any temporal stage back to its pristine state, thereby realizing a ``one-step denoising'' mechanism. Such an attribute markedly elevates the operational efficiency of the model, setting it apart from the conventional Diffusion Model. Throughout the training phase, ConsistencyDet initiates the diffusion sequence with noise-infused boxes derived from the ground-truth annotations and conditions the model to perform the denoising task. Subsequently, in the inference stage, the model employs a denoising sampling strategy that commences with bounding boxes randomly sampled from a normal distribution. Through iterative refinement, the model transforms an assortment of arbitrarily generated boxes into the definitive detections. Comprehensive evaluations employing standard benchmarks, such as MS-COCO and LVIS, corroborate that ConsistencyDet surpasses other leading-edge detectors in performance metrics.

  • 6 authors
·
Apr 11, 2024

BlockFusion: Expandable 3D Scene Generation using Latent Tri-plane Extrapolation

We present BlockFusion, a diffusion-based model that generates 3D scenes as unit blocks and seamlessly incorporates new blocks to extend the scene. BlockFusion is trained using datasets of 3D blocks that are randomly cropped from complete 3D scene meshes. Through per-block fitting, all training blocks are converted into the hybrid neural fields: with a tri-plane containing the geometry features, followed by a Multi-layer Perceptron (MLP) for decoding the signed distance values. A variational auto-encoder is employed to compress the tri-planes into the latent tri-plane space, on which the denoising diffusion process is performed. Diffusion applied to the latent representations allows for high-quality and diverse 3D scene generation. To expand a scene during generation, one needs only to append empty blocks to overlap with the current scene and extrapolate existing latent tri-planes to populate new blocks. The extrapolation is done by conditioning the generation process with the feature samples from the overlapping tri-planes during the denoising iterations. Latent tri-plane extrapolation produces semantically and geometrically meaningful transitions that harmoniously blend with the existing scene. A 2D layout conditioning mechanism is used to control the placement and arrangement of scene elements. Experimental results indicate that BlockFusion is capable of generating diverse, geometrically consistent and unbounded large 3D scenes with unprecedented high-quality shapes in both indoor and outdoor scenarios.

  • 11 authors
·
Jan 30, 2024 1

Denoising Task Routing for Diffusion Models

Diffusion models generate highly realistic images through learning a multi-step denoising process, naturally embodying the principles of multi-task learning (MTL). Despite the inherent connection between diffusion models and MTL, there remains an unexplored area in designing neural architectures that explicitly incorporate MTL into the framework of diffusion models. In this paper, we present Denoising Task Routing (DTR), a simple add-on strategy for existing diffusion model architectures to establish distinct information pathways for individual tasks within a single architecture by selectively activating subsets of channels in the model. What makes DTR particularly compelling is its seamless integration of prior knowledge of denoising tasks into the framework: (1) Task Affinity: DTR activates similar channels for tasks at adjacent timesteps and shifts activated channels as sliding windows through timesteps, capitalizing on the inherent strong affinity between tasks at adjacent timesteps. (2) Task Weights: During the early stages (higher timesteps) of the denoising process, DTR assigns a greater number of task-specific channels, leveraging the insight that diffusion models prioritize reconstructing global structure and perceptually rich contents in earlier stages, and focus on simple noise removal in later stages. Our experiments demonstrate that DTR consistently enhances the performance of diffusion models across various evaluation protocols, all without introducing additional parameters. Furthermore, DTR contributes to accelerating convergence during training. Finally, we show the complementarity between our architectural approach and existing MTL optimization techniques, providing a more complete view of MTL within the context of diffusion training.

  • 5 authors
·
Oct 10, 2023

Prediction with Action: Visual Policy Learning via Joint Denoising Process

Diffusion models have demonstrated remarkable capabilities in image generation tasks, including image editing and video creation, representing a good understanding of the physical world. On the other line, diffusion models have also shown promise in robotic control tasks by denoising actions, known as diffusion policy. Although the diffusion generative model and diffusion policy exhibit distinct capabilities--image prediction and robotic action, respectively--they technically follow a similar denoising process. In robotic tasks, the ability to predict future images and generate actions is highly correlated since they share the same underlying dynamics of the physical world. Building on this insight, we introduce PAD, a novel visual policy learning framework that unifies image Prediction and robot Action within a joint Denoising process. Specifically, PAD utilizes Diffusion Transformers (DiT) to seamlessly integrate images and robot states, enabling the simultaneous prediction of future images and robot actions. Additionally, PAD supports co-training on both robotic demonstrations and large-scale video datasets and can be easily extended to other robotic modalities, such as depth images. PAD outperforms previous methods, achieving a significant 26.3% relative improvement on the full Metaworld benchmark, by utilizing a single text-conditioned visual policy within a data-efficient imitation learning setting. Furthermore, PAD demonstrates superior generalization to unseen tasks in real-world robot manipulation settings with 28.0% success rate increase compared to the strongest baseline. Project page at https://sites.google.com/view/pad-paper

  • 7 authors
·
Nov 27, 2024

Aligning Generative Denoising with Discriminative Objectives Unleashes Diffusion for Visual Perception

With the success of image generation, generative diffusion models are increasingly adopted for discriminative tasks, as pixel generation provides a unified perception interface. However, directly repurposing the generative denoising process for discriminative objectives reveals critical gaps rarely addressed previously. Generative models tolerate intermediate sampling errors if the final distribution remains plausible, but discriminative tasks require rigorous accuracy throughout, as evidenced in challenging multi-modal tasks like referring image segmentation. Motivated by this gap, we analyze and enhance alignment between generative diffusion processes and perception tasks, focusing on how perception quality evolves during denoising. We find: (1) earlier denoising steps contribute disproportionately to perception quality, prompting us to propose tailored learning objectives reflecting varying timestep contributions; (2) later denoising steps show unexpected perception degradation, highlighting sensitivity to training-denoising distribution shifts, addressed by our diffusion-tailored data augmentation; and (3) generative processes uniquely enable interactivity, serving as controllable user interfaces adaptable to correctional prompts in multi-round interactions. Our insights significantly improve diffusion-based perception models without architectural changes, achieving state-of-the-art performance on depth estimation, referring image segmentation, and generalist perception tasks. Code available at https://github.com/ziqipang/ADDP.

