Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePosition Information Emerges in Causal Transformers Without Positional Encodings via Similarity of Nearby Embeddings
Transformers with causal attention can solve tasks that require positional information without using positional encodings. In this work, we propose and investigate a new hypothesis about how positional information can be stored without using explicit positional encoding. We observe that nearby embeddings are more similar to each other than faraway embeddings, allowing the transformer to potentially reconstruct the positions of tokens. We show that this pattern can occur in both the trained and the randomly initialized Transformer models with causal attention and no positional encodings over a common range of hyperparameters.
Lookahead When It Matters: Adaptive Non-causal Transformers for Streaming Neural Transducers
Streaming speech recognition architectures are employed for low-latency, real-time applications. Such architectures are often characterized by their causality. Causal architectures emit tokens at each frame, relying only on current and past signal, while non-causal models are exposed to a window of future frames at each step to increase predictive accuracy. This dichotomy amounts to a trade-off for real-time Automatic Speech Recognition (ASR) system design: profit from the low-latency benefit of strictly-causal architectures while accepting predictive performance limitations, or realize the modeling benefits of future-context models accompanied by their higher latency penalty. In this work, we relax the constraints of this choice and present the Adaptive Non-Causal Attention Transducer (ANCAT). Our architecture is non-causal in the traditional sense, but executes in a low-latency, streaming manner by dynamically choosing when to rely on future context and to what degree within the audio stream. The resulting mechanism, when coupled with our novel regularization algorithms, delivers comparable accuracy to non-causal configurations while improving significantly upon latency, closing the gap with their causal counterparts. We showcase our design experimentally by reporting comparative ASR task results with measures of accuracy and latency on both publicly accessible and production-scale, voice-assistant datasets.
Mogo: RQ Hierarchical Causal Transformer for High-Quality 3D Human Motion Generation
In the field of text-to-motion generation, Bert-type Masked Models (MoMask, MMM) currently produce higher-quality outputs compared to GPT-type autoregressive models (T2M-GPT). However, these Bert-type models often lack the streaming output capability required for applications in video game and multimedia environments, a feature inherent to GPT-type models. Additionally, they demonstrate weaker performance in out-of-distribution generation. To surpass the quality of BERT-type models while leveraging a GPT-type structure, without adding extra refinement models that complicate scaling data, we propose a novel architecture, Mogo (Motion Only Generate Once), which generates high-quality lifelike 3D human motions by training a single transformer model. Mogo consists of only two main components: 1) RVQ-VAE, a hierarchical residual vector quantization variational autoencoder, which discretizes continuous motion sequences with high precision; 2) Hierarchical Causal Transformer, responsible for generating the base motion sequences in an autoregressive manner while simultaneously inferring residuals across different layers. Experimental results demonstrate that Mogo can generate continuous and cyclic motion sequences up to 260 frames (13 seconds), surpassing the 196 frames (10 seconds) length limitation of existing datasets like HumanML3D. On the HumanML3D test set, Mogo achieves a FID score of 0.079, outperforming both the GPT-type model T2M-GPT (FID = 0.116), AttT2M (FID = 0.112) and the BERT-type model MMM (FID = 0.080). Furthermore, our model achieves the best quantitative performance in out-of-distribution generation.
LMCodec: A Low Bitrate Speech Codec With Causal Transformer Models
We introduce LMCodec, a causal neural speech codec that provides high quality audio at very low bitrates. The backbone of the system is a causal convolutional codec that encodes audio into a hierarchy of coarse-to-fine tokens using residual vector quantization. LMCodec trains a Transformer language model to predict the fine tokens from the coarse ones in a generative fashion, allowing for the transmission of fewer codes. A second Transformer predicts the uncertainty of the next codes given the past transmitted codes, and is used to perform conditional entropy coding. A MUSHRA subjective test was conducted and shows that the quality is comparable to reference codecs at higher bitrates. Example audio is available at https://mjenrungrot.github.io/chrome-media-audio-papers/publications/lmcodec.
