new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

Post-training Quantization on Diffusion Models

Denoising diffusion (score-based) generative models have recently achieved significant accomplishments in generating realistic and diverse data. These approaches define a forward diffusion process for transforming data into noise and a backward denoising process for sampling data from noise. Unfortunately, the generation process of current denoising diffusion models is notoriously slow due to the lengthy iterative noise estimations, which rely on cumbersome neural networks. It prevents the diffusion models from being widely deployed, especially on edge devices. Previous works accelerate the generation process of diffusion model (DM) via finding shorter yet effective sampling trajectories. However, they overlook the cost of noise estimation with a heavy network in every iteration. In this work, we accelerate generation from the perspective of compressing the noise estimation network. Due to the difficulty of retraining DMs, we exclude mainstream training-aware compression paradigms and introduce post-training quantization (PTQ) into DM acceleration. However, the output distributions of noise estimation networks change with time-step, making previous PTQ methods fail in DMs since they are designed for single-time step scenarios. To devise a DM-specific PTQ method, we explore PTQ on DM in three aspects: quantized operations, calibration dataset, and calibration metric. We summarize and use several observations derived from all-inclusive investigations to formulate our method, which especially targets the unique multi-time-step structure of DMs. Experimentally, our method can directly quantize full-precision DMs into 8-bit models while maintaining or even improving their performance in a training-free manner. Importantly, our method can serve as a plug-and-play module on other fast-sampling methods, e.g., DDIM. The code is available at https://github.com/42Shawn/PTQ4DM .

  • 5 authors
·
Nov 28, 2022

DDDM-VC: Decoupled Denoising Diffusion Models with Disentangled Representation and Prior Mixup for Verified Robust Voice Conversion

Diffusion-based generative models have exhibited powerful generative performance in recent years. However, as many attributes exist in the data distribution and owing to several limitations of sharing the model parameters across all levels of the generation process, it remains challenging to control specific styles for each attribute. To address the above problem, this paper presents decoupled denoising diffusion models (DDDMs) with disentangled representations, which can control the style for each attribute in generative models. We apply DDDMs to voice conversion (VC) tasks to address the challenges of disentangling and controlling each speech attribute (e.g., linguistic information, intonation, and timbre). First, we use a self-supervised representation to disentangle the speech representation. Subsequently, the DDDMs are applied to resynthesize the speech from the disentangled representations for denoising with respect to each attribute. Moreover, we also propose the prior mixup for robust voice style transfer, which uses the converted representation of the mixed style as a prior distribution for the diffusion models. The experimental results reveal that our method outperforms publicly available VC models. Furthermore, we show that our method provides robust generative performance regardless of the model size. Audio samples are available https://hayeong0.github.io/DDDM-VC-demo/.

  • 3 authors
·
May 25, 2023

Aligning Generative Denoising with Discriminative Objectives Unleashes Diffusion for Visual Perception

With the success of image generation, generative diffusion models are increasingly adopted for discriminative tasks, as pixel generation provides a unified perception interface. However, directly repurposing the generative denoising process for discriminative objectives reveals critical gaps rarely addressed previously. Generative models tolerate intermediate sampling errors if the final distribution remains plausible, but discriminative tasks require rigorous accuracy throughout, as evidenced in challenging multi-modal tasks like referring image segmentation. Motivated by this gap, we analyze and enhance alignment between generative diffusion processes and perception tasks, focusing on how perception quality evolves during denoising. We find: (1) earlier denoising steps contribute disproportionately to perception quality, prompting us to propose tailored learning objectives reflecting varying timestep contributions; (2) later denoising steps show unexpected perception degradation, highlighting sensitivity to training-denoising distribution shifts, addressed by our diffusion-tailored data augmentation; and (3) generative processes uniquely enable interactivity, serving as controllable user interfaces adaptable to correctional prompts in multi-round interactions. Our insights significantly improve diffusion-based perception models without architectural changes, achieving state-of-the-art performance on depth estimation, referring image segmentation, and generalist perception tasks. Code available at https://github.com/ziqipang/ADDP.

  • 3 authors
·
Apr 15 2

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs

A wide variety of deep generative models has been developed in the past decade. Yet, these models often struggle with simultaneously addressing three key requirements including: high sample quality, mode coverage, and fast sampling. We call the challenge imposed by these requirements the generative learning trilemma, as the existing models often trade some of them for others. Particularly, denoising diffusion models have shown impressive sample quality and diversity, but their expensive sampling does not yet allow them to be applied in many real-world applications. In this paper, we argue that slow sampling in these models is fundamentally attributed to the Gaussian assumption in the denoising step which is justified only for small step sizes. To enable denoising with large steps, and hence, to reduce the total number of denoising steps, we propose to model the denoising distribution using a complex multimodal distribution. We introduce denoising diffusion generative adversarial networks (denoising diffusion GANs) that model each denoising step using a multimodal conditional GAN. Through extensive evaluations, we show that denoising diffusion GANs obtain sample quality and diversity competitive with original diffusion models while being 2000times faster on the CIFAR-10 dataset. Compared to traditional GANs, our model exhibits better mode coverage and sample diversity. To the best of our knowledge, denoising diffusion GAN is the first model that reduces sampling cost in diffusion models to an extent that allows them to be applied to real-world applications inexpensively. Project page and code can be found at https://nvlabs.github.io/denoising-diffusion-gan

  • 3 authors
·
Dec 14, 2021

DDPM-CD: Denoising Diffusion Probabilistic Models as Feature Extractors for Change Detection

Remote sensing change detection is crucial for understanding the dynamics of our planet's surface, facilitating the monitoring of environmental changes, evaluating human impact, predicting future trends, and supporting decision-making. In this work, we introduce a novel approach for change detection that can leverage off-the-shelf, unlabeled remote sensing images in the training process by pre-training a Denoising Diffusion Probabilistic Model (DDPM) - a class of generative models used in image synthesis. DDPMs learn the training data distribution by gradually converting training images into a Gaussian distribution using a Markov chain. During inference (i.e., sampling), they can generate a diverse set of samples closer to the training distribution, starting from Gaussian noise, achieving state-of-the-art image synthesis results. However, in this work, our focus is not on image synthesis but on utilizing it as a pre-trained feature extractor for the downstream application of change detection. Specifically, we fine-tune a lightweight change classifier utilizing the feature representations produced by the pre-trained DDPM alongside change labels. Experiments conducted on the LEVIR-CD, WHU-CD, DSIFN-CD, and CDD datasets demonstrate that the proposed DDPM-CD method significantly outperforms the existing state-of-the-art change detection methods in terms of F1 score, IoU, and overall accuracy, highlighting the pivotal role of pre-trained DDPM as a feature extractor for downstream applications. We have made both the code and pre-trained models available at https://github.com/wgcban/ddpm-cd

