new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

ChartMind: A Comprehensive Benchmark for Complex Real-world Multimodal Chart Question Answering

Chart question answering (CQA) has become a critical multimodal task for evaluating the reasoning capabilities of vision-language models. While early approaches have shown promising performance by focusing on visual features or leveraging large-scale pre-training, most existing evaluations rely on rigid output formats and objective metrics, thus ignoring the complex, real-world demands of practical chart analysis. In this paper, we introduce ChartMind, a new benchmark designed for complex CQA tasks in real-world settings. ChartMind covers seven task categories, incorporates multilingual contexts, supports open-domain textual outputs, and accommodates diverse chart formats, bridging the gap between real-world applications and traditional academic benchmarks. Furthermore, we propose a context-aware yet model-agnostic framework, ChartLLM, that focuses on extracting key contextual elements, reducing noise, and enhancing the reasoning accuracy of multimodal large language models. Extensive evaluations on ChartMind and three representative public benchmarks with 14 mainstream multimodal models show our framework significantly outperforms the previous three common CQA paradigms: instruction-following, OCR-enhanced, and chain-of-thought, highlighting the importance of flexible chart understanding for real-world CQA. These findings suggest new directions for developing more robust chart reasoning in future research.

  • 7 authors
·
May 29

ChartAgent: A Multimodal Agent for Visually Grounded Reasoning in Complex Chart Question Answering

Recent multimodal LLMs have shown promise in chart-based visual question answering, but their performance declines sharply on unannotated charts, those requiring precise visual interpretation rather than relying on textual shortcuts. To address this, we introduce ChartAgent, a novel agentic framework that explicitly performs visual reasoning directly within the chart's spatial domain. Unlike textual chain-of-thought reasoning, ChartAgent iteratively decomposes queries into visual subtasks and actively manipulates and interacts with chart images through specialized actions such as drawing annotations, cropping regions (e.g., segmenting pie slices, isolating bars), and localizing axes, using a library of chart-specific vision tools to fulfill each subtask. This iterative reasoning process closely mirrors human cognitive strategies for chart comprehension. ChartAgent achieves state-of-the-art accuracy on the ChartBench and ChartX benchmarks, surpassing prior methods by up to 16.07% absolute gain overall and 17.31% on unannotated, numerically intensive queries. Furthermore, our analyses show that ChartAgent is (a) effective across diverse chart types, (b) achieve the highest scores across varying visual and reasoning complexity levels, and (c) serves as a plug-and-play framework that boosts performance across diverse underlying LLMs. Our work is among the first to demonstrate visually grounded reasoning for chart understanding using tool-augmented multimodal agents.

  • 5 authors
·
Oct 6 3

BigCharts-R1: Enhanced Chart Reasoning with Visual Reinforcement Finetuning

Charts are essential to data analysis, transforming raw data into clear visual representations that support human decision-making. Although current vision-language models (VLMs) have made significant progress, they continue to struggle with chart comprehension due to training on datasets that lack diversity and real-world authenticity, or on automatically extracted underlying data tables of charts, which can contain numerous estimation errors. Furthermore, existing models only rely on supervised fine-tuning using these low-quality datasets, severely limiting their effectiveness. To address these issues, we first propose BigCharts, a dataset creation pipeline that generates visually diverse chart images by conditioning the rendering process on real-world charts sourced from multiple online platforms. Unlike purely synthetic datasets, BigCharts incorporates real-world data, ensuring authenticity and visual diversity, while still retaining accurate underlying data due to our proposed replotting process. Additionally, we introduce a comprehensive training framework that integrates supervised fine-tuning with Group Relative Policy Optimization (GRPO)-based reinforcement learning. By introducing novel reward signals specifically designed for chart reasoning, our approach enhances model robustness and generalization across diverse chart styles and domains, resulting in a state-of-the-art chart reasoning model, BigCharts-R1. Extensive experiments demonstrate that our models surpass existing methods on multiple chart question-answering benchmarks compared to even larger open-source and closed-source models.

  • 16 authors
·
Aug 13

ChartMuseum: Testing Visual Reasoning Capabilities of Large Vision-Language Models

Chart understanding presents a unique challenge for large vision-language models (LVLMs), as it requires the integration of sophisticated textual and visual reasoning capabilities. However, current LVLMs exhibit a notable imbalance between these skills, falling short on visual reasoning that is difficult to perform in text. We conduct a case study using a synthetic dataset solvable only through visual reasoning and show that model performance degrades significantly with increasing visual complexity, while human performance remains robust. We then introduce ChartMuseum, a new Chart Question Answering (QA) benchmark containing 1,162 expert-annotated questions spanning multiple reasoning types, curated from real-world charts across 184 sources, specifically built to evaluate complex visual and textual reasoning. Unlike prior chart understanding benchmarks -- where frontier models perform similarly and near saturation -- our benchmark exposes a substantial gap between model and human performance, while effectively differentiating model capabilities: although humans achieve 93% accuracy, the best-performing model Gemini-2.5-Pro attains only 63.0%, and the leading open-source LVLM Qwen2.5-VL-72B-Instruct achieves only 38.5%. Moreover, on questions requiring primarily visual reasoning, all models experience a 35%-55% performance drop from text-reasoning-heavy question performance. Lastly, our qualitative error analysis reveals specific categories of visual reasoning that are challenging for current LVLMs.

  • 15 authors
·
May 19 3

Vision-Zero: Scalable VLM Self-Improvement via Strategic Gamified Self-Play

Although reinforcement learning (RL) can effectively enhance the reasoning capabilities of vision-language models (VLMs), current methods remain heavily dependent on labor-intensive datasets that require extensive manual construction and verification, leading to extremely high training costs and consequently constraining the practical deployment of VLMs. To address this challenge, we propose Vision-Zero, a domain-agnostic framework enabling VLM self-improvement through competitive visual games generated from arbitrary image pairs. Specifically, Vision-Zero encompasses three main attributes: (1) Strategic Self-Play Framework: Vision-Zero trains VLMs in "Who Is the Spy"-style games, where the models engage in strategic reasoning and actions across multiple roles. Through interactive gameplay, models autonomously generate their training data without human annotation. (2) Gameplay from Arbitrary Images: Unlike existing gamified frameworks, Vision-Zero can generate games from arbitrary images, thereby enhancing the model's reasoning ability across diverse domains and showing strong generalization to different tasks. We demonstrate this versatility using three distinct types of image datasets: CLEVR-based synthetic scenes, charts, and real-world images. (3) Sustainable Performance Gain: We introduce Iterative Self-Play Policy Optimization (Iterative-SPO), a novel training algorithm that alternates between Self-Play and reinforcement learning with verifiable rewards (RLVR), mitigating the performance plateau often seen in self-play-only training and achieving sustained long-term improvements. Despite using label-free data, Vision-Zero achieves state-of-the-art performance on reasoning, chart question answering, and vision-centric understanding tasks, surpassing other annotation-based methods. Models and code has been released at https://github.com/wangqinsi1/Vision-Zero.