STream3R: Scalable Sequential 3D Reconstruction with Causal Transformer
We present STream3R, a novel approach to 3D reconstruction that reformulates pointmap prediction as a decoder-only Transformer problem. Existing state-of-the-art methods for multi-view reconstruction either depend on expensive global optimization or rely on simplistic memory mechanisms that scale poorly with sequence length. In contrast, STream3R introduces an streaming framework that processes image sequences efficiently using causal attention, inspired by advances in modern language modeling. By learning geometric priors from large-scale 3D datasets, STream3R generalizes well to diverse and challenging scenarios, including dynamic scenes where traditional methods often fail. Extensive experiments show that our method consistently outperforms prior work across both static and dynamic scene benchmarks. Moreover, STream3R is inherently compatible with LLM-style training infrastructure, enabling efficient large-scale pretraining and fine-tuning for various downstream 3D tasks. Our results underscore the potential of causal Transformer models for online 3D perception, paving the way for real-time 3D understanding in streaming environments. More details can be found in our project page: https://nirvanalan.github.io/projects/stream3r.
Striped Attention: Faster Ring Attention for Causal Transformers
To help address the growing demand for ever-longer sequence lengths in transformer models, Liu et al. recently proposed Ring Attention, an exact attention algorithm capable of overcoming per-device memory bottle- necks by distributing self-attention across multiple devices. In this paper, we study the performance characteristics of Ring Attention in the important special case of causal transformer models, and identify a key workload imbal- ance due to triangular structure of causal attention computations. We propose a simple extension to Ring Attention, which we call Striped Attention to fix this imbalance. Instead of devices having contiguous subsequences, each device has a subset of tokens distributed uniformly throughout the sequence, which we demonstrate leads to more even workloads. In experiments running Striped Attention on A100 GPUs and TPUv4s, we are able to achieve up to 1.45x end-to-end throughput improvements over the original Ring Attention algorithm on causal transformer training at a sequence length of 256k. Furthermore, on 16 TPUv4 chips, we were able to achieve 1.65x speedups at sequence lengths of 786k. We release the code for our experiments as open source
Transformer Language Models without Positional Encodings Still Learn Positional Information
Causal transformer language models (LMs), such as GPT-3, typically require some form of positional encoding, such as positional embeddings. However, we show that LMs without any explicit positional encoding are still competitive with standard models, and that this phenomenon is robust across different datasets, model sizes, and sequence lengths. Probing experiments reveal that such models acquire an implicit notion of absolute positions throughout the network, effectively compensating for the missing information. We conjecture that causal attention enables the model to infer the number of predecessors that each token can attend to, thereby approximating its absolute position. Our findings indicate that causal LMs might derive positional awareness not only from the explicit positioning mechanism, but also from the effects of the causal mask.
Streaming 4D Visual Geometry Transformer
Perceiving and reconstructing 4D spatial-temporal geometry from videos is a fundamental yet challenging computer vision task. To facilitate interactive and real-time applications, we propose a streaming 4D visual geometry transformer that shares a similar philosophy with autoregressive large language models. We explore a simple and efficient design and employ a causal transformer architecture to process the input sequence in an online manner. We use temporal causal attention and cache the historical keys and values as implicit memory to enable efficient streaming long-term 4D reconstruction. This design can handle real-time 4D reconstruction by incrementally integrating historical information while maintaining high-quality spatial consistency. For efficient training, we propose to distill knowledge from the dense bidirectional visual geometry grounded transformer (VGGT) to our causal model. For inference, our model supports the migration of optimized efficient attention operator (e.g., FlashAttention) from the field of large language models. Extensive experiments on various 4D geometry perception benchmarks demonstrate that our model increases the inference speed in online scenarios while maintaining competitive performance, paving the way for scalable and interactive 4D vision systems. Code is available at: https://github.com/wzzheng/StreamVGGT.