  • 3 authors
·
Apr 15 2

DiWA: Diffusion Policy Adaptation with World Models

Fine-tuning diffusion policies with reinforcement learning (RL) presents significant challenges. The long denoising sequence for each action prediction impedes effective reward propagation. Moreover, standard RL methods require millions of real-world interactions, posing a major bottleneck for practical fine-tuning. Although prior work frames the denoising process in diffusion policies as a Markov Decision Process to enable RL-based updates, its strong dependence on environment interaction remains highly inefficient. To bridge this gap, we introduce DiWA, a novel framework that leverages a world model for fine-tuning diffusion-based robotic skills entirely offline with reinforcement learning. Unlike model-free approaches that require millions of environment interactions to fine-tune a repertoire of robot skills, DiWA achieves effective adaptation using a world model trained once on a few hundred thousand offline play interactions. This results in dramatically improved sample efficiency, making the approach significantly more practical and safer for real-world robot learning. On the challenging CALVIN benchmark, DiWA improves performance across eight tasks using only offline adaptation, while requiring orders of magnitude fewer physical interactions than model-free baselines. To our knowledge, this is the first demonstration of fine-tuning diffusion policies for real-world robotic skills using an offline world model. We make the code publicly available at https://diwa.cs.uni-freiburg.de.

  • 6 authors
·
Aug 5

TransDiff: Diffusion-Based Method for Manipulating Transparent Objects Using a Single RGB-D Image

Manipulating transparent objects presents significant challenges due to the complexities introduced by their reflection and refraction properties, which considerably hinder the accurate estimation of their 3D shapes. To address these challenges, we propose a single-view RGB-D-based depth completion framework, TransDiff, that leverages the Denoising Diffusion Probabilistic Models(DDPM) to achieve material-agnostic object grasping in desktop. Specifically, we leverage features extracted from RGB images, including semantic segmentation, edge maps, and normal maps, to condition the depth map generation process. Our method learns an iterative denoising process that transforms a random depth distribution into a depth map, guided by initially refined depth information, ensuring more accurate depth estimation in scenarios involving transparent objects. Additionally, we propose a novel training method to better align the noisy depth and RGB image features, which are used as conditions to refine depth estimation step by step. Finally, we utilized an improved inference process to accelerate the denoising procedure. Through comprehensive experimental validation, we demonstrate that our method significantly outperforms the baselines in both synthetic and real-world benchmarks with acceptable inference time. The demo of our method can be found on https://wang-haoxiao.github.io/TransDiff/

  • 9 authors
·
Mar 16

GETMusic: Generating Any Music Tracks with a Unified Representation and Diffusion Framework

Symbolic music generation aims to create musical notes, which can help users compose music, such as generating target instrumental tracks from scratch, or based on user-provided source tracks. Considering the diverse and flexible combination between source and target tracks, a unified model capable of generating any arbitrary tracks is of crucial necessity. Previous works fail to address this need due to inherent constraints in music representations and model architectures. To address this need, we propose a unified representation and diffusion framework named GETMusic (`GET' stands for GEnerate music Tracks), which includes a novel music representation named GETScore, and a diffusion model named GETDiff. GETScore represents notes as tokens and organizes them in a 2D structure, with tracks stacked vertically and progressing horizontally over time. During training, tracks are randomly selected as either the target or source. In the forward process, target tracks are corrupted by masking their tokens, while source tracks remain as ground truth. In the denoising process, GETDiff learns to predict the masked target tokens, conditioning on the source tracks. With separate tracks in GETScore and the non-autoregressive behavior of the model, GETMusic can explicitly control the generation of any target tracks from scratch or conditioning on source tracks. We conduct experiments on music generation involving six instrumental tracks, resulting in a total of 665 combinations. GETMusic provides high-quality results across diverse combinations and surpasses prior works proposed for some specific combinations.

  • 7 authors
·
May 18, 2023 2

COVE: Unleashing the Diffusion Feature Correspondence for Consistent Video Editing

Video editing is an emerging task, in which most current methods adopt the pre-trained text-to-image (T2I) diffusion model to edit the source video in a zero-shot manner. Despite extensive efforts, maintaining the temporal consistency of edited videos remains challenging due to the lack of temporal constraints in the regular T2I diffusion model. To address this issue, we propose COrrespondence-guided Video Editing (COVE), leveraging the inherent diffusion feature correspondence to achieve high-quality and consistent video editing. Specifically, we propose an efficient sliding-window-based strategy to calculate the similarity among tokens in the diffusion features of source videos, identifying the tokens with high correspondence across frames. During the inversion and denoising process, we sample the tokens in noisy latent based on the correspondence and then perform self-attention within them. To save GPU memory usage and accelerate the editing process, we further introduce the temporal-dimensional token merging strategy, which can effectively reduce redundancy. COVE can be seamlessly integrated into the pre-trained T2I diffusion model without the need for extra training or optimization. Extensive experiment results demonstrate that COVE achieves the start-of-the-art performance in various video editing scenarios, outperforming existing methods both quantitatively and qualitatively. The code will be release at https://github.com/wangjiangshan0725/COVE

  • 6 authors
·
Jun 13, 2024

Terrain Diffusion Network: Climatic-Aware Terrain Generation with Geological Sketch Guidance

Sketch-based terrain generation seeks to create realistic landscapes for virtual environments in various applications such as computer games, animation and virtual reality. Recently, deep learning based terrain generation has emerged, notably the ones based on generative adversarial networks (GAN). However, these methods often struggle to fulfill the requirements of flexible user control and maintain generative diversity for realistic terrain. Therefore, we propose a novel diffusion-based method, namely terrain diffusion network (TDN), which actively incorporates user guidance for enhanced controllability, taking into account terrain features like rivers, ridges, basins, and peaks. Instead of adhering to a conventional monolithic denoising process, which often compromises the fidelity of terrain details or the alignment with user control, a multi-level denoising scheme is proposed to generate more realistic terrains by taking into account fine-grained details, particularly those related to climatic patterns influenced by erosion and tectonic activities. Specifically, three terrain synthesisers are designed for structural, intermediate, and fine-grained level denoising purposes, which allow each synthesiser concentrate on a distinct terrain aspect. Moreover, to maximise the efficiency of our TDN, we further introduce terrain and sketch latent spaces for the synthesizers with pre-trained terrain autoencoders. Comprehensive experiments on a new dataset constructed from NASA Topology Images clearly demonstrate the effectiveness of our proposed method, achieving the state-of-the-art performance. Our code and dataset will be publicly available.