  • 9 authors
·
Sep 29 2

SciGraphQA: A Large-Scale Synthetic Multi-Turn Question-Answering Dataset for Scientific Graphs

In this work, we present SciGraphQA, a synthetic multi-turn question-answer dataset related to academic graphs. SciGraphQA is 13 times larger than ChartVQA, the previously largest chart-visual question-answering dataset. It is also the largest open-sourced chart VQA dataset with non-synthetic charts. To build our dataset, we selected 290,000 Computer Science or Machine Learning ArXiv papers published between 2010 and 2020, and then used Palm-2 to generate 295K samples of open-vocabulary multi-turn question-answering dialogues about the graphs. As context, we provided the text-only Palm-2 with paper title, abstract, paragraph mentioning the graph, and rich text contextual data from the graph itself, obtaining dialogues with an average 2.23 question-answer turns for each graph. We asked GPT-4 to assess the matching quality of our question-answer turns given the paper's context, obtaining an average rating of 8.7/10 on our 3K test set. We evaluated the 0-shot capability of the most popular MLLM models such as LLaVa, mPLUGowl, BLIP-2, and openFlamingo's on our dataset, finding LLaVA-13B being the most performant with a CIDEr score of 0.08. We further enriched the question prompts for LLAVA by including the serialized data tables extracted from the graphs using the DePlot model, boosting LLaVA's 0-shot CIDEr to 0.15. To verify the validity of our dataset, we also fine-tuned LLaVa using our dataset, reaching a substantially higher CIDEr score of 0.26. We anticipate further accuracy improvement by including segmentation mask tokens and leveraging larger LLM backbones coupled with emergent prompting techniques. Our code and data are open-sourced.

  • 2 authors
·
Aug 7, 2023

When Big Models Train Small Ones: Label-Free Model Parity Alignment for Efficient Visual Question Answering using Small VLMs

Large Vision-Language Models (L-VLMs) have demonstrated remarkable performance in various vision and language tasks, including visual question answering (VQA). However, their high computational cost makes them impractical for resource-constrained settings and inference-heavy applications. In contrast, Small Vision-Language Models (S-VLMs) offer efficiency but suffer from a significant performance gap compared to their larger counterparts. In this work, we introduce the Model Parity Aligner (MPA), a novel framework designed to systematically improve S-VLMs by leveraging unlabeled images and effective knowledge transfer from L-VLMs. Instead of traditional knowledge distillation methods that rely on labeled training data, MPA employs a strategic parity-based approach that precisely identifies the knowledge disparities between S-VLMs and L-VLMs, and optimizes training by targeting only these disparities. We conduct extensive experiments on four diverse VQA benchmarks, namely TextVQA, ST-VQA, ChartQA, and OKVQA, each of which requires specialized reasoning capabilities such as text recognition, chart interpretation, and commonsense and factual understanding. Our results demonstrate that MPA consistently enhances the performance of S-VLMs on all benchmarks, reducing the performance gap while maintaining computational efficiency. We make our code publicly available.

  • 4 authors
·
Sep 20 2

ChartGemma: Visual Instruction-tuning for Chart Reasoning in the Wild

Given the ubiquity of charts as a data analysis, visualization, and decision-making tool across industries and sciences, there has been a growing interest in developing pre-trained foundation models as well as general purpose instruction-tuned models for chart understanding and reasoning. However, existing methods suffer crucial drawbacks across two critical axes affecting the performance of chart representation models: they are trained on data generated from underlying data tables of the charts, ignoring the visual trends and patterns in chart images, and use weakly aligned vision-language backbone models for domain-specific training, limiting their generalizability when encountering charts in the wild. We address these important drawbacks and introduce ChartGemma, a novel chart understanding and reasoning model developed over PaliGemma. Rather than relying on underlying data tables, ChartGemma is trained on instruction-tuning data generated directly from chart images, thus capturing both high-level trends and low-level visual information from a diverse set of charts. Our simple approach achieves state-of-the-art results across 5 benchmarks spanning chart summarization, question answering, and fact-checking, and our elaborate qualitative studies on real-world charts show that ChartGemma generates more realistic and factually correct summaries compared to its contemporaries. We release the code, model checkpoints, dataset, and demos at https://github.com/vis-nlp/ChartGemma.

  • 6 authors
·
Jul 4, 2024 6

MapQA: A Dataset for Question Answering on Choropleth Maps

Choropleth maps are a common visual representation for region-specific tabular data and are used in a number of different venues (newspapers, articles, etc). These maps are human-readable but are often challenging to deal with when trying to extract data for screen readers, analyses, or other related tasks. Recent research into Visual-Question Answering (VQA) has studied question answering on human-generated charts (ChartQA), such as bar, line, and pie charts. However, little work has paid attention to understanding maps; general VQA models, and ChartQA models, suffer when asked to perform this task. To facilitate and encourage research in this area, we present MapQA, a large-scale dataset of ~800K question-answer pairs over ~60K map images. Our task tests various levels of map understanding, from surface questions about map styles to complex questions that require reasoning on the underlying data. We present the unique challenges of MapQA that frustrate most strong baseline algorithms designed for ChartQA and general VQA tasks. We also present a novel algorithm, Visual Multi-Output Data Extraction based QA (V-MODEQA) for MapQA. V-MODEQA extracts the underlying structured data from a map image with a multi-output model and then performs reasoning on the extracted data. Our experimental results show that V-MODEQA has better overall performance and robustness on MapQA than the state-of-the-art ChartQA and VQA algorithms by capturing the unique properties in map question answering.