From Slow Bidirectional to Fast Causal Video Generators
Current video diffusion models achieve impressive generation quality but struggle in interactive applications due to bidirectional attention dependencies. The generation of a single frame requires the model to process the entire sequence, including the future. We address this limitation by adapting a pretrained bidirectional diffusion transformer to a causal transformer that generates frames on-the-fly. To further reduce latency, we extend distribution matching distillation (DMD) to videos, distilling 50-step diffusion model into a 4-step generator. To enable stable and high-quality distillation, we introduce a student initialization scheme based on teacher's ODE trajectories, as well as an asymmetric distillation strategy that supervises a causal student model with a bidirectional teacher. This approach effectively mitigates error accumulation in autoregressive generation, allowing long-duration video synthesis despite training on short clips. Our model supports fast streaming generation of high quality videos at 9.4 FPS on a single GPU thanks to KV caching. Our approach also enables streaming video-to-video translation, image-to-video, and dynamic prompting in a zero-shot manner. We will release the code based on an open-source model in the future.
TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation
Self-supervised learning has garnered increasing attention in time series analysis for benefiting various downstream tasks and reducing reliance on labeled data. Despite its effectiveness, existing methods often struggle to comprehensively capture both long-term dynamic evolution and subtle local patterns in a unified manner. In this work, we propose TimeDART, a novel self-supervised time series pre-training framework that unifies two powerful generative paradigms to learn more transferable representations. Specifically, we first employ a causal Transformer encoder, accompanied by a patch-based embedding strategy, to model the evolving trends from left to right. Building on this global modeling, we further introduce a denoising diffusion process to capture fine-grained local patterns through forward diffusion and reverse denoising. Finally, we optimize the model in an autoregressive manner. As a result, TimeDART effectively accounts for both global and local sequence features in a coherent way. We conduct extensive experiments on public datasets for time series forecasting and classification. The experimental results demonstrate that TimeDART consistently outperforms previous compared methods, validating the effectiveness of our approach. Our code is available at https://github.com/Melmaphother/TimeDART.
ConBaT: Control Barrier Transformer for Safe Policy Learning
Large-scale self-supervised models have recently revolutionized our ability to perform a variety of tasks within the vision and language domains. However, using such models for autonomous systems is challenging because of safety requirements: besides executing correct actions, an autonomous agent must also avoid the high cost and potentially fatal critical mistakes. Traditionally, self-supervised training mainly focuses on imitating previously observed behaviors, and the training demonstrations carry no notion of which behaviors should be explicitly avoided. In this work, we propose Control Barrier Transformer (ConBaT), an approach that learns safe behaviors from demonstrations in a self-supervised fashion. ConBaT is inspired by the concept of control barrier functions in control theory and uses a causal transformer that learns to predict safe robot actions autoregressively using a critic that requires minimal safety data labeling. During deployment, we employ a lightweight online optimization to find actions that ensure future states lie within the learned safe set. We apply our approach to different simulated control tasks and show that our method results in safer control policies compared to other classical and learning-based methods such as imitation learning, reinforcement learning, and model predictive control.
Humanoid Locomotion as Next Token Prediction
We cast real-world humanoid control as a next token prediction problem, akin to predicting the next word in language. Our model is a causal transformer trained via autoregressive prediction of sensorimotor trajectories. To account for the multi-modal nature of the data, we perform prediction in a modality-aligned way, and for each input token predict the next token from the same modality. This general formulation enables us to leverage data with missing modalities, like video trajectories without actions. We train our model on a collection of simulated trajectories coming from prior neural network policies, model-based controllers, motion capture data, and YouTube videos of humans. We show that our model enables a full-sized humanoid to walk in San Francisco zero-shot. Our model can transfer to the real world even when trained on only 27 hours of walking data, and can generalize to commands not seen during training like walking backward. These findings suggest a promising path toward learning challenging real-world control tasks by generative modeling of sensorimotor trajectories.
A Wireless Foundation Model for Multi-Task Prediction
With the growing complexity and dynamics of the mobile communication networks, accurately predicting key system parameters, such as channel state information (CSI), user location, and network traffic, has become essential for a wide range of physical (PHY)-layer and medium access control (MAC)-layer tasks. Although traditional deep learning (DL)-based methods have been widely applied to such prediction tasks, they often struggle to generalize across different scenarios and tasks. In response, we propose a unified foundation model for multi-task prediction in wireless networks that supports diverse prediction intervals. The proposed model enforces univariate decomposition to unify heterogeneous tasks, encodes granularity for interval awareness, and uses a causal Transformer backbone for accurate predictions. Additionally, we introduce a patch masking strategy during training to support arbitrary input lengths. After trained on large-scale datasets, the proposed foundation model demonstrates strong generalization to unseen scenarios and achieves zero-shot performance on new tasks that surpass traditional full-shot baselines.