  • 5 authors
·
Aug 31, 2023

Diffuman4D: 4D Consistent Human View Synthesis from Sparse-View Videos with Spatio-Temporal Diffusion Models

This paper addresses the challenge of high-fidelity view synthesis of humans with sparse-view videos as input. Previous methods solve the issue of insufficient observation by leveraging 4D diffusion models to generate videos at novel viewpoints. However, the generated videos from these models often lack spatio-temporal consistency, thus degrading view synthesis quality. In this paper, we propose a novel sliding iterative denoising process to enhance the spatio-temporal consistency of the 4D diffusion model. Specifically, we define a latent grid in which each latent encodes the image, camera pose, and human pose for a certain viewpoint and timestamp, then alternately denoising the latent grid along spatial and temporal dimensions with a sliding window, and finally decode the videos at target viewpoints from the corresponding denoised latents. Through the iterative sliding, information flows sufficiently across the latent grid, allowing the diffusion model to obtain a large receptive field and thus enhance the 4D consistency of the output, while making the GPU memory consumption affordable. The experiments on the DNA-Rendering and ActorsHQ datasets demonstrate that our method is able to synthesize high-quality and consistent novel-view videos and significantly outperforms the existing approaches. See our project page for interactive demos and video results: https://diffuman4d.github.io/ .

  • 9 authors
·
Jul 17 2

A Survey on Diffusion Language Models

Diffusion Language Models (DLMs) are rapidly emerging as a powerful and promising alternative to the dominant autoregressive (AR) paradigm. By generating tokens in parallel through an iterative denoising process, DLMs possess inherent advantages in reducing inference latency and capturing bidirectional context, thereby enabling fine-grained control over the generation process. While achieving a several-fold speed-up, recent advancements have allowed DLMs to show performance comparable to their autoregressive counterparts, making them a compelling choice for various natural language processing tasks. In this survey, we provide a holistic overview of the current DLM landscape. We trace its evolution and relationship with other paradigms, such as autoregressive and masked language models, and cover both foundational principles and state-of-the-art models. Our work offers an up-to-date, comprehensive taxonomy and an in-depth analysis of current techniques, from pre-training strategies to advanced post-training methods. Another contribution of this survey is a thorough review of DLM inference strategies and optimizations, including improvements in decoding parallelism, caching mechanisms, and generation quality. We also highlight the latest approaches to multimodal extensions of DLMs and delineate their applications across various practical scenarios. Furthermore, our discussion addresses the limitations and challenges of DLMs, including efficiency, long-sequence handling, and infrastructure requirements, while outlining future research directions to sustain progress in this rapidly evolving field. Project GitHub is available at https://github.com/VILA-Lab/Awesome-DLMs.

  • 4 authors
·
Aug 14 2

CrossViewDiff: A Cross-View Diffusion Model for Satellite-to-Street View Synthesis

Satellite-to-street view synthesis aims at generating a realistic street-view image from its corresponding satellite-view image. Although stable diffusion models have exhibit remarkable performance in a variety of image generation applications, their reliance on similar-view inputs to control the generated structure or texture restricts their application to the challenging cross-view synthesis task. In this work, we propose CrossViewDiff, a cross-view diffusion model for satellite-to-street view synthesis. To address the challenges posed by the large discrepancy across views, we design the satellite scene structure estimation and cross-view texture mapping modules to construct the structural and textural controls for street-view image synthesis. We further design a cross-view control guided denoising process that incorporates the above controls via an enhanced cross-view attention module. To achieve a more comprehensive evaluation of the synthesis results, we additionally design a GPT-based scoring method as a supplement to standard evaluation metrics. We also explore the effect of different data sources (e.g., text, maps, building heights, and multi-temporal satellite imagery) on this task. Results on three public cross-view datasets show that CrossViewDiff outperforms current state-of-the-art on both standard and GPT-based evaluation metrics, generating high-quality street-view panoramas with more realistic structures and textures across rural, suburban, and urban scenes. The code and models of this work will be released at https://opendatalab.github.io/CrossViewDiff/.

  • 8 authors
·
Aug 26, 2024 2

Diffusion-based Extreme Image Compression with Compressed Feature Initialization

Diffusion-based extreme image compression methods have achieved impressive performance at extremely low bitrates. However, constrained by the iterative denoising process that starts from pure noise, these methods are limited in both fidelity and efficiency. To address these two issues, we present Relay Residual Diffusion Extreme Image Compression (RDEIC), which leverages compressed feature initialization and residual diffusion. Specifically, we first use the compressed latent features of the image with added noise, instead of pure noise, as the starting point to eliminate the unnecessary initial stages of the denoising process. Second, we design a novel relay residual diffusion that reconstructs the raw image by iteratively removing the added noise and the residual between the compressed and target latent features. Notably, our relay residual diffusion network seamlessly integrates pre-trained stable diffusion to leverage its robust generative capability for high-quality reconstruction. Third, we propose a fixed-step fine-tuning strategy to eliminate the discrepancy between the training and inference phases, further improving the reconstruction quality. Extensive experiments demonstrate that the proposed RDEIC achieves state-of-the-art visual quality and outperforms existing diffusion-based extreme image compression methods in both fidelity and efficiency. The source code will be provided in https://github.com/huai-chang/RDEIC.