  • 3 authors
·
Jun 23, 2022

Diffusion with Forward Models: Solving Stochastic Inverse Problems Without Direct Supervision

Denoising diffusion models are a powerful type of generative models used to capture complex distributions of real-world signals. However, their applicability is limited to scenarios where training samples are readily available, which is not always the case in real-world applications. For example, in inverse graphics, the goal is to generate samples from a distribution of 3D scenes that align with a given image, but ground-truth 3D scenes are unavailable and only 2D images are accessible. To address this limitation, we propose a novel class of denoising diffusion probabilistic models that learn to sample from distributions of signals that are never directly observed. Instead, these signals are measured indirectly through a known differentiable forward model, which produces partial observations of the unknown signal. Our approach involves integrating the forward model directly into the denoising process. This integration effectively connects the generative modeling of observations with the generative modeling of the underlying signals, allowing for end-to-end training of a conditional generative model over signals. During inference, our approach enables sampling from the distribution of underlying signals that are consistent with a given partial observation. We demonstrate the effectiveness of our method on three challenging computer vision tasks. For instance, in the context of inverse graphics, our model enables direct sampling from the distribution of 3D scenes that align with a single 2D input image.

  • 8 authors
·
Jun 20, 2023 1

Inference-Time Alignment Control for Diffusion Models with Reinforcement Learning Guidance

Denoising-based generative models, particularly diffusion and flow matching algorithms, have achieved remarkable success. However, aligning their output distributions with complex downstream objectives, such as human preferences, compositional accuracy, or data compressibility, remains challenging. While reinforcement learning (RL) fine-tuning methods, inspired by advances in RL from human feedback (RLHF) for large language models, have been adapted to these generative frameworks, current RL approaches are suboptimal for diffusion models and offer limited flexibility in controlling alignment strength after fine-tuning. In this work, we reinterpret RL fine-tuning for diffusion models through the lens of stochastic differential equations and implicit reward conditioning. We introduce Reinforcement Learning Guidance (RLG), an inference-time method that adapts Classifier-Free Guidance (CFG) by combining the outputs of the base and RL fine-tuned models via a geometric average. Our theoretical analysis shows that RLG's guidance scale is mathematically equivalent to adjusting the KL-regularization coefficient in standard RL objectives, enabling dynamic control over the alignment-quality trade-off without further training. Extensive experiments demonstrate that RLG consistently improves the performance of RL fine-tuned models across various architectures, RL algorithms, and downstream tasks, including human preferences, compositional control, compressibility, and text rendering. Furthermore, RLG supports both interpolation and extrapolation, thereby offering unprecedented flexibility in controlling generative alignment. Our approach provides a practical and theoretically sound solution for enhancing and controlling diffusion model alignment at inference. The source code for RLG is publicly available at the Github: https://github.com/jinluo12345/Reinforcement-learning-guidance.

  • 8 authors
·
Aug 28

Diffusion Models for Medical Image Analysis: A Comprehensive Survey

Denoising diffusion models, a class of generative models, have garnered immense interest lately in various deep-learning problems. A diffusion probabilistic model defines a forward diffusion stage where the input data is gradually perturbed over several steps by adding Gaussian noise and then learns to reverse the diffusion process to retrieve the desired noise-free data from noisy data samples. Diffusion models are widely appreciated for their strong mode coverage and quality of the generated samples despite their known computational burdens. Capitalizing on the advances in computer vision, the field of medical imaging has also observed a growing interest in diffusion models. To help the researcher navigate this profusion, this survey intends to provide a comprehensive overview of diffusion models in the discipline of medical image analysis. Specifically, we introduce the solid theoretical foundation and fundamental concepts behind diffusion models and the three generic diffusion modelling frameworks: diffusion probabilistic models, noise-conditioned score networks, and stochastic differential equations. Then, we provide a systematic taxonomy of diffusion models in the medical domain and propose a multi-perspective categorization based on their application, imaging modality, organ of interest, and algorithms. To this end, we cover extensive applications of diffusion models in the medical domain. Furthermore, we emphasize the practical use case of some selected approaches, and then we discuss the limitations of the diffusion models in the medical domain and propose several directions to fulfill the demands of this field. Finally, we gather the overviewed studies with their available open-source implementations at https://github.com/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging.

  • 7 authors
·
Nov 14, 2022

Boundary Guided Learning-Free Semantic Control with Diffusion Models

Applying pre-trained generative denoising diffusion models (DDMs) for downstream tasks such as image semantic editing usually requires either fine-tuning DDMs or learning auxiliary editing networks in the existing literature. In this work, we present our BoundaryDiffusion method for efficient, effective and light-weight semantic control with frozen pre-trained DDMs, without learning any extra networks. As one of the first learning-free diffusion editing works, we start by seeking a comprehensive understanding of the intermediate high-dimensional latent spaces by theoretically and empirically analyzing their probabilistic and geometric behaviors in the Markov chain. We then propose to further explore the critical step for editing in the denoising trajectory that characterizes the convergence of a pre-trained DDM and introduce an automatic search method. Last but not least, in contrast to the conventional understanding that DDMs have relatively poor semantic behaviors, we prove that the critical latent space we found already exhibits semantic subspace boundaries at the generic level in unconditional DDMs, which allows us to do controllable manipulation by guiding the denoising trajectory towards the targeted boundary via a single-step operation. We conduct extensive experiments on multiple DPMs architectures (DDPM, iDDPM) and datasets (CelebA, CelebA-HQ, LSUN-church, LSUN-bedroom, AFHQ-dog) with different resolutions (64, 256), achieving superior or state-of-the-art performance in various task scenarios (image semantic editing, text-based editing, unconditional semantic control) to demonstrate the effectiveness.