  • 5 authors
·
Nov 15, 2022

QASiNa: Religious Domain Question Answering using Sirah Nabawiyah

Nowadays, Question Answering (QA) tasks receive significant research focus, particularly with the development of Large Language Model (LLM) such as Chat GPT [1]. LLM can be applied to various domains, but it contradicts the principles of information transmission when applied to the Islamic domain. In Islam we strictly regulates the sources of information and who can give interpretations or tafseer for that sources [2]. The approach used by LLM to generate answers based on its own interpretation is similar to the concept of tafseer, LLM is neither an Islamic expert nor a human which is not permitted in Islam. Indonesia is the country with the largest Islamic believer population in the world [3]. With the high influence of LLM, we need to make evaluation of LLM in religious domain. Currently, there is only few religious QA dataset available and none of them using Sirah Nabawiyah especially in Indonesian Language. In this paper, we propose the Question Answering Sirah Nabawiyah (QASiNa) dataset, a novel dataset compiled from Sirah Nabawiyah literatures in Indonesian language. We demonstrate our dataset by using mBERT [4], XLM-R [5], and IndoBERT [6] which fine-tuned with Indonesian translation of SQuAD v2.0 [7]. XLM-R model returned the best performance on QASiNa with EM of 61.20, F1-Score of 75.94, and Substring Match of 70.00. We compare XLM-R performance with Chat GPT-3.5 and GPT-4 [1]. Both Chat GPT version returned lower EM and F1-Score with higher Substring Match, the gap of EM and Substring Match get wider in GPT-4. The experiment indicate that Chat GPT tends to give excessive interpretations as evidenced by its higher Substring Match scores compared to EM and F1-Score, even after providing instruction and context. This concludes Chat GPT is unsuitable for question answering task in religious domain especially for Islamic religion.

  • 3 authors
·
Oct 12, 2023

SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers

Seeking answers to questions within long scientific research articles is a crucial area of study that aids readers in quickly addressing their inquiries. However, existing question-answering (QA) datasets based on scientific papers are limited in scale and focus solely on textual content. To address this limitation, we introduce SPIQA (Scientific Paper Image Question Answering), the first large-scale QA dataset specifically designed to interpret complex figures and tables within the context of scientific research articles across various domains of computer science. Leveraging the breadth of expertise and ability of multimodal large language models (MLLMs) to understand figures, we employ automatic and manual curation to create the dataset. We craft an information-seeking task involving multiple images that cover a wide variety of plots, charts, tables, schematic diagrams, and result visualizations. SPIQA comprises 270K questions divided into training, validation, and three different evaluation splits. Through extensive experiments with 12 prominent foundational models, we evaluate the ability of current multimodal systems to comprehend the nuanced aspects of research articles. Additionally, we propose a Chain-of-Thought (CoT) evaluation strategy with in-context retrieval that allows fine-grained, step-by-step assessment and improves model performance. We further explore the upper bounds of performance enhancement with additional textual information, highlighting its promising potential for future research and the dataset's impact on revolutionizing how we interact with scientific literature.

  • 3 authors
·
Jul 12, 2024 3

FM2DS: Few-Shot Multimodal Multihop Data Synthesis with Knowledge Distillation for Question Answering

Multimodal multihop question answering is a complex task that requires reasoning over multiple sources of information, such as images and text, to answer questions. While there has been significant progress in visual question answering, the multihop setting remains unexplored due to the lack of high-quality datasets. Current methods focus on single-hop question answering or a single modality, which makes them unsuitable for real-world scenarios such as analyzing multimodal educational materials, summarizing lengthy academic articles, or interpreting scientific studies that combine charts, images, and text. To address this gap, we propose a novel methodology, introducing the first framework for creating a high-quality dataset that enables training models for multimodal multihop question answering. Our approach consists of a 5-stage pipeline that involves acquiring relevant multimodal documents from Wikipedia, synthetically generating high-level questions and answers, and validating them through rigorous criteria to ensure quality data. We evaluate our methodology by training models on our synthesized dataset and testing on two benchmarks, our results demonstrate that, with an equal sample size, models trained on our synthesized data outperform those trained on human-collected data by 1.9 in exact match (EM) on average. We believe our data synthesis method will serve as a strong foundation for training and evaluating multimodal multihop question answering models.

  • 4 authors
·
Dec 9, 2024

G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering

Given a graph with textual attributes, we enable users to `chat with their graph': that is, to ask questions about the graph using a conversational interface. In response to a user's questions, our method provides textual replies and highlights the relevant parts of the graph. While existing works integrate large language models (LLMs) and graph neural networks (GNNs) in various ways, they mostly focus on either conventional graph tasks (such as node, edge, and graph classification), or on answering simple graph queries on small or synthetic graphs. In contrast, we develop a flexible question-answering framework targeting real-world textual graphs, applicable to multiple applications including scene graph understanding, common sense reasoning, and knowledge graph reasoning. Toward this goal, we first develop a Graph Question Answering (GraphQA) benchmark with data collected from different tasks. Then, we propose our G-Retriever method, introducing the first retrieval-augmented generation (RAG) approach for general textual graphs, which can be fine-tuned to enhance graph understanding via soft prompting. To resist hallucination and to allow for textual graphs that greatly exceed the LLM's context window size, G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem. Empirical evaluations show that our method outperforms baselines on textual graph tasks from multiple domains, scales well with larger graph sizes, and mitigates hallucination.~Our codes and datasets are available at: \url{https://github.com/XiaoxinHe/G-Retriever}

  • 8 authors
·
Feb 12, 2024

Are Vision Language Models Ready for Clinical Diagnosis? A 3D Medical Benchmark for Tumor-centric Visual Question Answering

Vision-Language Models (VLMs) have shown promise in various 2D visual tasks, yet their readiness for 3D clinical diagnosis remains unclear due to stringent demands for recognition precision, reasoning ability, and domain knowledge. To systematically evaluate these dimensions, we present DeepTumorVQA, a diagnostic visual question answering (VQA) benchmark targeting abdominal tumors in CT scans. It comprises 9,262 CT volumes (3.7M slices) from 17 public datasets, with 395K expert-level questions spanning four categories: Recognition, Measurement, Visual Reasoning, and Medical Reasoning. DeepTumorVQA introduces unique challenges, including small tumor detection and clinical reasoning across 3D anatomy. Benchmarking four advanced VLMs (RadFM, M3D, Merlin, CT-CHAT), we find current models perform adequately on measurement tasks but struggle with lesion recognition and reasoning, and are still not meeting clinical needs. Two key insights emerge: (1) large-scale multimodal pretraining plays a crucial role in DeepTumorVQA testing performance, making RadFM stand out among all VLMs. (2) Our dataset exposes critical differences in VLM components, where proper image preprocessing and design of vision modules significantly affect 3D perception. To facilitate medical multimodal research, we have released DeepTumorVQA as a rigorous benchmark: https://github.com/Schuture/DeepTumorVQA.