  • 5 authors
·
Oct 3, 2024

Diffusion with Forward Models: Solving Stochastic Inverse Problems Without Direct Supervision

Denoising diffusion models are a powerful type of generative models used to capture complex distributions of real-world signals. However, their applicability is limited to scenarios where training samples are readily available, which is not always the case in real-world applications. For example, in inverse graphics, the goal is to generate samples from a distribution of 3D scenes that align with a given image, but ground-truth 3D scenes are unavailable and only 2D images are accessible. To address this limitation, we propose a novel class of denoising diffusion probabilistic models that learn to sample from distributions of signals that are never directly observed. Instead, these signals are measured indirectly through a known differentiable forward model, which produces partial observations of the unknown signal. Our approach involves integrating the forward model directly into the denoising process. This integration effectively connects the generative modeling of observations with the generative modeling of the underlying signals, allowing for end-to-end training of a conditional generative model over signals. During inference, our approach enables sampling from the distribution of underlying signals that are consistent with a given partial observation. We demonstrate the effectiveness of our method on three challenging computer vision tasks. For instance, in the context of inverse graphics, our model enables direct sampling from the distribution of 3D scenes that align with a single 2D input image.

  • 8 authors
·
Jun 20, 2023 1

EchoScene: Indoor Scene Generation via Information Echo over Scene Graph Diffusion

We present EchoScene, an interactive and controllable generative model that generates 3D indoor scenes on scene graphs. EchoScene leverages a dual-branch diffusion model that dynamically adapts to scene graphs. Existing methods struggle to handle scene graphs due to varying numbers of nodes, multiple edge combinations, and manipulator-induced node-edge operations. EchoScene overcomes this by associating each node with a denoising process and enables collaborative information exchange, enhancing controllable and consistent generation aware of global constraints. This is achieved through an information echo scheme in both shape and layout branches. At every denoising step, all processes share their denoising data with an information exchange unit that combines these updates using graph convolution. The scheme ensures that the denoising processes are influenced by a holistic understanding of the scene graph, facilitating the generation of globally coherent scenes. The resulting scenes can be manipulated during inference by editing the input scene graph and sampling the noise in the diffusion model. Extensive experiments validate our approach, which maintains scene controllability and surpasses previous methods in generation fidelity. Moreover, the generated scenes are of high quality and thus directly compatible with off-the-shelf texture generation. Code and trained models are open-sourced.

  • 8 authors
·
May 1, 2024

Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think

Recent studies have shown that the denoising process in (generative) diffusion models can induce meaningful (discriminative) representations inside the model, though the quality of these representations still lags behind those learned through recent self-supervised learning methods. We argue that one main bottleneck in training large-scale diffusion models for generation lies in effectively learning these representations. Moreover, training can be made easier by incorporating high-quality external visual representations, rather than relying solely on the diffusion models to learn them independently. We study this by introducing a straightforward regularization called REPresentation Alignment (REPA), which aligns the projections of noisy input hidden states in denoising networks with clean image representations obtained from external, pretrained visual encoders. The results are striking: our simple strategy yields significant improvements in both training efficiency and generation quality when applied to popular diffusion and flow-based transformers, such as DiTs and SiTs. For instance, our method can speed up SiT training by over 17.5times, matching the performance (without classifier-free guidance) of a SiT-XL model trained for 7M steps in less than 400K steps. In terms of final generation quality, our approach achieves state-of-the-art results of FID=1.42 using classifier-free guidance with the guidance interval.

  • 7 authors
·
Oct 9, 2024 2

DiffusionEdge: Diffusion Probabilistic Model for Crisp Edge Detection

Limited by the encoder-decoder architecture, learning-based edge detectors usually have difficulty predicting edge maps that satisfy both correctness and crispness. With the recent success of the diffusion probabilistic model (DPM), we found it is especially suitable for accurate and crisp edge detection since the denoising process is directly applied to the original image size. Therefore, we propose the first diffusion model for the task of general edge detection, which we call DiffusionEdge. To avoid expensive computational resources while retaining the final performance, we apply DPM in the latent space and enable the classic cross-entropy loss which is uncertainty-aware in pixel level to directly optimize the parameters in latent space in a distillation manner. We also adopt a decoupled architecture to speed up the denoising process and propose a corresponding adaptive Fourier filter to adjust the latent features of specific frequencies. With all the technical designs, DiffusionEdge can be stably trained with limited resources, predicting crisp and accurate edge maps with much fewer augmentation strategies. Extensive experiments on four edge detection benchmarks demonstrate the superiority of DiffusionEdge both in correctness and crispness. On the NYUDv2 dataset, compared to the second best, we increase the ODS, OIS (without post-processing) and AC by 30.2%, 28.1% and 65.1%, respectively. Code: https://github.com/GuHuangAI/DiffusionEdge.

  • 5 authors
·
Jan 3, 2024

Post-training Quantization on Diffusion Models

Denoising diffusion (score-based) generative models have recently achieved significant accomplishments in generating realistic and diverse data. These approaches define a forward diffusion process for transforming data into noise and a backward denoising process for sampling data from noise. Unfortunately, the generation process of current denoising diffusion models is notoriously slow due to the lengthy iterative noise estimations, which rely on cumbersome neural networks. It prevents the diffusion models from being widely deployed, especially on edge devices. Previous works accelerate the generation process of diffusion model (DM) via finding shorter yet effective sampling trajectories. However, they overlook the cost of noise estimation with a heavy network in every iteration. In this work, we accelerate generation from the perspective of compressing the noise estimation network. Due to the difficulty of retraining DMs, we exclude mainstream training-aware compression paradigms and introduce post-training quantization (PTQ) into DM acceleration. However, the output distributions of noise estimation networks change with time-step, making previous PTQ methods fail in DMs since they are designed for single-time step scenarios. To devise a DM-specific PTQ method, we explore PTQ on DM in three aspects: quantized operations, calibration dataset, and calibration metric. We summarize and use several observations derived from all-inclusive investigations to formulate our method, which especially targets the unique multi-time-step structure of DMs. Experimentally, our method can directly quantize full-precision DMs into 8-bit models while maintaining or even improving their performance in a training-free manner. Importantly, our method can serve as a plug-and-play module on other fast-sampling methods, e.g., DDIM. The code is available at https://github.com/42Shawn/PTQ4DM .