Multimodal Latent Language Modeling with Next-Token Diffusion
Multimodal generative models require a unified approach to handle both discrete data (e.g., text and code) and continuous data (e.g., image, audio, video). In this work, we propose Latent Language Modeling (LatentLM), which seamlessly integrates continuous and discrete data using causal Transformers. Specifically, we employ a variational autoencoder (VAE) to represent continuous data as latent vectors and introduce next-token diffusion for autoregressive generation of these vectors. Additionally, we develop sigma-VAE to address the challenges of variance collapse, which is crucial for autoregressive modeling. Extensive experiments demonstrate the effectiveness of LatentLM across various modalities. In image generation, LatentLM surpasses Diffusion Transformers in both performance and scalability. When integrated into multimodal large language models, LatentLM provides a general-purpose interface that unifies multimodal generation and understanding. Experimental results show that LatentLM achieves favorable performance compared to Transfusion and vector quantized models in the setting of scaling up training tokens. In text-to-speech synthesis, LatentLM outperforms the state-of-the-art VALL-E 2 model in speaker similarity and robustness, while requiring 10x fewer decoding steps. The results establish LatentLM as a highly effective and scalable approach to advance large multimodal models.
In-Context Imitation Learning via Next-Token Prediction
We explore how to enhance next-token prediction models to perform in-context imitation learning on a real robot, where the robot executes new tasks by interpreting contextual information provided during the input phase, without updating its underlying policy parameters. We propose In-Context Robot Transformer (ICRT), a causal transformer that performs autoregressive prediction on sensorimotor trajectories without relying on any linguistic data or reward function. This formulation enables flexible and training-free execution of new tasks at test time, achieved by prompting the model with sensorimotor trajectories of the new task composing of image observations, actions and states tuples, collected through human teleoperation. Experiments with a Franka Emika robot demonstrate that the ICRT can adapt to new tasks specified by prompts, even in environment configurations that differ from both the prompt and the training data. In a multitask environment setup, ICRT significantly outperforms current state-of-the-art next-token prediction models in robotics on generalizing to unseen tasks. Code, checkpoints and data are available on https://icrt.dev/
Heptapod: Language Modeling on Visual Signals
We introduce Heptapod, an image autoregressive model that adheres to the foundational principles of language modeling. Heptapod employs causal attention, eliminates reliance on CFG, and eschews the trend of semantic tokenizers. Our key innovation is next 2D distribution prediction: a causal Transformer with reconstruction-focused visual tokenizer, learns to predict the distribution over the entire 2D spatial grid of images at each timestep. This learning objective unifies the sequential modeling of autoregressive framework with the holistic self-supervised learning of masked autoencoding, enabling the model to capture comprehensive image semantics via generative training. On the ImageNet generation benchmark, Heptapod achieves an FID of 2.70, significantly outperforming previous causal autoregressive approaches. We hope our work inspires a principled rethinking of language modeling on visual signals and beyond.
SoundReactor: Frame-level Online Video-to-Audio Generation
Prevailing Video-to-Audio (V2A) generation models operate offline, assuming an entire video sequence or chunks of frames are available beforehand. This critically limits their use in interactive applications such as live content creation and emerging generative world models. To address this gap, we introduce the novel task of frame-level online V2A generation, where a model autoregressively generates audio from video without access to future video frames. Furthermore, we propose SoundReactor, which, to the best of our knowledge, is the first simple yet effective framework explicitly tailored for this task. Our design enforces end-to-end causality and targets low per-frame latency with audio-visual synchronization. Our model's backbone is a decoder-only causal transformer over continuous audio latents. For vision conditioning, it leverages grid (patch) features extracted from the smallest variant of the DINOv2 vision encoder, which are aggregated into a single token per frame to maintain end-to-end causality and efficiency. The model is trained through a diffusion pre-training followed by consistency fine-tuning to accelerate the diffusion head decoding. On a benchmark of diverse gameplay videos from AAA titles, our model successfully generates semantically and temporally aligned, high-quality full-band stereo audio, validated by both objective and human evaluations. Furthermore, our model achieves low per-frame waveform-level latency (26.3ms with the head NFE=1, 31.5ms with NFE=4) on 30FPS, 480p videos using a single H100. Demo samples are available at https://koichi-saito-sony.github.io/soundreactor/.