  • 5 authors
·
Feb 16, 2023

Enhancing Diffusion Models for High-Quality Image Generation

This report presents the comprehensive implementation, evaluation, and optimization of Denoising Diffusion Probabilistic Models (DDPMs) and Denoising Diffusion Implicit Models (DDIMs), which are state-of-the-art generative models. During inference, these models take random noise as input and iteratively generate high-quality images as output. The study focuses on enhancing their generative capabilities by incorporating advanced techniques such as Classifier-Free Guidance (CFG), Latent Diffusion Models with Variational Autoencoders (VAE), and alternative noise scheduling strategies. The motivation behind this work is the growing demand for efficient and scalable generative AI models that can produce realistic images across diverse datasets, addressing challenges in applications such as art creation, image synthesis, and data augmentation. Evaluations were conducted on datasets including CIFAR-10 and ImageNet-100, with a focus on improving inference speed, computational efficiency, and image quality metrics like Frechet Inception Distance (FID). Results demonstrate that DDIM + CFG achieves faster inference and superior image quality. Challenges with VAE and noise scheduling are also highlighted, suggesting opportunities for future optimization. This work lays the groundwork for developing scalable, efficient, and high-quality generative AI systems to benefit industries ranging from entertainment to robotics.

  • 3 authors
·
Dec 18, 2024

ArtifactGen: Benchmarking WGAN-GP vs Diffusion for Label-Aware EEG Artifact Synthesis

Artifacts in electroencephalography (EEG) -- muscle, eye movement, electrode, chewing, and shiver -- confound automated analysis yet are costly to label at scale. We study whether modern generative models can synthesize realistic, label-aware artifact segments suitable for augmentation and stress-testing. Using the TUH EEG Artifact (TUAR) corpus, we curate subject-wise splits and fixed-length multi-channel windows (e.g., 250 samples) with preprocessing tailored to each model (per-window min--max for adversarial training; per-recording/channel z-score for diffusion). We compare a conditional WGAN-GP with a projection discriminator to a 1D denoising diffusion model with classifier-free guidance, and evaluate along three axes: (i) fidelity via Welch band-power deltas (Deltadelta, Deltatheta, Deltaalpha, Deltabeta), channel-covariance Frobenius distance, autocorrelation L_2, and distributional metrics (MMD/PRD); (ii) specificity via class-conditional recovery with lightweight kNN/classifiers; and (iii) utility via augmentation effects on artifact recognition. In our setting, WGAN-GP achieves closer spectral alignment and lower MMD to real data, while both models exhibit weak class-conditional recovery, limiting immediate augmentation gains and revealing opportunities for stronger conditioning and coverage. We release a reproducible pipeline -- data manifests, training configurations, and evaluation scripts -- to establish a baseline for EEG artifact synthesis and to surface actionable failure modes for future work.

  • 2 authors
·
Sep 9

Financial Models in Generative Art: Black-Scholes-Inspired Concept Blending in Text-to-Image Diffusion

We introduce a novel approach for concept blending in pretrained text-to-image diffusion models, aiming to generate images at the intersection of multiple text prompts. At each time step during diffusion denoising, our algorithm forecasts predictions w.r.t. the generated image and makes informed text conditioning decisions. Central to our method is the unique analogy between diffusion models, which are rooted in non-equilibrium thermodynamics, and the Black-Scholes model for financial option pricing. By drawing parallels between key variables in both domains, we derive a robust algorithm for concept blending that capitalizes on the Markovian dynamics of the Black-Scholes framework. Our text-based concept blending algorithm is data-efficient, meaning it does not need additional training. Furthermore, it operates without human intervention or hyperparameter tuning. We highlight the benefits of our approach by comparing it qualitatively and quantitatively to other text based concept blending techniques, including linear interpolation, alternating prompts, step-wise prompt switching, and CLIP-guided prompt selection across various scenarios such as single object per text prompt, multiple objects per text prompt and objects against backgrounds. Our work shows that financially inspired techniques can enhance text-to-image concept blending in generative AI, paving the way for broader innovation. Code is available at https://github.com/divyakraman/BlackScholesDiffusion2024.

  • 3 authors
·
May 22, 2024

Denoising MCMC for Accelerating Diffusion-Based Generative Models

Diffusion models are powerful generative models that simulate the reverse of diffusion processes using score functions to synthesize data from noise. The sampling process of diffusion models can be interpreted as solving the reverse stochastic differential equation (SDE) or the ordinary differential equation (ODE) of the diffusion process, which often requires up to thousands of discretization steps to generate a single image. This has sparked a great interest in developing efficient integration techniques for reverse-S/ODEs. Here, we propose an orthogonal approach to accelerating score-based sampling: Denoising MCMC (DMCMC). DMCMC first uses MCMC to produce samples in the product space of data and variance (or diffusion time). Then, a reverse-S/ODE integrator is used to denoise the MCMC samples. Since MCMC traverses close to the data manifold, the computation cost of producing a clean sample for DMCMC is much less than that of producing a clean sample from noise. To verify the proposed concept, we show that Denoising Langevin Gibbs (DLG), an instance of DMCMC, successfully accelerates all six reverse-S/ODE integrators considered in this work on the tasks of CIFAR10 and CelebA-HQ-256 image generation. Notably, combined with integrators of Karras et al. (2022) and pre-trained score models of Song et al. (2021b), DLG achieves SOTA results. In the limited number of score function evaluation (NFE) settings on CIFAR10, we have 3.86 FID with approx 10 NFE and 2.63 FID with approx 20 NFE. On CelebA-HQ-256, we have 6.99 FID with approx 160 NFE, which beats the current best record of Kim et al. (2022) among score-based models, 7.16 FID with 4000 NFE. Code: https://github.com/1202kbs/DMCMC

  • 2 authors
·
Sep 29, 2022

Denoising Task Difficulty-based Curriculum for Training Diffusion Models

Diffusion-based generative models have emerged as powerful tools in the realm of generative modeling. Despite extensive research on denoising across various timesteps and noise levels, a conflict persists regarding the relative difficulties of the denoising tasks. While various studies argue that lower timesteps present more challenging tasks, others contend that higher timesteps are more difficult. To address this conflict, our study undertakes a comprehensive examination of task difficulties, focusing on convergence behavior and changes in relative entropy between consecutive probability distributions across timesteps. Our observational study reveals that denoising at earlier timesteps poses challenges characterized by slower convergence and higher relative entropy, indicating increased task difficulty at these lower timesteps. Building on these observations, we introduce an easy-to-hard learning scheme, drawing from curriculum learning, to enhance the training process of diffusion models. By organizing timesteps or noise levels into clusters and training models with ascending orders of difficulty, we facilitate an order-aware training regime, progressing from easier to harder denoising tasks, thereby deviating from the conventional approach of training diffusion models simultaneously across all timesteps. Our approach leads to improved performance and faster convergence by leveraging benefits of curriculum learning, while maintaining orthogonality with existing improvements in diffusion training techniques. We validate these advantages through comprehensive experiments in image generation tasks, including unconditional, class-conditional, and text-to-image generation.