  • 5 authors
·
Nov 28, 2022

ELLA: Equip Diffusion Models with LLM for Enhanced Semantic Alignment

Diffusion models have demonstrated remarkable performance in the domain of text-to-image generation. However, most widely used models still employ CLIP as their text encoder, which constrains their ability to comprehend dense prompts, encompassing multiple objects, detailed attributes, complex relationships, long-text alignment, etc. In this paper, we introduce an Efficient Large Language Model Adapter, termed ELLA, which equips text-to-image diffusion models with powerful Large Language Models (LLM) to enhance text alignment without training of either U-Net or LLM. To seamlessly bridge two pre-trained models, we investigate a range of semantic alignment connector designs and propose a novel module, the Timestep-Aware Semantic Connector (TSC), which dynamically extracts timestep-dependent conditions from LLM. Our approach adapts semantic features at different stages of the denoising process, assisting diffusion models in interpreting lengthy and intricate prompts over sampling timesteps. Additionally, ELLA can be readily incorporated with community models and tools to improve their prompt-following capabilities. To assess text-to-image models in dense prompt following, we introduce Dense Prompt Graph Benchmark (DPG-Bench), a challenging benchmark consisting of 1K dense prompts. Extensive experiments demonstrate the superiority of ELLA in dense prompt following compared to state-of-the-art methods, particularly in multiple object compositions involving diverse attributes and relationships.

  • 6 authors
·
Mar 8, 2024 2

Aligning Text-to-Image Diffusion Models with Reward Backpropagation

Text-to-image diffusion models have recently emerged at the forefront of image generation, powered by very large-scale unsupervised or weakly supervised text-to-image training datasets. Due to their unsupervised training, controlling their behavior in downstream tasks, such as maximizing human-perceived image quality, image-text alignment, or ethical image generation, is difficult. Recent works finetune diffusion models to downstream reward functions using vanilla reinforcement learning, notorious for the high variance of the gradient estimators. In this paper, we propose AlignProp, a method that aligns diffusion models to downstream reward functions using end-to-end backpropagation of the reward gradient through the denoising process. While naive implementation of such backpropagation would require prohibitive memory resources for storing the partial derivatives of modern text-to-image models, AlignProp finetunes low-rank adapter weight modules and uses gradient checkpointing, to render its memory usage viable. We test AlignProp in finetuning diffusion models to various objectives, such as image-text semantic alignment, aesthetics, compressibility and controllability of the number of objects present, as well as their combinations. We show AlignProp achieves higher rewards in fewer training steps than alternatives, while being conceptually simpler, making it a straightforward choice for optimizing diffusion models for differentiable reward functions of interest. Code and Visualization results are available at https://align-prop.github.io/.

  • 4 authors
·
Oct 5, 2023 4

Accelerate High-Quality Diffusion Models with Inner Loop Feedback

We propose Inner Loop Feedback (ILF), a novel approach to accelerate diffusion models' inference. ILF trains a lightweight module to predict future features in the denoising process by leveraging the outputs from a chosen diffusion backbone block at a given time step. This approach exploits two key intuitions; (1) the outputs of a given block at adjacent time steps are similar, and (2) performing partial computations for a step imposes a lower burden on the model than skipping the step entirely. Our method is highly flexible, since we find that the feedback module itself can simply be a block from the diffusion backbone, with all settings copied. Its influence on the diffusion forward can be tempered with a learnable scaling factor from zero initialization. We train this module using distillation losses; however, unlike some prior work where a full diffusion backbone serves as the student, our model freezes the backbone, training only the feedback module. While many efforts to optimize diffusion models focus on achieving acceptable image quality in extremely few steps (1-4 steps), our emphasis is on matching best case results (typically achieved in 20 steps) while significantly reducing runtime. ILF achieves this balance effectively, demonstrating strong performance for both class-to-image generation with diffusion transformer (DiT) and text-to-image generation with DiT-based PixArt-alpha and PixArt-sigma. The quality of ILF's 1.7x-1.8x speedups are confirmed by FID, CLIP score, CLIP Image Quality Assessment, ImageReward, and qualitative comparisons. Project information is available at https://mgwillia.github.io/ilf.

  • 5 authors
·
Jan 22

AdaBlock-dLLM: Semantic-Aware Diffusion LLM Inference via Adaptive Block Size

Diffusion-based large language models (dLLMs) are gaining attention for their inherent capacity for parallel decoding, offering a compelling alternative to autoregressive LLMs. Among various decoding strategies, blockwise semi-autoregressive (semi-AR) approaches are widely adopted due to their natural support for KV caching and their favorable accuracy-speed trade-off. However, this paper identifies two fundamental limitations in the conventional semi-AR decoding approach that applies a fixed block size: i) late decoding overhead, where the unmasking of high-confidence tokens outside the current block is unnecessarily delayed, and ii) premature decoding error, where low-confidence tokens inside the current block are committed too early, leading to incorrect tokens. This paper presents the first systematic investigation challenging the fixed block size assumption in semi-AR decoding. Through a statistical analysis of confidence dynamics during the denoising process, we identify a volatility band (VB) region during dLLM decoding, which encodes local semantic structure and can be used to guide adaptive block sizing. Leveraging these insights, we introduce AdaBlock-dLLM, a training-free, plug-and-play scheduler that adaptively aligns block boundaries with semantic steps by adjusting block size during runtime. Extensive experiments across diverse benchmarks show that AdaBlock-dLLM achieves up to 5.3% accuracy improvement under the same throughput budget. Beyond inference-time optimization, we hope our semantics-aware adaptive scheduling approach and confidence-based analysis will inspire future training strategies for dLLMs.