  • 8 authors
·
May 24

LongMemEval: Benchmarking Chat Assistants on Long-Term Interactive Memory

Recent large language model (LLM)-driven chat assistant systems have integrated memory components to track user-assistant chat histories, enabling more accurate and personalized responses. However, their long-term memory capabilities in sustained interactions remain underexplored. This paper introduces LongMemEval, a comprehensive benchmark designed to evaluate five core long-term memory abilities of chat assistants: information extraction, multi-session reasoning, temporal reasoning, knowledge updates, and abstention. With 500 meticulously curated questions embedded within freely scalable user-assistant chat histories, LongMemEval presents a significant challenge to existing long-term memory systems, with commercial chat assistants and long-context LLMs showing 30% accuracy drop on memorizing information across sustained interactions. We then present a unified framework that breaks down the long-term memory design into four design choices across the indexing, retrieval, and reading stages. Built upon key experimental insights, we propose several memory designs including session decomposition for optimizing value granularity, fact-augmented key expansion for enhancing the index structure, and time-aware query expansion for refining the search scope. Experiment results show that these optimizations greatly improve both memory recall and downstream question answering on LongMemEval. Overall, our study provides valuable resources and guidance for advancing the long-term memory capabilities of LLM-based chat assistants, paving the way toward more personalized and reliable conversational AI.

  • 6 authors
·
Oct 14, 2024 2

PVChat: Personalized Video Chat with One-Shot Learning

Video large language models (ViLLMs) excel in general video understanding, e.g., recognizing activities like talking and eating, but struggle with identity-aware comprehension, such as "Wilson is receiving chemotherapy" or "Tom is discussing with Sarah", limiting their applicability in smart healthcare and smart home environments. To address this limitation, we propose a one-shot learning framework PVChat, the first personalized ViLLM that enables subject-aware question answering (QA) from a single video for each subject. Our approach optimizes a Mixture-of-Heads (MoH) enhanced ViLLM on a synthetically augmented video-QA dataset, leveraging a progressive image-to-video learning strategy. Specifically, we introduce an automated augmentation pipeline that synthesizes identity-preserving positive samples and retrieves hard negatives from existing video corpora, generating a diverse training dataset with four QA types: existence, appearance, action, and location inquiries. To enhance subject-specific learning, we propose a ReLU Routing MoH attention mechanism, alongside two novel objectives: (1) Smooth Proximity Regularization for progressive learning through exponential distance scaling and (2) Head Activation Enhancement for balanced attention routing. Finally, we adopt a two-stage training strategy, transitioning from image pre-training to video fine-tuning, enabling a gradual learning process from static attributes to dynamic representations. We evaluate PVChat on diverse datasets covering medical scenarios, TV series, anime, and real-world footage, demonstrating its superiority in personalized feature understanding after learning from a single video, compared to state-of-the-art ViLLMs.

  • 9 authors
·
Mar 21 2

Stable Code Technical Report

We introduce Stable Code, the first in our new-generation of code language models series, which serves as a general-purpose base code language model targeting code completion, reasoning, math, and other software engineering-based tasks. Additionally, we introduce an instruction variant named Stable Code Instruct that allows conversing with the model in a natural chat interface for performing question-answering and instruction-based tasks. In this technical report, we detail the data and training procedure leading to both models. Their weights are available via Hugging Face for anyone to download and use at https://huggingface.co/stabilityai/stable-code-3b and https://huggingface.co/stabilityai/stable-code-instruct-3b. This report contains thorough evaluations of the models, including multilingual programming benchmarks, and the MT benchmark focusing on multi-turn dialogues. At the time of its release, Stable Code is the state-of-the-art open model under 3B parameters and even performs comparably to larger models of sizes 7 billion and 15 billion parameters on the popular Multi-PL benchmark. Stable Code Instruct also exhibits state-of-the-art performance on the MT-Bench coding tasks and on Multi-PL completion compared to other instruction tuned models. Given its appealing small size, we also provide throughput measurements on a number of edge devices. In addition, we open source several quantized checkpoints and provide their performance metrics compared to the original model.

  • 11 authors
·
Apr 1, 2024

Policy-Gradient Training of Language Models for Ranking

Text retrieval plays a crucial role in incorporating factual knowledge for decision making into language processing pipelines, ranging from chat-based web search to question answering systems. Current state-of-the-art text retrieval models leverage pre-trained large language models (LLMs) to achieve competitive performance, but training LLM-based retrievers via typical contrastive losses requires intricate heuristics, including selecting hard negatives and using additional supervision as learning signals. This reliance on heuristics stems from the fact that the contrastive loss itself is heuristic and does not directly optimize the downstream metrics of decision quality at the end of the processing pipeline. To address this issue, we introduce Neural PG-RANK, a novel training algorithm that learns to rank by instantiating a LLM as a Plackett-Luce ranking policy. Neural PG-RANK provides a principled method for end-to-end training of retrieval models as part of larger decision systems via policy gradient, with little reliance on complex heuristics, and it effectively unifies the training objective with downstream decision-making quality. We conduct extensive experiments on various text retrieval benchmarks. The results demonstrate that when the training objective aligns with the evaluation setup, Neural PG-RANK yields remarkable in-domain performance improvement, with substantial out-of-domain generalization to some critical datasets employed in downstream question answering tasks.

  • 5 authors
·
Oct 6, 2023

Distill Visual Chart Reasoning Ability from LLMs to MLLMs

Solving complex chart Q&A tasks requires advanced visual reasoning abilities in multimodal large language models (MLLMs). Recent studies highlight that these abilities consist of two main parts: recognizing key information from visual inputs and conducting reasoning over it. Thus, a promising approach to enhance MLLMs is to construct relevant training data focusing on the two aspects. However, collecting and annotating complex charts and questions is costly and time-consuming, and ensuring the quality of annotated answers remains a challenge. In this paper, we propose Code-as-Intermediary Translation (CIT), a cost-effective, efficient and easily scalable data synthesis method for distilling visual reasoning abilities from LLMs to MLLMs. The code serves as an intermediary that translates visual chart representations into textual representations, enabling LLMs to understand cross-modal information. Specifically, we employ text-based synthesizing techniques to construct chart-plotting code and produce ReachQA, a dataset containing 3k reasoning-intensive charts and 20k Q&A pairs to enhance both recognition and reasoning abilities. Experiments show that when fine-tuned with our data, models not only perform well on chart-related benchmarks, but also demonstrate improved multimodal reasoning abilities on general mathematical benchmarks like MathVista. The code and dataset are publicly available at https://github.com/hewei2001/ReachQA.