  • 4 authors
·
Mar 15, 2024

Inference-Time Scaling for Diffusion Models beyond Scaling Denoising Steps

Generative models have made significant impacts across various domains, largely due to their ability to scale during training by increasing data, computational resources, and model size, a phenomenon characterized by the scaling laws. Recent research has begun to explore inference-time scaling behavior in Large Language Models (LLMs), revealing how performance can further improve with additional computation during inference. Unlike LLMs, diffusion models inherently possess the flexibility to adjust inference-time computation via the number of denoising steps, although the performance gains typically flatten after a few dozen. In this work, we explore the inference-time scaling behavior of diffusion models beyond increasing denoising steps and investigate how the generation performance can further improve with increased computation. Specifically, we consider a search problem aimed at identifying better noises for the diffusion sampling process. We structure the design space along two axes: the verifiers used to provide feedback, and the algorithms used to find better noise candidates. Through extensive experiments on class-conditioned and text-conditioned image generation benchmarks, our findings reveal that increasing inference-time compute leads to substantial improvements in the quality of samples generated by diffusion models, and with the complicated nature of images, combinations of the components in the framework can be specifically chosen to conform with different application scenario.

  • 11 authors
·
Jan 16 4

Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think

Recent studies have shown that the denoising process in (generative) diffusion models can induce meaningful (discriminative) representations inside the model, though the quality of these representations still lags behind those learned through recent self-supervised learning methods. We argue that one main bottleneck in training large-scale diffusion models for generation lies in effectively learning these representations. Moreover, training can be made easier by incorporating high-quality external visual representations, rather than relying solely on the diffusion models to learn them independently. We study this by introducing a straightforward regularization called REPresentation Alignment (REPA), which aligns the projections of noisy input hidden states in denoising networks with clean image representations obtained from external, pretrained visual encoders. The results are striking: our simple strategy yields significant improvements in both training efficiency and generation quality when applied to popular diffusion and flow-based transformers, such as DiTs and SiTs. For instance, our method can speed up SiT training by over 17.5times, matching the performance (without classifier-free guidance) of a SiT-XL model trained for 7M steps in less than 400K steps. In terms of final generation quality, our approach achieves state-of-the-art results of FID=1.42 using classifier-free guidance with the guidance interval.

  • 7 authors
·
Oct 9, 2024 2

Gen-L-Video: Multi-Text to Long Video Generation via Temporal Co-Denoising

Leveraging large-scale image-text datasets and advancements in diffusion models, text-driven generative models have made remarkable strides in the field of image generation and editing. This study explores the potential of extending the text-driven ability to the generation and editing of multi-text conditioned long videos. Current methodologies for video generation and editing, while innovative, are often confined to extremely short videos (typically less than 24 frames) and are limited to a single text condition. These constraints significantly limit their applications given that real-world videos usually consist of multiple segments, each bearing different semantic information. To address this challenge, we introduce a novel paradigm dubbed as Gen-L-Video, capable of extending off-the-shelf short video diffusion models for generating and editing videos comprising hundreds of frames with diverse semantic segments without introducing additional training, all while preserving content consistency. We have implemented three mainstream text-driven video generation and editing methodologies and extended them to accommodate longer videos imbued with a variety of semantic segments with our proposed paradigm. Our experimental outcomes reveal that our approach significantly broadens the generative and editing capabilities of video diffusion models, offering new possibilities for future research and applications. The code is available at https://github.com/G-U-N/Gen-L-Video.

  • 6 authors
·
May 29, 2023

Inference-Time Text-to-Video Alignment with Diffusion Latent Beam Search

The remarkable progress in text-to-video diffusion models enables the generation of photorealistic videos, although the content of these generated videos often includes unnatural movement or deformation, reverse playback, and motionless scenes. Recently, an alignment problem has attracted huge attention, where we steer the output of diffusion models based on some measure of the content's goodness. Because there is a large room for improvement of perceptual quality along the frame direction, we should address which metrics we should optimize and how we can optimize them in the video generation. In this paper, we propose diffusion latent beam search with lookahead estimator, which can select a better diffusion latent to maximize a given alignment reward at inference time. We then point out that improving perceptual video quality with respect to alignment to prompts requires reward calibration by weighting existing metrics. This is because when humans or vision language models evaluate outputs, many previous metrics to quantify the naturalness of video do not always correlate with the evaluation. We demonstrate that our method improves the perceptual quality evaluated on the calibrated reward, VLMs, and human assessment, without model parameter update, and outputs the best generation compared to greedy search and best-of-N sampling under much more efficient computational cost. The experiments highlight that our method is beneficial to many capable generative models, and provide a practical guideline: we should prioritize the inference-time compute allocation into enabling the lookahead estimator and increasing the search budget, rather than expanding the denoising steps.

  • 4 authors
·
Jan 31

Downscaling Extreme Precipitation with Wasserstein Regularized Diffusion

Understanding the risks posed by extreme rainfall events requires analysis of precipitation fields with high resolution (to assess localized hazards) and extensive historical coverage (to capture sufficient examples of rare occurrences). Radar and mesonet networks provide precipitation fields at 1 km resolution but with limited historical and geographical coverage, while gauge-based records and reanalysis products cover decades of time on a global scale, but only at 30-50 km resolution. To help provide high-resolution precipitation estimates over long time scales, this study presents Wasserstein Regularized Diffusion (WassDiff), a diffusion framework to downscale (super-resolve) precipitation fields from low-resolution gauge and reanalysis products. Crucially, unlike related deep generative models, WassDiff integrates a Wasserstein distribution-matching regularizer to the denoising process to reduce empirical biases at extreme intensities. Comprehensive evaluations demonstrate that WassDiff quantitatively outperforms existing state-of-the-art generative downscaling methods at recovering extreme weather phenomena such as tropical storms and cold fronts. Case studies further qualitatively demonstrate WassDiff's ability to reproduce realistic fine-scale weather structures and accurate peak intensities. By unlocking decades of high-resolution rainfall information from globally available coarse records, WassDiff offers a practical pathway toward more accurate flood-risk assessments and climate-adaptation planning.