  • 6 authors
·
Sep 30

Towards Better Alignment: Training Diffusion Models with Reinforcement Learning Against Sparse Rewards

Diffusion models have achieved remarkable success in text-to-image generation. However, their practical applications are hindered by the misalignment between generated images and corresponding text prompts. To tackle this issue, reinforcement learning (RL) has been considered for diffusion model fine-tuning. Yet, RL's effectiveness is limited by the challenge of sparse reward, where feedback is only available at the end of the generation process. This makes it difficult to identify which actions during the denoising process contribute positively to the final generated image, potentially leading to ineffective or unnecessary denoising policies. To this end, this paper presents a novel RL-based framework that addresses the sparse reward problem when training diffusion models. Our framework, named B^2-DiffuRL, employs two strategies: Backward progressive training and Branch-based sampling. For one thing, backward progressive training focuses initially on the final timesteps of denoising process and gradually extends the training interval to earlier timesteps, easing the learning difficulty from sparse rewards. For another, we perform branch-based sampling for each training interval. By comparing the samples within the same branch, we can identify how much the policies of the current training interval contribute to the final image, which helps to learn effective policies instead of unnecessary ones. B^2-DiffuRL is compatible with existing optimization algorithms. Extensive experiments demonstrate the effectiveness of B^2-DiffuRL in improving prompt-image alignment and maintaining diversity in generated images. The code for this work is available.

  • 9 authors
·
Mar 14

On gauge freedom, conservativity and intrinsic dimensionality estimation in diffusion models

Diffusion models are generative models that have recently demonstrated impressive performances in terms of sampling quality and density estimation in high dimensions. They rely on a forward continuous diffusion process and a backward continuous denoising process, which can be described by a time-dependent vector field and is used as a generative model. In the original formulation of the diffusion model, this vector field is assumed to be the score function (i.e. it is the gradient of the log-probability at a given time in the diffusion process). Curiously, on the practical side, most studies on diffusion models implement this vector field as a neural network function and do not constrain it be the gradient of some energy function (that is, most studies do not constrain the vector field to be conservative). Even though some studies investigated empirically whether such a constraint will lead to a performance gain, they lead to contradicting results and failed to provide analytical results. Here, we provide three analytical results regarding the extent of the modeling freedom of this vector field. {Firstly, we propose a novel decomposition of vector fields into a conservative component and an orthogonal component which satisfies a given (gauge) freedom. Secondly, from this orthogonal decomposition, we show that exact density estimation and exact sampling is achieved when the conservative component is exactly equals to the true score and therefore conservativity is neither necessary nor sufficient to obtain exact density estimation and exact sampling. Finally, we show that when it comes to inferring local information of the data manifold, constraining the vector field to be conservative is desirable.

  • 2 authors
·
Feb 6, 2024

Self-Rectifying Diffusion Sampling with Perturbed-Attention Guidance

Recent studies have demonstrated that diffusion models are capable of generating high-quality samples, but their quality heavily depends on sampling guidance techniques, such as classifier guidance (CG) and classifier-free guidance (CFG). These techniques are often not applicable in unconditional generation or in various downstream tasks such as image restoration. In this paper, we propose a novel sampling guidance, called Perturbed-Attention Guidance (PAG), which improves diffusion sample quality across both unconditional and conditional settings, achieving this without requiring additional training or the integration of external modules. PAG is designed to progressively enhance the structure of samples throughout the denoising process. It involves generating intermediate samples with degraded structure by substituting selected self-attention maps in diffusion U-Net with an identity matrix, by considering the self-attention mechanisms' ability to capture structural information, and guiding the denoising process away from these degraded samples. In both ADM and Stable Diffusion, PAG surprisingly improves sample quality in conditional and even unconditional scenarios. Moreover, PAG significantly improves the baseline performance in various downstream tasks where existing guidances such as CG or CFG cannot be fully utilized, including ControlNet with empty prompts and image restoration such as inpainting and deblurring.

  • 9 authors
·
Mar 26, 2024

LAFR: Efficient Diffusion-based Blind Face Restoration via Latent Codebook Alignment Adapter

Blind face restoration from low-quality (LQ) images is a challenging task that requires not only high-fidelity image reconstruction but also the preservation of facial identity. While diffusion models like Stable Diffusion have shown promise in generating high-quality (HQ) images, their VAE modules are typically trained only on HQ data, resulting in semantic misalignment when encoding LQ inputs. This mismatch significantly weakens the effectiveness of LQ conditions during the denoising process. Existing approaches often tackle this issue by retraining the VAE encoder, which is computationally expensive and memory-intensive. To address this limitation efficiently, we propose LAFR (Latent Alignment for Face Restoration), a novel codebook-based latent space adapter that aligns the latent distribution of LQ images with that of HQ counterparts, enabling semantically consistent diffusion sampling without altering the original VAE. To further enhance identity preservation, we introduce a multi-level restoration loss that combines constraints from identity embeddings and facial structural priors. Additionally, by leveraging the inherent structural regularity of facial images, we show that lightweight finetuning of diffusion prior on just 0.9% of FFHQ dataset is sufficient to achieve results comparable to state-of-the-art methods, reduce training time by 70%. Extensive experiments on both synthetic and real-world face restoration benchmarks demonstrate the effectiveness and efficiency of LAFR, achieving high-quality, identity-preserving face reconstruction from severely degraded inputs.

  • 4 authors
·
May 29

AnimateLCM: Accelerating the Animation of Personalized Diffusion Models and Adapters with Decoupled Consistency Learning

Video diffusion models has been gaining increasing attention for its ability to produce videos that are both coherent and of high fidelity. However, the iterative denoising process makes it computationally intensive and time-consuming, thus limiting its applications. Inspired by the Consistency Model (CM) that distills pretrained image diffusion models to accelerate the sampling with minimal steps and its successful extension Latent Consistency Model (LCM) on conditional image generation, we propose AnimateLCM, allowing for high-fidelity video generation within minimal steps. Instead of directly conducting consistency learning on the raw video dataset, we propose a decoupled consistency learning strategy that decouples the distillation of image generation priors and motion generation priors, which improves the training efficiency and enhance the generation visual quality. Additionally, to enable the combination of plug-and-play adapters in stable diffusion community to achieve various functions (e.g., ControlNet for controllable generation). we propose an efficient strategy to adapt existing adapters to our distilled text-conditioned video consistency model or train adapters from scratch without harming the sampling speed. We validate the proposed strategy in image-conditioned video generation and layout-conditioned video generation, all achieving top-performing results. Experimental results validate the effectiveness of our proposed method. Code and weights will be made public. More details are available at https://github.com/G-U-N/AnimateLCM.