  • 9 authors
·
Oct 24, 2024 5

ChartM^3: A Multi-Stage Code-Driven Pipeline for Constructing Multi-Dimensional and Multi-Step Visual Reasoning Data in Chart Comprehension

Complex chart understanding tasks demand advanced visual recognition and reasoning capabilities from multimodal large language models (MLLMs). However, current research provides limited coverage of complex chart scenarios and computation-intensive reasoning tasks prevalent in real-world applications. This study proposes an automated multi-stage code-driven pipeline for systematically generating visual reasoning datasets to address these limitations. The pipeline integrates retrieval-augmented generation (RAG) to retrieve professional chart templates and employs chain-of-thought (CoT) strategies to generate reasoning codes that simulate real data distributions, thereby driving chart rendering and question-related statistical computations. Through model-based evaluation, the pipeline enhances chart diversity and data quality. Using this framework, we construct ChartM^3, a multi-dimensional and multi-step dataset containing 38K charts and 142K Q&A pairs for training, along with 2,871 high-quality evaluation samples for enabling practical performance assessment. Supervised fine-tuning (SFT) and reinforcement learning (RL) experiments demonstrate that our dataset significantly improves reasoning capabilities and cross-domain generalization performance, enabling smaller models to achieve performance comparable to larger-scale models in complex chart comprehension.

ChartSketcher: Reasoning with Multimodal Feedback and Reflection for Chart Understanding

Charts are high-density visualization carriers for complex data, serving as a crucial medium for information extraction and analysis. Automated chart understanding poses significant challenges to existing multimodal large language models (MLLMs) due to the need for precise and complex visual reasoning. Current step-by-step reasoning models primarily focus on text-based logical reasoning for chart understanding. However, they struggle to refine or correct their reasoning when errors stem from flawed visual understanding, as they lack the ability to leverage multimodal interaction for deeper comprehension. Inspired by human cognitive behavior, we propose ChartSketcher, a multimodal feedback-driven step-by-step reasoning method designed to address these limitations. ChartSketcher is a chart understanding model that employs Sketch-CoT, enabling MLLMs to annotate intermediate reasoning steps directly onto charts using a programmatic sketching library, iteratively feeding these visual annotations back into the reasoning process. This mechanism enables the model to visually ground its reasoning and refine its understanding over multiple steps. We employ a two-stage training strategy: a cold start phase to learn sketch-based reasoning patterns, followed by off-policy reinforcement learning to enhance reflection and generalization. Experiments demonstrate that ChartSketcher achieves promising performance on chart understanding benchmarks and general vision tasks, providing an interactive and interpretable approach to chart comprehension.

  • 9 authors
·
May 25

CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs

Chart understanding plays a pivotal role when applying Multimodal Large Language Models (MLLMs) to real-world tasks such as analyzing scientific papers or financial reports. However, existing datasets often focus on oversimplified and homogeneous charts with template-based questions, leading to an over-optimistic measure of progress. We demonstrate that although open-source models can appear to outperform strong proprietary models on these benchmarks, a simple stress test with slightly different charts or questions can deteriorate performance by up to 34.5%. In this work, we propose CharXiv, a comprehensive evaluation suite involving 2,323 natural, challenging, and diverse charts from arXiv papers. CharXiv includes two types of questions: 1) descriptive questions about examining basic chart elements and 2) reasoning questions that require synthesizing information across complex visual elements in the chart. To ensure quality, all charts and questions are handpicked, curated, and verified by human experts. Our results reveal a substantial, previously underestimated gap between the reasoning skills of the strongest proprietary model (i.e., GPT-4o), which achieves 47.1% accuracy, and the strongest open-source model (i.e., InternVL Chat V1.5), which achieves 29.2%. All models lag far behind human performance of 80.5%, underscoring weaknesses in the chart understanding capabilities of existing MLLMs. We hope CharXiv facilitates future research on MLLM chart understanding by providing a more realistic and faithful measure of progress. Project page and leaderboard: https://charxiv.github.io/

  • 13 authors
·
Jun 26, 2024 2

On Pre-training of Multimodal Language Models Customized for Chart Understanding

Recent studies customizing Multimodal Large Language Models (MLLMs) for domain-specific tasks have yielded promising results, especially in the field of scientific chart comprehension. These studies generally utilize visual instruction tuning with specialized datasets to enhance question and answer (QA) accuracy within the chart domain. However, they often neglect the fundamental discrepancy between natural image-caption pre-training data and digital chart image-QA data, particularly in the models' capacity to extract underlying numeric values from charts. This paper tackles this oversight by exploring the training processes necessary to improve MLLMs' comprehension of charts. We present three key findings: (1) Incorporating raw data values in alignment pre-training markedly improves comprehension of chart data. (2) Replacing images with their textual representation randomly during end-to-end fine-tuning transfer the language reasoning capability to chart interpretation skills. (3) Requiring the model to first extract the underlying chart data and then answer the question in the fine-tuning can further improve the accuracy. Consequently, we introduce CHOPINLLM, an MLLM tailored for in-depth chart comprehension. CHOPINLLM effectively interprets various types of charts, including unannotated ones, while maintaining robust reasoning abilities. Furthermore, we establish a new benchmark to evaluate MLLMs' understanding of different chart types across various comprehension levels. Experimental results show that CHOPINLLM exhibits strong performance in understanding both annotated and unannotated charts across a wide range of types.

  • 5 authors
·
Jul 19, 2024

From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models

Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making. Automatic chart understanding has witnessed significant advancements with the rise of large foundation models in recent years. Foundation models, such as large language models, have revolutionized various natural language processing tasks and are increasingly being applied to chart understanding tasks. This survey paper provides a comprehensive overview of the recent developments, challenges, and future directions in chart understanding within the context of these foundation models. We review fundamental building blocks crucial for studying chart understanding tasks. Additionally, we explore various tasks and their evaluation metrics and sources of both charts and textual inputs. Various modeling strategies are then examined, encompassing both classification-based and generation-based approaches, along with tool augmentation techniques that enhance chart understanding performance. Furthermore, we discuss the state-of-the-art performance of each task and discuss how we can improve the performance. Challenges and future directions are addressed, highlighting the importance of several topics, such as domain-specific charts, lack of efforts in developing evaluation metrics, and agent-oriented settings. This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis, providing valuable insights and directions for future research in chart understanding leveraging large foundation models. The studies mentioned in this paper, along with emerging new research, will be continually updated at: https://github.com/khuangaf/Awesome-Chart-Understanding.