  • 5 authors
·
Oct 1, 2024

Diffusion in Diffusion: Cyclic One-Way Diffusion for Text-Vision-Conditioned Generation

Originating from the diffusion phenomenon in physics that describes particle movement, the diffusion generative models inherit the characteristics of stochastic random walk in the data space along the denoising trajectory. However, the intrinsic mutual interference among image regions contradicts the need for practical downstream application scenarios where the preservation of low-level pixel information from given conditioning is desired (e.g., customization tasks like personalized generation and inpainting based on a user-provided single image). In this work, we investigate the diffusion (physics) in diffusion (machine learning) properties and propose our Cyclic One-Way Diffusion (COW) method to control the direction of diffusion phenomenon given a pre-trained frozen diffusion model for versatile customization application scenarios, where the low-level pixel information from the conditioning needs to be preserved. Notably, unlike most current methods that incorporate additional conditions by fine-tuning the base text-to-image diffusion model or learning auxiliary networks, our method provides a novel perspective to understand the task needs and is applicable to a wider range of customization scenarios in a learning-free manner. Extensive experiment results show that our proposed COW can achieve more flexible customization based on strict visual conditions in different application settings. Project page: https://wangruoyu02.github.io/cow.github.io/.

  • 5 authors
·
Jun 14, 2023

Beyond the Visible: Jointly Attending to Spectral and Spatial Dimensions with HSI-Diffusion for the FINCH Spacecraft

Satellite remote sensing missions have gained popularity over the past fifteen years due to their ability to cover large swaths of land at regular intervals, making them ideal for monitoring environmental trends. The FINCH mission, a 3U+ CubeSat equipped with a hyperspectral camera, aims to monitor crop residue cover in agricultural fields. Although hyperspectral imaging captures both spectral and spatial information, it is prone to various types of noise, including random noise, stripe noise, and dead pixels. Effective denoising of these images is crucial for downstream scientific tasks. Traditional methods, including hand-crafted techniques encoding strong priors, learned 2D image denoising methods applied across different hyperspectral bands, or diffusion generative models applied independently on bands, often struggle with varying noise strengths across spectral bands, leading to significant spectral distortion. This paper presents a novel approach to hyperspectral image denoising using latent diffusion models that integrate spatial and spectral information. We particularly do so by building a 3D diffusion model and presenting a 3-stage training approach on real and synthetically crafted datasets. The proposed method preserves image structure while reducing noise. Evaluations on both popular hyperspectral denoising datasets and synthetically crafted datasets for the FINCH mission demonstrate the effectiveness of this approach.

  • 29 authors
·
Jun 15, 2024

seg2med: a segmentation-based medical image generation framework using denoising diffusion probabilistic models

In this study, we present seg2med, an advanced medical image synthesis framework that uses Denoising Diffusion Probabilistic Models (DDPM) to generate high-quality synthetic medical images conditioned on anatomical masks from TotalSegmentator. The framework synthesizes CT and MR images from segmentation masks derived from real patient data and XCAT digital phantoms, achieving a Structural Similarity Index Measure (SSIM) of 0.94 +/- 0.02 for CT and 0.89 +/- 0.04 for MR images compared to ground-truth images of real patients. It also achieves a Feature Similarity Index Measure (FSIM) of 0.78 +/- 0.04 for CT images from XCAT. The generative quality is further supported by a Fr\'echet Inception Distance (FID) of 3.62 for CT image generation. Additionally, seg2med can generate paired CT and MR images with consistent anatomical structures and convert images between CT and MR modalities, achieving SSIM values of 0.91 +/- 0.03 for MR-to-CT and 0.77 +/- 0.04 for CT-to-MR conversion. Despite the limitations of incomplete anatomical details in segmentation masks, the framework shows strong performance in cross-modality synthesis and multimodal imaging. seg2med also demonstrates high anatomical fidelity in CT synthesis, achieving a mean Dice coefficient greater than 0.90 for 11 abdominal organs and greater than 0.80 for 34 organs out of 59 in 58 test cases. The highest Dice of 0.96 +/- 0.01 was recorded for the right scapula. Leveraging the TotalSegmentator toolkit, seg2med enables segmentation mask generation across diverse datasets, supporting applications in clinical imaging, data augmentation, multimodal synthesis, and diagnostic algorithm development.

  • 8 authors
·
Apr 12

BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping

Diffusion models have demonstrated excellent potential for generating diverse images. However, their performance often suffers from slow generation due to iterative denoising. Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few without significant quality degradation. However, existing distillation methods either require significant amounts of offline computation for generating synthetic training data from the teacher model or need to perform expensive online learning with the help of real data. In this work, we present a novel technique called BOOT, that overcomes these limitations with an efficient data-free distillation algorithm. The core idea is to learn a time-conditioned model that predicts the output of a pre-trained diffusion model teacher given any time step. Such a model can be efficiently trained based on bootstrapping from two consecutive sampled steps. Furthermore, our method can be easily adapted to large-scale text-to-image diffusion models, which are challenging for conventional methods given the fact that the training sets are often large and difficult to access. We demonstrate the effectiveness of our approach on several benchmark datasets in the DDIM setting, achieving comparable generation quality while being orders of magnitude faster than the diffusion teacher. The text-to-image results show that the proposed approach is able to handle highly complex distributions, shedding light on more efficient generative modeling.