  • 7 authors
·
Feb 1, 2024 2

Adaptive Guidance: Training-free Acceleration of Conditional Diffusion Models

This paper presents a comprehensive study on the role of Classifier-Free Guidance (CFG) in text-conditioned diffusion models from the perspective of inference efficiency. In particular, we relax the default choice of applying CFG in all diffusion steps and instead search for efficient guidance policies. We formulate the discovery of such policies in the differentiable Neural Architecture Search framework. Our findings suggest that the denoising steps proposed by CFG become increasingly aligned with simple conditional steps, which renders the extra neural network evaluation of CFG redundant, especially in the second half of the denoising process. Building upon this insight, we propose "Adaptive Guidance" (AG), an efficient variant of CFG, that adaptively omits network evaluations when the denoising process displays convergence. Our experiments demonstrate that AG preserves CFG's image quality while reducing computation by 25%. Thus, AG constitutes a plug-and-play alternative to Guidance Distillation, achieving 50% of the speed-ups of the latter while being training-free and retaining the capacity to handle negative prompts. Finally, we uncover further redundancies of CFG in the first half of the diffusion process, showing that entire neural function evaluations can be replaced by simple affine transformations of past score estimates. This method, termed LinearAG, offers even cheaper inference at the cost of deviating from the baseline model. Our findings provide insights into the efficiency of the conditional denoising process that contribute to more practical and swift deployment of text-conditioned diffusion models.

  • 8 authors
·
Dec 19, 2023

PSyDUCK: Training-Free Steganography for Latent Diffusion

Recent advances in generative AI have opened promising avenues for steganography, which can securely protect sensitive information for individuals operating in hostile environments, such as journalists, activists, and whistleblowers. However, existing methods for generative steganography have significant limitations, particularly in scalability and their dependence on retraining diffusion models. We introduce PSyDUCK, a training-free, model-agnostic steganography framework specifically designed for latent diffusion models. PSyDUCK leverages controlled divergence and local mixing within the latent denoising process, enabling high-capacity, secure message embedding without compromising visual fidelity. Our method dynamically adapts embedding strength to balance accuracy and detectability, significantly improving upon existing pixel-space approaches. Crucially, PSyDUCK extends generative steganography to latent-space video diffusion models, surpassing previous methods in both encoding capacity and robustness. Extensive experiments demonstrate PSyDUCK's superiority over state-of-the-art techniques, achieving higher transmission accuracy and lower detectability rates across diverse image and video datasets. By overcoming the key challenges associated with latent diffusion model architectures, PSyDUCK sets a new standard for generative steganography, paving the way for scalable, real-world steganographic applications.

  • 6 authors
·
Jan 31

ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer

The recent surge of interest in comprehensive multimodal models has necessitated the unification of diverse modalities. However, the unification suffers from disparate methodologies. Continuous visual generation necessitates the full-sequence diffusion-based approach, despite its divergence from the autoregressive modeling in the text domain. We posit that autoregressive modeling, i.e., predicting the future based on past deterministic experience, remains crucial in developing both a visual generation model and a potential unified multimodal model. In this paper, we explore an interpolation between the autoregressive modeling and full-parameters diffusion to model visual information. At its core, we present ACDiT, an Autoregressive blockwise Conditional Diffusion Transformer, where the block size of diffusion, i.e., the size of autoregressive units, can be flexibly adjusted to interpolate between token-wise autoregression and full-sequence diffusion. ACDiT is easy to implement, as simple as creating a Skip-Causal Attention Mask (SCAM) during training. During inference, the process iterates between diffusion denoising and autoregressive decoding that can make full use of KV-Cache. We verify the effectiveness of ACDiT on image and video generation tasks. We also demonstrate that benefitted from autoregressive modeling, ACDiT can be seamlessly used in visual understanding tasks despite being trained on the diffusion objective. The analysis of the trade-off between autoregressive modeling and diffusion demonstrates the potential of ACDiT to be used in long-horizon visual generation tasks. These strengths make it promising as the backbone of future unified models.

  • 9 authors
·
Dec 10, 2024 2

Local Prompt Adaptation for Style-Consistent Multi-Object Generation in Diffusion Models

Diffusion models have become a powerful backbone for text-to-image generation, producing high-quality visuals from natural language prompts. However, when prompts involve multiple objects alongside global or local style instructions, the outputs often drift in style and lose spatial coherence, limiting their reliability for controlled, style-consistent scene generation. We present Local Prompt Adaptation (LPA), a lightweight, training-free method that splits the prompt into content and style tokens, then injects them selectively into the U-Net's attention layers at chosen timesteps. By conditioning object tokens early and style tokens later in the denoising process, LPA improves both layout control and stylistic uniformity without additional training cost. We conduct extensive ablations across parser settings and injection windows, finding that the best configuration -- lpa late only with a 300-650 step window -- delivers the strongest balance of prompt alignment and style consistency. On the T2I benchmark, LPA improves CLIP-prompt alignment over vanilla SDXL by +0.41% and over SD1.5 by +0.34%, with no diversity loss. On our custom 50-prompt style-rich benchmark, LPA achieves +0.09% CLIP-prompt and +0.08% CLIP-style gains over baseline. Our method is model-agnostic, easy to integrate, and requires only a single configuration change, making it a practical choice for controllable, style-consistent multi-object generation.