  • 8 authors
·
Mar 18, 2024

ChartGPT: Leveraging LLMs to Generate Charts from Abstract Natural Language

The use of natural language interfaces (NLIs) for the creation of charts is becoming increasingly popular due to the intuitiveness of natural language interactions. One key challenge in this approach is to accurately capture user intents and transform them to proper chart specifications. This obstructs the wide use of NLI in chart generation, as users' natural language inputs are generally abstract (i.e., ambiguous or under-specified), without a clear specification of visual encodings. Recently, pre-trained large language models (LLMs) have exhibited superior performance in understanding and generating natural language, demonstrating great potential for downstream tasks. Inspired by this major trend, we propose ChartGPT, generating charts from abstract natural language inputs. However, LLMs are struggling to address complex logic problems. To enable the model to accurately specify the complex parameters and perform operations in chart generation, we decompose the generation process into a step-by-step reasoning pipeline, so that the model only needs to reason a single and specific sub-task during each run. Moreover, LLMs are pre-trained on general datasets, which might be biased for the task of chart generation. To provide adequate visualization knowledge, we create a dataset consisting of abstract utterances and charts and improve model performance through fine-tuning. We further design an interactive interface for ChartGPT that allows users to check and modify the intermediate outputs of each step. The effectiveness of the proposed system is evaluated through quantitative evaluations and a user study.

  • 7 authors
·
Nov 3, 2023

PlotQA: Reasoning over Scientific Plots

Existing synthetic datasets (FigureQA, DVQA) for reasoning over plots do not contain variability in data labels, real-valued data, or complex reasoning questions. Consequently, proposed models for these datasets do not fully address the challenge of reasoning over plots. In particular, they assume that the answer comes either from a small fixed size vocabulary or from a bounding box within the image. However, in practice, this is an unrealistic assumption because many questions require reasoning and thus have real-valued answers which appear neither in a small fixed size vocabulary nor in the image. In this work, we aim to bridge this gap between existing datasets and real-world plots. Specifically, we propose PlotQA with 28.9 million question-answer pairs over 224,377 plots on data from real-world sources and questions based on crowd-sourced question templates. Further, 80.76% of the out-of-vocabulary (OOV) questions in PlotQA have answers that are not in a fixed vocabulary. Analysis of existing models on PlotQA reveals that they cannot deal with OOV questions: their overall accuracy on our dataset is in single digits. This is not surprising given that these models were not designed for such questions. As a step towards a more holistic model which can address fixed vocabulary as well as OOV questions, we propose a hybrid approach: Specific questions are answered by choosing the answer from a fixed vocabulary or by extracting it from a predicted bounding box in the plot, while other questions are answered with a table question-answering engine which is fed with a structured table generated by detecting visual elements from the image. On the existing DVQA dataset, our model has an accuracy of 58%, significantly improving on the highest reported accuracy of 46%. On PlotQA, our model has an accuracy of 22.52%, which is significantly better than state of the art models.

  • 4 authors
·
Sep 3, 2019

Visual Programmability: A Guide for Code-as-Thought in Chart Understanding

Chart understanding presents a critical test to the reasoning capabilities of Vision-Language Models (VLMs). Prior approaches face critical limitations: some rely on external tools, making them brittle and constrained by a predefined toolkit, while others fine-tune specialist models that often adopt a single reasoning strategy, such as text-based chain-of-thought (CoT). The intermediate steps of text-based reasoning are difficult to verify, which complicates the use of reinforcement-learning signals that reward factual accuracy. To address this, we propose a Code-as-Thought (CaT) approach to represent the visual information of a chart in a verifiable, symbolic format. Our key insight is that this strategy must be adaptive: a fixed, code-only implementation consistently fails on complex charts where symbolic representation is unsuitable. This finding leads us to introduce Visual Programmability: a learnable property that determines if a chart-question pair is better solved with code or direct visual analysis. We implement this concept in an adaptive framework where a VLM learns to choose between the CaT pathway and a direct visual reasoning pathway. The selection policy of the model is trained with reinforcement learning using a novel dual-reward system. This system combines a data-accuracy reward to ground the model in facts and prevent numerical hallucination, with a decision reward that teaches the model when to use each strategy, preventing it from defaulting to a single reasoning mode. Experiments demonstrate strong and robust performance across diverse chart-understanding benchmarks. Our work shows that VLMs can be taught not only to reason but also how to reason, dynamically selecting the optimal reasoning pathway for each task.

  • 9 authors
·
Sep 11 2

ChartReader: A Unified Framework for Chart Derendering and Comprehension without Heuristic Rules

Charts are a powerful tool for visually conveying complex data, but their comprehension poses a challenge due to the diverse chart types and intricate components. Existing chart comprehension methods suffer from either heuristic rules or an over-reliance on OCR systems, resulting in suboptimal performance. To address these issues, we present ChartReader, a unified framework that seamlessly integrates chart derendering and comprehension tasks. Our approach includes a transformer-based chart component detection module and an extended pre-trained vision-language model for chart-to-X tasks. By learning the rules of charts automatically from annotated datasets, our approach eliminates the need for manual rule-making, reducing effort and enhancing accuracy.~We also introduce a data variable replacement technique and extend the input and position embeddings of the pre-trained model for cross-task training. We evaluate ChartReader on Chart-to-Table, ChartQA, and Chart-to-Text tasks, demonstrating its superiority over existing methods. Our proposed framework can significantly reduce the manual effort involved in chart analysis, providing a step towards a universal chart understanding model. Moreover, our approach offers opportunities for plug-and-play integration with mainstream LLMs such as T5 and TaPas, extending their capability to chart comprehension tasks. The code is available at https://github.com/zhiqic/ChartReader.

  • 6 authors
·
Apr 4, 2023

Effective Training Data Synthesis for Improving MLLM Chart Understanding

Being able to effectively read scientific plots, or chart understanding, is a central part toward building effective agents for science. However, existing multimodal large language models (MLLMs), especially open-source ones, are still falling behind with a typical success rate of 30%-50% on challenging benchmarks. Previous studies on fine-tuning MLLMs with synthetic charts are often restricted by their inadequate similarity to the real charts, which could compromise model training and performance on complex real-world charts. In this study, we show that modularizing chart generation and diversifying visual details improves chart understanding capabilities. In particular, we design a five-step data synthesis pipeline, where we separate data and function creation for single plot generation, condition the generation of later subplots on earlier ones for multi-subplot figures, visually diversify the generated figures, filter out low quality data, and finally generate the question-answer (QA) pairs with GPT-4o. This approach allows us to streamline the generation of fine-tuning datasets and introduce the effective chart dataset (ECD), which contains 10k+ chart images and 300k+ QA pairs, covering 25 topics and featuring 250+ chart type combinations with high visual complexity. We show that ECD consistently improves the performance of various MLLMs on a range of real-world and synthetic test sets. Code, data and models are available at: https://github.com/yuweiyang-anu/ECD.