  • 5 authors
·
Jun 8, 2023 1

Discovering Interpretable Directions in the Semantic Latent Space of Diffusion Models

Denoising Diffusion Models (DDMs) have emerged as a strong competitor to Generative Adversarial Networks (GANs). However, despite their widespread use in image synthesis and editing applications, their latent space is still not as well understood. Recently, a semantic latent space for DDMs, coined `h-space', was shown to facilitate semantic image editing in a way reminiscent of GANs. The h-space is comprised of the bottleneck activations in the DDM's denoiser across all timesteps of the diffusion process. In this paper, we explore the properties of h-space and propose several novel methods for finding meaningful semantic directions within it. We start by studying unsupervised methods for revealing interpretable semantic directions in pretrained DDMs. Specifically, we show that global latent directions emerge as the principal components in the latent space. Additionally, we provide a novel method for discovering image-specific semantic directions by spectral analysis of the Jacobian of the denoiser w.r.t. the latent code. Next, we extend the analysis by finding directions in a supervised fashion in unconditional DDMs. We demonstrate how such directions can be found by relying on either a labeled data set of real images or by annotating generated samples with a domain-specific attribute classifier. We further show how to semantically disentangle the found direction by simple linear projection. Our approaches are applicable without requiring any architectural modifications, text-based guidance, CLIP-based optimization, or model fine-tuning.

  • 4 authors
·
Mar 20, 2023

Human Motion Diffusion as a Generative Prior

Recent work has demonstrated the significant potential of denoising diffusion models for generating human motion, including text-to-motion capabilities. However, these methods are restricted by the paucity of annotated motion data, a focus on single-person motions, and a lack of detailed control. In this paper, we introduce three forms of composition based on diffusion priors: sequential, parallel, and model composition. Using sequential composition, we tackle the challenge of long sequence generation. We introduce DoubleTake, an inference-time method with which we generate long animations consisting of sequences of prompted intervals and their transitions, using a prior trained only for short clips. Using parallel composition, we show promising steps toward two-person generation. Beginning with two fixed priors as well as a few two-person training examples, we learn a slim communication block, ComMDM, to coordinate interaction between the two resulting motions. Lastly, using model composition, we first train individual priors to complete motions that realize a prescribed motion for a given joint. We then introduce DiffusionBlending, an interpolation mechanism to effectively blend several such models to enable flexible and efficient fine-grained joint and trajectory-level control and editing. We evaluate the composition methods using an off-the-shelf motion diffusion model, and further compare the results to dedicated models trained for these specific tasks.

  • 4 authors
·
Mar 2, 2023

ProDiff: Progressive Fast Diffusion Model For High-Quality Text-to-Speech

Denoising diffusion probabilistic models (DDPMs) have recently achieved leading performances in many generative tasks. However, the inherited iterative sampling process costs hinder their applications to text-to-speech deployment. Through the preliminary study on diffusion model parameterization, we find that previous gradient-based TTS models require hundreds or thousands of iterations to guarantee high sample quality, which poses a challenge for accelerating sampling. In this work, we propose ProDiff, on progressive fast diffusion model for high-quality text-to-speech. Unlike previous work estimating the gradient for data density, ProDiff parameterizes the denoising model by directly predicting clean data to avoid distinct quality degradation in accelerating sampling. To tackle the model convergence challenge with decreased diffusion iterations, ProDiff reduces the data variance in the target site via knowledge distillation. Specifically, the denoising model uses the generated mel-spectrogram from an N-step DDIM teacher as the training target and distills the behavior into a new model with N/2 steps. As such, it allows the TTS model to make sharp predictions and further reduces the sampling time by orders of magnitude. Our evaluation demonstrates that ProDiff needs only 2 iterations to synthesize high-fidelity mel-spectrograms, while it maintains sample quality and diversity competitive with state-of-the-art models using hundreds of steps. ProDiff enables a sampling speed of 24x faster than real-time on a single NVIDIA 2080Ti GPU, making diffusion models practically applicable to text-to-speech synthesis deployment for the first time. Our extensive ablation studies demonstrate that each design in ProDiff is effective, and we further show that ProDiff can be easily extended to the multi-speaker setting. Audio samples are available at https://ProDiff.github.io/.

  • 6 authors
·
Jul 13, 2022

Generative Modeling with Explicit Memory

Recent studies indicate that the denoising process in deep generative diffusion models implicitly learns and memorizes semantic information from the data distribution. These findings suggest that capturing more complex data distributions requires larger neural networks, leading to a substantial increase in computational demands, which in turn become the primary bottleneck in both training and inference of diffusion models. To this end, we introduce Generative Modeling with Explicit Memory (GMem), leveraging an external memory bank in both training and sampling phases of diffusion models. This approach preserves semantic information from data distributions, reducing reliance on neural network capacity for learning and generalizing across diverse datasets. The results are significant: our GMem enhances both training, sampling efficiency, and generation quality. For instance, on ImageNet at 256 times 256 resolution, GMem accelerates SiT training by over 46.7times, achieving the performance of a SiT model trained for 7M steps in fewer than 150K steps. Compared to the most efficient existing method, REPA, GMem still offers a 16times speedup, attaining an FID score of 5.75 within 250K steps, whereas REPA requires over 4M steps. Additionally, our method achieves state-of-the-art generation quality, with an FID score of {3.56} without classifier-free guidance on ImageNet 256times256. Our code is available at https://github.com/LINs-lab/GMem.

  • 4 authors
·
Dec 11, 2024

High-Quality Sound Separation Across Diverse Categories via Visually-Guided Generative Modeling

We propose DAVIS, a Diffusion-based Audio-VIsual Separation framework that solves the audio-visual sound source separation task through generative learning. Existing methods typically frame sound separation as a mask-based regression problem, achieving significant progress. However, they face limitations in capturing the complex data distribution required for high-quality separation of sounds from diverse categories. In contrast, DAVIS circumvents these issues by leveraging potent generative modeling paradigms, specifically Denoising Diffusion Probabilistic Models (DDPM) and the more recent Flow Matching (FM), integrated within a specialized Separation U-Net architecture. Our framework operates by synthesizing the desired separated sound spectrograms directly from a noise distribution, conditioned concurrently on the mixed audio input and associated visual information. The inherent nature of its generative objective makes DAVIS particularly adept at producing high-quality sound separations for diverse sound categories. We present comparative evaluations of DAVIS, encompassing both its DDPM and Flow Matching variants, against leading methods on the standard AVE and MUSIC datasets. The results affirm that both variants surpass existing approaches in separation quality, highlighting the efficacy of our generative framework for tackling the audio-visual source separation task.