  • 1 authors
·
Jul 26

CAT-DM: Controllable Accelerated Virtual Try-on with Diffusion Model

Image-based virtual try-on enables users to virtually try on different garments by altering original clothes in their photographs. Generative Adversarial Networks (GANs) dominate the research field in image-based virtual try-on, but have not resolved problems such as unnatural deformation of garments and the blurry generation quality. Recently, diffusion models have emerged with surprising performance across various image generation tasks. While the generative quality of diffusion models is impressive, achieving controllability poses a significant challenge when applying it to virtual try-on tasks and multiple denoising iterations limit its potential for real-time applications. In this paper, we propose Controllable Accelerated virtual Try-on with Diffusion Model called CAT-DM. To enhance the controllability, a basic diffusion-based virtual try-on network is designed, which utilizes ControlNet to introduce additional control conditions and improves the feature extraction of garment images. In terms of acceleration, CAT-DM initiates a reverse denoising process with an implicit distribution generated by a pre-trained GAN-based model. Compared with previous try-on methods based on diffusion models, CAT-DM not only retains the pattern and texture details of the in-shop garment but also reduces the sampling steps without compromising generation quality. Extensive experiments demonstrate the superiority of CAT-DM against both GAN-based and diffusion-based methods in producing more realistic images and accurately reproducing garment patterns. Our code and models will be publicly released.

  • 6 authors
·
Nov 30, 2023

White-Box Diffusion Transformer for single-cell RNA-seq generation

As a powerful tool for characterizing cellular subpopulations and cellular heterogeneity, single cell RNA sequencing (scRNA-seq) technology offers advantages of high throughput and multidimensional analysis. However, the process of data acquisition is often constrained by high cost and limited sample availability. To overcome these limitations, we propose a hybrid model based on Diffusion model and White-Box transformer that aims to generate synthetic and biologically plausible scRNA-seq data. Diffusion model progressively introduce noise into the data and then recover the original data through a denoising process, a forward and reverse process that is particularly suitable for generating complex data distributions. White-Box transformer is a deep learning architecture that emphasizes mathematical interpretability. By minimizing the encoding rate of the data and maximizing the sparsity of the representation, it not only reduces the computational burden, but also provides clear insight into underlying structure. Our White-Box Diffusion Transformer combines the generative capabilities of Diffusion model with the mathematical interpretability of White-Box transformer. Through experiments using six different single-cell RNA-Seq datasets, we visualize both generated and real data using t-SNE dimensionality reduction technique, as well as quantify similarity between generated and real data using various metrics to demonstrate comparable performance of White-Box Diffusion Transformer and Diffusion Transformer in generating scRNA-seq data alongside significant improvements in training efficiency and resource utilization. Our code is available at https://github.com/lingximamo/White-Box-Diffusion-Transformer

  • 3 authors
·
Nov 11, 2024

StyleTokenizer: Defining Image Style by a Single Instance for Controlling Diffusion Models

Despite the burst of innovative methods for controlling the diffusion process, effectively controlling image styles in text-to-image generation remains a challenging task. Many adapter-based methods impose image representation conditions on the denoising process to accomplish image control. However these conditions are not aligned with the word embedding space, leading to interference between image and text control conditions and the potential loss of semantic information from the text prompt. Addressing this issue involves two key challenges. Firstly, how to inject the style representation without compromising the effectiveness of text representation in control. Secondly, how to obtain the accurate style representation from a single reference image. To tackle these challenges, we introduce StyleTokenizer, a zero-shot style control image generation method that aligns style representation with text representation using a style tokenizer. This alignment effectively minimizes the impact on the effectiveness of text prompts. Furthermore, we collect a well-labeled style dataset named Style30k to train a style feature extractor capable of accurately representing style while excluding other content information. Experimental results demonstrate that our method fully grasps the style characteristics of the reference image, generating appealing images that are consistent with both the target image style and text prompt. The code and dataset are available at https://github.com/alipay/style-tokenizer.

  • 8 authors
·
Sep 4, 2024

Enhanced Distribution Alignment for Post-Training Quantization of Diffusion Models

Diffusion models have achieved great success in image generation tasks through iterative noise estimation. However, the heavy denoising process and complex neural networks hinder their low-latency applications in real-world scenarios. Quantization can effectively reduce model complexity, and post-training quantization (PTQ), which does not require fine-tuning, is highly promising in accelerating the denoising process. Unfortunately, we find that due to the highly dynamic distribution of activations in different denoising steps, existing PTQ methods for diffusion models suffer from distribution mismatch issues at both calibration sample level and reconstruction output level, which makes the performance far from satisfactory, especially in low-bit cases. In this paper, we propose Enhanced Distribution Alignment for Post-Training Quantization of Diffusion Models (EDA-DM) to address the above issues. Specifically, at the calibration sample level, we select calibration samples based on the density and diversity in the latent space, thus facilitating the alignment of their distribution with the overall samples; and at the reconstruction output level, we propose Fine-grained Block Reconstruction, which can align the outputs of the quantized model and the full-precision model at different network granularity. Extensive experiments demonstrate that EDA-DM outperforms the existing post-training quantization frameworks in both unconditional and conditional generation scenarios. At low-bit precision, the quantized models with our method even outperform the full-precision models on most datasets.

  • 4 authors
·
Jan 9, 2024

DiffFashion: Reference-based Fashion Design with Structure-aware Transfer by Diffusion Models

Image-based fashion design with AI techniques has attracted increasing attention in recent years. We focus on a new fashion design task, where we aim to transfer a reference appearance image onto a clothing image while preserving the structure of the clothing image. It is a challenging task since there are no reference images available for the newly designed output fashion images. Although diffusion-based image translation or neural style transfer (NST) has enabled flexible style transfer, it is often difficult to maintain the original structure of the image realistically during the reverse diffusion, especially when the referenced appearance image greatly differs from the common clothing appearance. To tackle this issue, we present a novel diffusion model-based unsupervised structure-aware transfer method to semantically generate new clothes from a given clothing image and a reference appearance image. In specific, we decouple the foreground clothing with automatically generated semantic masks by conditioned labels. And the mask is further used as guidance in the denoising process to preserve the structure information. Moreover, we use the pre-trained vision Transformer (ViT) for both appearance and structure guidance. Our experimental results show that the proposed method outperforms state-of-the-art baseline models, generating more realistic images in the fashion design task. Code and demo can be found at https://github.com/Rem105-210/DiffFashion.

  • 6 authors
·
Feb 13, 2023