  • 8 authors
·
Aug 8

START: Spatial and Textual Learning for Chart Understanding

Chart understanding is crucial for deploying multimodal large language models (MLLMs) in real-world scenarios such as analyzing scientific papers and technical reports. Unlike natural images, charts pair a structured visual layout (spatial property) with an underlying data representation (textual property) -- grasping both is essential for precise, fine-grained chart reasoning. Motivated by this observation, we propose START, the Spatial and Textual learning for chART understanding. Specifically, we introduce (i) chart-element grounding and (ii) chart-to-code generation to strengthen an MLLM's understanding of both chart visual layout and data details. To facilitate spatial and textual learning, we propose the START-Dataset generated with a novel data-generation pipeline that first leverages an MLLM to translate real chart images into executable chart code, recovering the underlying data representation while preserving the visual distribution of real-world charts. We then evolve the code with a Large Language Model (LLM) to ascertain the positions of chart elements that capture the chart's visual structure, addressing challenges that existing methods cannot handle. To evaluate a model's ability to understand chart spatial structures, we propose the Chart Spatial understanding Benchmark (CS-Bench), filling a critical gap in comprehensive chart understanding evaluation. Leveraging spatial and textual learning, START delivers consistent gains across model sizes and benchmarks over the base models and surpasses prior state-of-the-art by a clear margin. Code, data and models will be publicly available.

  • 6 authors
·
Dec 8

Towards Complex Document Understanding By Discrete Reasoning

Document Visual Question Answering (VQA) aims to understand visually-rich documents to answer questions in natural language, which is an emerging research topic for both Natural Language Processing and Computer Vision. In this work, we introduce a new Document VQA dataset, named TAT-DQA, which consists of 3,067 document pages comprising semi-structured table(s) and unstructured text as well as 16,558 question-answer pairs by extending the TAT-QA dataset. These documents are sampled from real-world financial reports and contain lots of numbers, which means discrete reasoning capability is demanded to answer questions on this dataset. Based on TAT-DQA, we further develop a novel model named MHST that takes into account the information in multi-modalities, including text, layout and visual image, to intelligently address different types of questions with corresponding strategies, i.e., extraction or reasoning. Extensive experiments show that the MHST model significantly outperforms the baseline methods, demonstrating its effectiveness. However, the performance still lags far behind that of expert humans. We expect that our new TAT-DQA dataset would facilitate the research on deep understanding of visually-rich documents combining vision and language, especially for scenarios that require discrete reasoning. Also, we hope the proposed model would inspire researchers to design more advanced Document VQA models in future. Our dataset will be publicly available for non-commercial use at https://nextplusplus.github.io/TAT-DQA/.

  • 6 authors
·
Jul 24, 2022

ChartBench: A Benchmark for Complex Visual Reasoning in Charts

Multimodal Large Language Models (MLLMs) have demonstrated remarkable multimodal understanding and generation capabilities. However, their understanding of synthetic charts is limited, while existing benchmarks are simplistic and the charts deviate significantly from real-world examples, making it challenging to accurately assess MLLMs' chart comprehension abilities. Hence, a challenging benchmark is essential for investigating progress and uncovering the limitations of current MLLMs on chart data. In this work, we propose to examine chart comprehension through more complex visual logic and introduce ChartBench, a comprehensive chart benchmark to accurately measure MLLMs' fundamental chart comprehension and data reliability. Specifically, ChartBench consists of 41 categories, 2K charts, and 16K QA annotations. While significantly expanding chart types, ChartBench avoids direct labelling of data points, which requires MLLMs to infer values akin to humans by leveraging elements like color, legends, and coordinate systems. We also introduce an improved metric, Acc+, which accurately reflects MLLMs' chart comprehension abilities while avoiding labor-intensive manual evaluations or costly GPT-based evaluations. We conduct evaluations on 12 mainstream open-source models and 2 outstanding proprietary models. Through extensive experiments, we reveal the limitations of MLLMs on charts and provide insights to inspire the community to pay closer attention to MLLMs' chart comprehension abilities. The benchmark and code will be publicly available for research.

  • 6 authors
·
Dec 26, 2023 2

MoreHopQA: More Than Multi-hop Reasoning

Most existing multi-hop datasets are extractive answer datasets, where the answers to the questions can be extracted directly from the provided context. This often leads models to use heuristics or shortcuts instead of performing true multi-hop reasoning. In this paper, we propose a new multi-hop dataset, MoreHopQA, which shifts from extractive to generative answers. Our dataset is created by utilizing three existing multi-hop datasets: HotpotQA, 2WikiMultihopQA, and MuSiQue. Instead of relying solely on factual reasoning, we enhance the existing multi-hop questions by adding another layer of questioning that involves one, two, or all three of the following types of reasoning: commonsense, arithmetic, and symbolic. Our dataset is created through a semi-automated process, resulting in a dataset with 1,118 samples that have undergone human verification. We then use our dataset to evaluate five different large language models: Mistral 7B, Gemma 7B, Llama 3 (8B and 70B), and GPT-4. We also design various cases to analyze the reasoning steps in the question-answering process. Our results show that models perform well on initial multi-hop questions but struggle with our extended questions, indicating that our dataset is more challenging than previous ones. Our analysis of question decomposition reveals that although models can correctly answer questions, only a portion - 38.7% for GPT-4 and 33.4% for Llama3-70B - achieve perfect reasoning, where all corresponding sub-questions are answered correctly. Evaluation code and data are available at https://github.com/Alab-NII/morehopqa

  • 6 authors
·
Jun 19, 2024

Are LLMs ready to help non-expert users to make charts of official statistics data?