  • 5 authors
·
Sep 26

Generating Novel, Designable, and Diverse Protein Structures by Equivariantly Diffusing Oriented Residue Clouds

Proteins power a vast array of functional processes in living cells. The capability to create new proteins with designed structures and functions would thus enable the engineering of cellular behavior and development of protein-based therapeutics and materials. Structure-based protein design aims to find structures that are designable (can be realized by a protein sequence), novel (have dissimilar geometry from natural proteins), and diverse (span a wide range of geometries). While advances in protein structure prediction have made it possible to predict structures of novel protein sequences, the combinatorially large space of sequences and structures limits the practicality of search-based methods. Generative models provide a compelling alternative, by implicitly learning the low-dimensional structure of complex data distributions. Here, we leverage recent advances in denoising diffusion probabilistic models and equivariant neural networks to develop Genie, a generative model of protein structures that performs discrete-time diffusion using a cloud of oriented reference frames in 3D space. Through in silico evaluations, we demonstrate that Genie generates protein backbones that are more designable, novel, and diverse than existing models. This indicates that Genie is capturing key aspects of the distribution of protein structure space and facilitates protein design with high success rates. Code for generating new proteins and training new versions of Genie is available at https://github.com/aqlaboratory/genie.

  • 2 authors
·
Jan 29, 2023

Switch Diffusion Transformer: Synergizing Denoising Tasks with Sparse Mixture-of-Experts

Diffusion models have achieved remarkable success across a range of generative tasks. Recent efforts to enhance diffusion model architectures have reimagined them as a form of multi-task learning, where each task corresponds to a denoising task at a specific noise level. While these efforts have focused on parameter isolation and task routing, they fall short of capturing detailed inter-task relationships and risk losing semantic information, respectively. In response, we introduce Switch Diffusion Transformer (Switch-DiT), which establishes inter-task relationships between conflicting tasks without compromising semantic information. To achieve this, we employ a sparse mixture-of-experts within each transformer block to utilize semantic information and facilitate handling conflicts in tasks through parameter isolation. Additionally, we propose a diffusion prior loss, encouraging similar tasks to share their denoising paths while isolating conflicting ones. Through these, each transformer block contains a shared expert across all tasks, where the common and task-specific denoising paths enable the diffusion model to construct its beneficial way of synergizing denoising tasks. Extensive experiments validate the effectiveness of our approach in improving both image quality and convergence rate, and further analysis demonstrates that Switch-DiT constructs tailored denoising paths across various generation scenarios.

  • 6 authors
·
Mar 14, 2024

Diffusion Models for Multi-Task Generative Modeling

Diffusion-based generative modeling has been achieving state-of-the-art results on various generation tasks. Most diffusion models, however, are limited to a single-generation modeling. Can we generalize diffusion models with the ability of multi-modal generative training for more generalizable modeling? In this paper, we propose a principled way to define a diffusion model by constructing a unified multi-modal diffusion model in a common diffusion space. We define the forward diffusion process to be driven by an information aggregation from multiple types of task-data, e.g., images for a generation task and labels for a classification task. In the reverse process, we enforce information sharing by parameterizing a shared backbone denoising network with additional modality-specific decoder heads. Such a structure can simultaneously learn to generate different types of multi-modal data with a multi-task loss, which is derived from a new multi-modal variational lower bound that generalizes the standard diffusion model. We propose several multimodal generation settings to verify our framework, including image transition, masked-image training, joint image-label and joint image-representation generative modeling. Extensive experimental results on ImageNet indicate the effectiveness of our framework for various multi-modal generative modeling, which we believe is an important research direction worthy of more future explorations.

  • 8 authors
·
Jul 24, 2024

DDAE++: Enhancing Diffusion Models Towards Unified Generative and Discriminative Learning

While diffusion models have gained prominence in image synthesis, their generative pre-training has been shown to yield discriminative representations, paving the way towards unified visual generation and understanding. However, two key questions remain: 1) Can these representations be leveraged to improve the training of diffusion models themselves, rather than solely benefiting downstream tasks? 2) Can the feature quality be enhanced to rival or even surpass modern self-supervised learners, without compromising generative capability? This work addresses these questions by introducing self-conditioning, a straightforward yet effective mechanism that internally leverages the rich semantics inherent in denoising network to guide its own decoding layers, forming a tighter bottleneck that condenses high-level semantics to improve generation. Results are compelling: our method boosts both generation FID and recognition accuracy with 1% computational overhead and generalizes across diverse diffusion architectures. Crucially, self-conditioning facilitates an effective integration of discriminative techniques, such as contrastive self-distillation, directly into diffusion models without sacrificing generation quality. Extensive experiments on pixel-space and latent-space datasets show that in linear evaluations, our enhanced diffusion models, particularly UViT and DiT, serve as strong representation learners, surpassing various self-supervised models.

  • 4 authors
·
May 16

Revisiting Diffusion Q-Learning: From Iterative Denoising to One-Step Action Generation

The generative power of diffusion models (DMs) has recently enabled high-performing decision-making algorithms in offline reinforcement learning (RL), achieving state-of-the-art results across standard benchmarks. Among them, Diffusion Q-Learning (DQL) stands out as a leading method for its consistently strong performance. Nevertheless, DQL remains limited in practice due to its reliance on multi-step denoising for action generation during both training and inference. Although one-step denoising is desirable, simply applying it to DQL leads to a drastic performance drop. In this work, we revisit DQL and identify its core limitations. We then propose One-Step Flow Q-Learning (OFQL), a novel framework that enables efficient one-step action generation during both training and inference, without requiring auxiliary models, distillation, or multi-phase training. Specifically, OFQL reformulates DQL within the sample-efficient Flow Matching (FM) framework. While conventional FM induces curved generative trajectories that impede one-step generation, OFQL instead learns an average velocity field that facilitates direct, accurate action generation. Collectively, OFQL eliminates the need for multi-step sampling and recursive gradient updates in DQL, resulting in faster and more robust training and inference. Extensive experiments on the D4RL benchmark demonstrate that OFQL outperforms DQL and other diffusion-based baselines, while substantially reducing both training and inference time compared to DQL.