CT2Rep: Automated Radiology Report Generation for 3D Medical Imaging
Medical imaging plays a crucial role in diagnosis, with radiology reports serving as vital documentation. Automating report generation has emerged as a critical need to alleviate the workload of radiologists. While machine learning has facilitated report generation for 2D medical imaging, extending this to 3D has been unexplored due to computational complexity and data scarcity. We introduce the first method to generate radiology reports for 3D medical imaging, specifically targeting chest CT volumes. Given the absence of comparable methods, we establish a baseline using an advanced 3D vision encoder in medical imaging to demonstrate our method's effectiveness, which leverages a novel auto-regressive causal transformer. Furthermore, recognizing the benefits of leveraging information from previous visits, we augment CT2Rep with a cross-attention-based multi-modal fusion module and hierarchical memory, enabling the incorporation of longitudinal multimodal data. Access our code at https://github.com/ibrahimethemhamamci/CT2Rep
Towards Understanding the Relationship between In-context Learning and Compositional Generalization
According to the principle of compositional generalization, the meaning of a complex expression can be understood as a function of the meaning of its parts and of how they are combined. This principle is crucial for human language processing and also, arguably, for NLP models in the face of out-of-distribution data. However, many neural network models, including Transformers, have been shown to struggle with compositional generalization. In this paper, we hypothesize that forcing models to in-context learn can provide an inductive bias to promote compositional generalization. To test this hypothesis, we train a causal Transformer in a setting that renders ordinary learning very difficult: we present it with different orderings of the training instance and shuffle instance labels. This corresponds to training the model on all possible few-shot learning problems attainable from the dataset. The model can solve the task, however, by utilizing earlier examples to generalize to later ones (i.e. in-context learning). In evaluations on the datasets, SCAN, COGS, and GeoQuery, models trained in this manner indeed show improved compositional generalization. This indicates the usefulness of in-context learning problems as an inductive bias for generalization.
GROOT: Learning to Follow Instructions by Watching Gameplay Videos
We study the problem of building a controller that can follow open-ended instructions in open-world environments. We propose to follow reference videos as instructions, which offer expressive goal specifications while eliminating the need for expensive text-gameplay annotations. A new learning framework is derived to allow learning such instruction-following controllers from gameplay videos while producing a video instruction encoder that induces a structured goal space. We implement our agent GROOT in a simple yet effective encoder-decoder architecture based on causal transformers. We evaluate GROOT against open-world counterparts and human players on a proposed Minecraft SkillForge benchmark. The Elo ratings clearly show that GROOT is closing the human-machine gap as well as exhibiting a 70% winning rate over the best generalist agent baseline. Qualitative analysis of the induced goal space further demonstrates some interesting emergent properties, including the goal composition and complex gameplay behavior synthesis. Code and video can be found on the website https://craftjarvis-groot.github.io.
Fast Autoregressive Models for Continuous Latent Generation
Autoregressive models have demonstrated remarkable success in sequential data generation, particularly in NLP, but their extension to continuous-domain image generation presents significant challenges. Recent work, the masked autoregressive model (MAR), bypasses quantization by modeling per-token distributions in continuous spaces using a diffusion head but suffers from slow inference due to the high computational cost of the iterative denoising process. To address this, we propose the Fast AutoRegressive model (FAR), a novel framework that replaces MAR's diffusion head with a lightweight shortcut head, enabling efficient few-step sampling while preserving autoregressive principles. Additionally, FAR seamlessly integrates with causal Transformers, extending them from discrete to continuous token generation without requiring architectural modifications. Experiments demonstrate that FAR achieves 2.3times faster inference than MAR while maintaining competitive FID and IS scores. This work establishes the first efficient autoregressive paradigm for high-fidelity continuous-space image generation, bridging the critical gap between quality and scalability in visual autoregressive modeling.