In this time when biased information, deep fakes, and propaganda proliferate, the accessibility of reliable data sources is more important than ever. National statistical institutes provide curated data that contain quantitative information on a wide range of topics. However, that information is typically spread across many tables and the plain numbers may be arduous to process. Hence, this open data may be practically inaccessible. We ask the question "Are current Generative AI models capable of facilitating the identification of the right data and the fully-automatic creation of charts to provide information in visual form, corresponding to user queries?". We present a structured evaluation of recent large language models' (LLMs) capabilities to generate charts from complex data in response to user queries. Working with diverse public data from Statistics Netherlands, we assessed multiple LLMs on their ability to identify relevant data tables, perform necessary manipulations, and generate appropriate visualizations autonomously. We propose a new evaluation framework spanning three dimensions: data retrieval & pre-processing, code quality, and visual representation. Results indicate that locating and processing the correct data represents the most significant challenge. Additionally, LLMs rarely implement visualization best practices without explicit guidance. When supplemented with information about effective chart design, models showed marked improvement in representation scores. Furthermore, an agentic approach with iterative self-evaluation led to excellent performance across all evaluation dimensions. These findings suggest that LLMs' effectiveness for automated chart generation can be enhanced through appropriate scaffolding and feedback mechanisms, and that systems can already reach the necessary accuracy across the three evaluation dimensions.

  • 4 authors
·
Sep 3

STOC-TOT: Stochastic Tree-of-Thought with Constrained Decoding for Complex Reasoning in Multi-Hop Question Answering

Multi-hop question answering (MHQA) requires a model to retrieve and integrate information from multiple passages to answer a complex question. Recent systems leverage the power of large language models and integrate evidence retrieval with reasoning prompts (e.g., chain-of-thought reasoning) for the MHQA task. However, the complexities in the question types (bridge v.s. comparison questions) and the reasoning types (sequential v.s. parallel reasonings) require more novel and fine-grained prompting methods to enhance the performance of MHQA under the zero-shot setting. In this paper, we propose STOC-TOT, a stochastic tree-of-thought reasoning prompting method with constrained decoding for MHQA and conduct a detailed comparison with other reasoning prompts on different question types and reasoning types. Specifically, we construct a tree-like reasoning structure by prompting the model to break down the original question into smaller sub-questions to form different reasoning paths. In addition, we prompt the model to provide a probability estimation for each reasoning path at each reasoning step. At answer time, we conduct constrained decoding on the model to generate more grounded answers and reduce hallucination. Experiments comparing STOC-TOT with two MHQA datasets and five large language models showed that our framework outperforms other reasoning prompts by a significant margin.

  • 5 authors
·
Jul 4, 2024

Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering

When answering a question, humans utilize the information available across different modalities to synthesize a consistent and complete chain of thought (CoT). This process is normally a black box in the case of deep learning models like large-scale language models. Recently, science question benchmarks have been used to diagnose the multi-hop reasoning ability and interpretability of an AI system. However, existing datasets fail to provide annotations for the answers, or are restricted to the textual-only modality, small scales, and limited domain diversity. To this end, we present Science Question Answering (ScienceQA), a new benchmark that consists of ~21k multimodal multiple choice questions with a diverse set of science topics and annotations of their answers with corresponding lectures and explanations. We further design language models to learn to generate lectures and explanations as the chain of thought (CoT) to mimic the multi-hop reasoning process when answering ScienceQA questions. ScienceQA demonstrates the utility of CoT in language models, as CoT improves the question answering performance by 1.20% in few-shot GPT-3 and 3.99% in fine-tuned UnifiedQA. We also explore the upper bound for models to leverage explanations by feeding those in the input; we observe that it improves the few-shot performance of GPT-3 by 18.96%. Our analysis further shows that language models, similar to humans, benefit from explanations to learn from fewer data and achieve the same performance with just 40% of the data. The data and code are available at https://scienceqa.github.io.

  • 9 authors
·
Sep 20, 2022

Enhancing Large Language Models with Reward-guided Tree Search for Knowledge Graph Question and Answering

Recently, large language models (LLMs) have demonstrated impressive performance in Knowledge Graph Question Answering (KGQA) tasks, which aim to find answers based on knowledge graphs (KGs) for natural language questions. Existing LLMs-based KGQA methods typically follow the Graph Retrieval-Augmented Generation (GraphRAG) paradigm, which first retrieves reasoning paths from the large KGs, and then generates the answers based on them. However, these methods emphasize the exploration of new optimal reasoning paths in KGs while ignoring the exploitation of historical reasoning paths, which may lead to sub-optimal reasoning paths. Additionally, the complex semantics contained in questions may lead to the retrieval of inaccurate reasoning paths. To address these issues, this paper proposes a novel and training-free framework for KGQA tasks called Reward-guided Tree Search on Graph (RTSoG). RTSoG decomposes an original question into a series of simpler and well-defined sub-questions to handle the complex semantics. Then, a Self-Critic Monte Carlo Tree Search (SC-MCTS) guided by a reward model is introduced to iteratively retrieve weighted reasoning paths as contextual knowledge. Finally, it stacks the weighted reasoning paths according to their weights to generate the final answers. Extensive experiments on four datasets demonstrate the effectiveness of RTSoG. Notably, it achieves 8.7\% and 7.0\% performance improvement over the state-of-the-art method on the GrailQA and the WebQSP respectively.

  • 6 authors
·
May 18

GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning

Knowledge Graphs (KGs) represent human-crafted factual knowledge in the form of triplets (head, relation, tail), which collectively form a graph. Question Answering over KGs (KGQA) is the task of answering natural questions grounding the reasoning to the information provided by the KG. Large Language Models (LLMs) are the state-of-the-art models for QA tasks due to their remarkable ability to understand natural language. On the other hand, Graph Neural Networks (GNNs) have been widely used for KGQA as they can handle the complex graph information stored in the KG. In this work, we introduce GNN-RAG, a novel method for combining language understanding abilities of LLMs with the reasoning abilities of GNNs in a retrieval-augmented generation (RAG) style. First, a GNN reasons over a dense KG subgraph to retrieve answer candidates for a given question. Second, the shortest paths in the KG that connect question entities and answer candidates are extracted to represent KG reasoning paths. The extracted paths are verbalized and given as input for LLM reasoning with RAG. In our GNN-RAG framework, the GNN acts as a dense subgraph reasoner to extract useful graph information, while the LLM leverages its natural language processing ability for ultimate KGQA. Furthermore, we develop a retrieval augmentation (RA) technique to further boost KGQA performance with GNN-RAG. Experimental results show that GNN-RAG achieves state-of-the-art performance in two widely used KGQA benchmarks (WebQSP and CWQ), outperforming or matching GPT-4 performance with a 7B tuned LLM. In addition, GNN-RAG excels on multi-hop and multi-entity questions outperforming competing approaches by 8.9--15.5% points at answer F1.

  • 2 authors
·
May 30, 2024