  • 2 authors
·
Aug 19

DepthMaster: Taming Diffusion Models for Monocular Depth Estimation

Monocular depth estimation within the diffusion-denoising paradigm demonstrates impressive generalization ability but suffers from low inference speed. Recent methods adopt a single-step deterministic paradigm to improve inference efficiency while maintaining comparable performance. However, they overlook the gap between generative and discriminative features, leading to suboptimal results. In this work, we propose DepthMaster, a single-step diffusion model designed to adapt generative features for the discriminative depth estimation task. First, to mitigate overfitting to texture details introduced by generative features, we propose a Feature Alignment module, which incorporates high-quality semantic features to enhance the denoising network's representation capability. Second, to address the lack of fine-grained details in the single-step deterministic framework, we propose a Fourier Enhancement module to adaptively balance low-frequency structure and high-frequency details. We adopt a two-stage training strategy to fully leverage the potential of the two modules. In the first stage, we focus on learning the global scene structure with the Feature Alignment module, while in the second stage, we exploit the Fourier Enhancement module to improve the visual quality. Through these efforts, our model achieves state-of-the-art performance in terms of generalization and detail preservation, outperforming other diffusion-based methods across various datasets. Our project page can be found at https://indu1ge.github.io/DepthMaster_page.

  • 8 authors
·
Jan 5 4

On gauge freedom, conservativity and intrinsic dimensionality estimation in diffusion models

Diffusion models are generative models that have recently demonstrated impressive performances in terms of sampling quality and density estimation in high dimensions. They rely on a forward continuous diffusion process and a backward continuous denoising process, which can be described by a time-dependent vector field and is used as a generative model. In the original formulation of the diffusion model, this vector field is assumed to be the score function (i.e. it is the gradient of the log-probability at a given time in the diffusion process). Curiously, on the practical side, most studies on diffusion models implement this vector field as a neural network function and do not constrain it be the gradient of some energy function (that is, most studies do not constrain the vector field to be conservative). Even though some studies investigated empirically whether such a constraint will lead to a performance gain, they lead to contradicting results and failed to provide analytical results. Here, we provide three analytical results regarding the extent of the modeling freedom of this vector field. {Firstly, we propose a novel decomposition of vector fields into a conservative component and an orthogonal component which satisfies a given (gauge) freedom. Secondly, from this orthogonal decomposition, we show that exact density estimation and exact sampling is achieved when the conservative component is exactly equals to the true score and therefore conservativity is neither necessary nor sufficient to obtain exact density estimation and exact sampling. Finally, we show that when it comes to inferring local information of the data manifold, constraining the vector field to be conservative is desirable.

  • 2 authors
·
Feb 6, 2024

CAT-DM: Controllable Accelerated Virtual Try-on with Diffusion Model

Image-based virtual try-on enables users to virtually try on different garments by altering original clothes in their photographs. Generative Adversarial Networks (GANs) dominate the research field in image-based virtual try-on, but have not resolved problems such as unnatural deformation of garments and the blurry generation quality. Recently, diffusion models have emerged with surprising performance across various image generation tasks. While the generative quality of diffusion models is impressive, achieving controllability poses a significant challenge when applying it to virtual try-on tasks and multiple denoising iterations limit its potential for real-time applications. In this paper, we propose Controllable Accelerated virtual Try-on with Diffusion Model called CAT-DM. To enhance the controllability, a basic diffusion-based virtual try-on network is designed, which utilizes ControlNet to introduce additional control conditions and improves the feature extraction of garment images. In terms of acceleration, CAT-DM initiates a reverse denoising process with an implicit distribution generated by a pre-trained GAN-based model. Compared with previous try-on methods based on diffusion models, CAT-DM not only retains the pattern and texture details of the in-shop garment but also reduces the sampling steps without compromising generation quality. Extensive experiments demonstrate the superiority of CAT-DM against both GAN-based and diffusion-based methods in producing more realistic images and accurately reproducing garment patterns. Our code and models will be publicly released.

  • 6 authors
·
Nov 30, 2023

DiffPortrait3D: Controllable Diffusion for Zero-Shot Portrait View Synthesis

We present DiffPortrait3D, a conditional diffusion model that is capable of synthesizing 3D-consistent photo-realistic novel views from as few as a single in-the-wild portrait. Specifically, given a single RGB input, we aim to synthesize plausible but consistent facial details rendered from novel camera views with retained both identity and facial expression. In lieu of time-consuming optimization and fine-tuning, our zero-shot method generalizes well to arbitrary face portraits with unposed camera views, extreme facial expressions, and diverse artistic depictions. At its core, we leverage the generative prior of 2D diffusion models pre-trained on large-scale image datasets as our rendering backbone, while the denoising is guided with disentangled attentive control of appearance and camera pose. To achieve this, we first inject the appearance context from the reference image into the self-attention layers of the frozen UNets. The rendering view is then manipulated with a novel conditional control module that interprets the camera pose by watching a condition image of a crossed subject from the same view. Furthermore, we insert a trainable cross-view attention module to enhance view consistency, which is further strengthened with a novel 3D-aware noise generation process during inference. We demonstrate state-of-the-art results both qualitatively and quantitatively on our challenging in-the-wild and multi-view benchmarks.

  • 8 authors
·
Dec 20, 2023

Can World Models Benefit VLMs for World Dynamics?

Trained on internet-scale video data, generative world models are increasingly recognized as powerful world simulators that can generate consistent and plausible dynamics over structure, motion, and physics. This raises a natural question: with the advent of strong video foundational models, might they supplant conventional vision encoder paradigms for general-purpose multimodal understanding? While recent studies have begun to explore the potential of world models on common vision tasks, these explorations typically lack a systematic investigation of generic, multimodal tasks. In this work, we strive to investigate the capabilities when world model priors are transferred into Vision-Language Models: we re-purpose a video diffusion model as a generative encoder to perform a single denoising step and treat the resulting latents as a set of visual embedding. We empirically investigate this class of models, which we refer to as World-Language Models (WorldLMs), and we find that generative encoders can capture latents useful for downstream understanding that show distinctions from conventional encoders. Naming our best-performing variant Dynamic Vision Aligner (DyVA), we further discover that this method significantly enhances spatial reasoning abilities and enables single-image models to perform multi-frame reasoning. Through the curation of a suite of visual reasoning tasks, we find DyVA to surpass both open-source and proprietary baselines, achieving state-of-the-art or comparable performance. We attribute these gains to WorldLM's inherited motion-consistency internalization from video pre-training. Finally, we systematically explore extensive model designs to highlight promising directions for future work. We hope our study can pave the way for a new family of VLMs that leverage priors from world models and are on a promising path towards generalist vision learners.