MotionRAG: Motion Retrieval-Augmented Image-to-Video Generation
Image-to-video generation has made remarkable progress with the advancements in diffusion models, yet generating videos with realistic motion remains highly challenging. This difficulty arises from the complexity of accurately modeling motion, which involves capturing physical constraints, object interactions, and domain-specific dynamics that are not easily generalized across diverse scenarios. To address this, we propose MotionRAG, a retrieval-augmented framework that enhances motion realism by adapting motion priors from relevant reference videos through Context-Aware Motion Adaptation (CAMA). The key technical innovations include: (i) a retrieval-based pipeline extracting high-level motion features using video encoder and specialized resamplers to distill semantic motion representations; (ii) an in-context learning approach for motion adaptation implemented through a causal transformer architecture; (iii) an attention-based motion injection adapter that seamlessly integrates transferred motion features into pretrained video diffusion models. Extensive experiments demonstrate that our method achieves significant improvements across multiple domains and various base models, all with negligible computational overhead during inference. Furthermore, our modular design enables zero-shot generalization to new domains by simply updating the retrieval database without retraining any components. This research enhances the core capability of video generation systems by enabling the effective retrieval and transfer of motion priors, facilitating the synthesis of realistic motion dynamics.
LLMs Meet Long Video: Advancing Long Video Comprehension with An Interactive Visual Adapter in LLMs
Long video understanding is a significant and ongoing challenge in the intersection of multimedia and artificial intelligence. Employing large language models (LLMs) for comprehending video becomes an emerging and promising method. However, this approach incurs high computational costs due to the extensive array of video tokens, experiences reduced visual clarity as a consequence of token aggregation, and confronts challenges arising from irrelevant visual tokens while answering video-related questions. To alleviate these issues, we present an Interactive Visual Adapter (IVA) within LLMs, designed to enhance interaction with fine-grained visual elements. Specifically, we first transform long videos into temporal video tokens via leveraging a visual encoder alongside a pretrained causal transformer, then feed them into LLMs with the video instructions. Subsequently, we integrated IVA, which contains a lightweight temporal frame selector and a spatial feature interactor, within the internal blocks of LLMs to capture instruction-aware and fine-grained visual signals. Consequently, the proposed video-LLM facilitates a comprehensive understanding of long video content through appropriate long video modeling and precise visual interactions. We conducted extensive experiments on nine video understanding benchmarks and experimental results show that our interactive visual adapter significantly improves the performance of video LLMs on long video QA tasks. Ablation studies further verify the effectiveness of IVA in long and short video understandings.
Meta-DT: Offline Meta-RL as Conditional Sequence Modeling with World Model Disentanglement
A longstanding goal of artificial general intelligence is highly capable generalists that can learn from diverse experiences and generalize to unseen tasks. The language and vision communities have seen remarkable progress toward this trend by scaling up transformer-based models trained on massive datasets, while reinforcement learning (RL) agents still suffer from poor generalization capacity under such paradigms. To tackle this challenge, we propose Meta Decision Transformer (Meta-DT), which leverages the sequential modeling ability of the transformer architecture and robust task representation learning via world model disentanglement to achieve efficient generalization in offline meta-RL. We pretrain a context-aware world model to learn a compact task representation, and inject it as a contextual condition to the causal transformer to guide task-oriented sequence generation. Then, we subtly utilize history trajectories generated by the meta-policy as a self-guided prompt to exploit the architectural inductive bias. We select the trajectory segment that yields the largest prediction error on the pretrained world model to construct the prompt, aiming to encode task-specific information complementary to the world model maximally. Notably, the proposed framework eliminates the requirement of any expert demonstration or domain knowledge at test time. Experimental results on MuJoCo and Meta-World benchmarks across various dataset types show that Meta-DT exhibits superior few and zero-shot generalization capacity compared to strong baselines while being more practical with fewer prerequisites. Our code is available at https://github.com/NJU-RL/Meta-DT.
Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster
In this work, we propose FastCoT, a model-agnostic framework based on parallel decoding without any further training of an auxiliary model or modification to the LLM itself. FastCoT uses a size-varying context window whose size changes with position to conduct parallel decoding and auto-regressive decoding simultaneously, thus fully utilizing GPU computation resources. In FastCoT, the parallel decoding part provides the LLM with a quick glance of the future composed of approximate tokens, which could lead to faster answers compared to regular autoregressive decoding used by causal transformers. We also provide an implementation of parallel decoding within LLM, which supports KV-cache generation and batch processing. Through extensive experiments, we demonstrate that FastCoT saves inference time by nearly 20% with only a negligible performance drop compared to the regular approach. Additionally, we show that the context window size exhibits considerable robustness for different tasks.
Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling
Reasoning from sequences of raw sensory data is a ubiquitous problem across fields ranging from medical devices to robotics. These problems often involve using long sequences of raw sensor data (e.g. magnetometers, piezoresistors) to predict sequences of desirable physical quantities (e.g. force, inertial measurements). While classical approaches are powerful for locally-linear prediction problems, they often fall short when using real-world sensors. These sensors are typically non-linear, are affected by extraneous variables (e.g. vibration), and exhibit data-dependent drift. For many problems, the prediction task is exacerbated by small labeled datasets since obtaining ground-truth labels requires expensive equipment. In this work, we present Hierarchical State-Space Models (HiSS), a conceptually simple, new technique for continuous sequential prediction. HiSS stacks structured state-space models on top of each other to create a temporal hierarchy. Across six real-world sensor datasets, from tactile-based state prediction to accelerometer-based inertial measurement, HiSS outperforms state-of-the-art sequence models such as causal Transformers, LSTMs, S4, and Mamba by at least 23% on MSE. Our experiments further indicate that HiSS demonstrates efficient scaling to smaller datasets and is compatible with existing data-filtering techniques. Code, datasets and videos can be found on https://hiss-csp.github.io.
Causal Diffusion Transformers for Generative Modeling
We introduce Causal Diffusion as the autoregressive (AR) counterpart of Diffusion models. It is a next-token(s) forecasting framework that is friendly to both discrete and continuous modalities and compatible with existing next-token prediction models like LLaMA and GPT. While recent works attempt to combine diffusion with AR models, we show that introducing sequential factorization to a diffusion model can substantially improve its performance and enables a smooth transition between AR and diffusion generation modes. Hence, we propose CausalFusion - a decoder-only transformer that dual-factorizes data across sequential tokens and diffusion noise levels, leading to state-of-the-art results on the ImageNet generation benchmark while also enjoying the AR advantage of generating an arbitrary number of tokens for in-context reasoning. We further demonstrate CausalFusion's multimodal capabilities through a joint image generation and captioning model, and showcase CausalFusion's ability for zero-shot in-context image manipulations. We hope that this work could provide the community with a fresh perspective on training multimodal models over discrete and continuous data.
Teaching Transformers Causal Reasoning through Axiomatic Training
For text-based AI systems to interact in the real world, causal reasoning is an essential skill. Since interventional data is costly to generate, we study to what extent an agent can learn causal reasoning from passive data. Specifically, we consider an axiomatic training setup where an agent learns from multiple demonstrations of a causal axiom (or rule), rather than incorporating the axiom as an inductive bias or inferring it from data values. A key question is whether the agent would learn to generalize from the axiom demonstrations to new scenarios. For example, if a transformer model is trained on demonstrations of the causal transitivity axiom over small graphs, would it generalize to applying the transitivity axiom over large graphs? Our results, based on a novel axiomatic training scheme, indicate that such generalization is possible. We consider the task of inferring whether a variable causes another variable, given a causal graph structure. We find that a 67 million parameter transformer model, when trained on linear causal chains (along with some noisy variations) can generalize well to new kinds of graphs, including longer causal chains, causal chains with reversed order, and graphs with branching; even when it is not explicitly trained for such settings. Our model performs at par (or even better) than many larger language models such as GPT-4, Gemini Pro, and Phi-3. Overall, our axiomatic training framework provides a new paradigm of learning causal reasoning from passive data that can be used to learn arbitrary axioms, as long as sufficient demonstrations can be generated.
CAT: Causal Audio Transformer for Audio Classification
The attention-based Transformers have been increasingly applied to audio classification because of their global receptive field and ability to handle long-term dependency. However, the existing frameworks which are mainly extended from the Vision Transformers are not perfectly compatible with audio signals. In this paper, we introduce a Causal Audio Transformer (CAT) consisting of a Multi-Resolution Multi-Feature (MRMF) feature extraction with an acoustic attention block for more optimized audio modeling. In addition, we propose a causal module that alleviates over-fitting, helps with knowledge transfer, and improves interpretability. CAT obtains higher or comparable state-of-the-art classification performance on ESC50, AudioSet and UrbanSound8K datasets, and can be easily generalized to other Transformer-based models.
VINCIE: Unlocking In-context Image Editing from Video
In-context image editing aims to modify images based on a contextual sequence comprising text and previously generated images. Existing methods typically depend on task-specific pipelines and expert models (e.g., segmentation and inpainting) to curate training data. In this work, we explore whether an in-context image editing model can be learned directly from videos. We introduce a scalable approach to annotate videos as interleaved multimodal sequences. To effectively learn from this data, we design a block-causal diffusion transformer trained on three proxy tasks: next-image prediction, current segmentation prediction, and next-segmentation prediction. Additionally, we propose a novel multi-turn image editing benchmark to advance research in this area. Extensive experiments demonstrate that our model exhibits strong in-context image editing capabilities and achieves state-of-the-art results on two multi-turn image editing benchmarks. Despite being trained exclusively on videos, our model also shows promising abilities in multi-concept composition, story generation, and chain-of-editing applications.
STAR: Learning Diverse Robot Skill Abstractions through Rotation-Augmented Vector Quantization
Transforming complex actions into discrete skill abstractions has demonstrated strong potential for robotic manipulation. Existing approaches mainly leverage latent variable models, e.g., VQ-VAE, to learn skill abstractions through learned vectors (codebooks), while they suffer from codebook collapse and modeling the causal relationship between learned skills. To address these limitations, we present Skill Training with Augmented Rotation (STAR), a framework that advances both skill learning and composition to complete complex behaviors. Specifically, to prevent codebook collapse, we devise rotation-augmented residual skill quantization (RaRSQ). It encodes relative angles between encoder outputs into the gradient flow by rotation-based gradient mechanism. Points within the same skill code are forced to be either pushed apart or pulled closer together depending on gradient directions. Further, to capture the causal relationship between skills, we present causal skill transformer (CST) which explicitly models dependencies between skill representations through an autoregressive mechanism for coherent action generation. Extensive experiments demonstrate the superiority of STAR on both LIBERO benchmark and realworld tasks, with around 12\% improvement over the baselines.
DAG-aware Transformer for Causal Effect Estimation
Causal inference is a critical task across fields such as healthcare, economics, and the social sciences. While recent advances in machine learning, especially those based on the deep-learning architectures, have shown potential in estimating causal effects, existing approaches often fall short in handling complex causal structures and lack adaptability across various causal scenarios. In this paper, we present a novel transformer-based method for causal inference that overcomes these challenges. The core innovation of our model lies in its integration of causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism, enabling it to accurately model the underlying causal structure. This allows for flexible estimation of both average treatment effects (ATE) and conditional average treatment effects (CATE). Extensive experiments on both synthetic and real-world datasets demonstrate that our approach surpasses existing methods in estimating causal effects across a wide range of scenarios. The flexibility and robustness of our model make it a valuable tool for researchers and practitioners tackling complex causal inference problems.
How Transformers Learn Causal Structure with Gradient Descent
The incredible success of transformers on sequence modeling tasks can be largely attributed to the self-attention mechanism, which allows information to be transferred between different parts of a sequence. Self-attention allows transformers to encode causal structure which makes them particularly suitable for sequence modeling. However, the process by which transformers learn such causal structure via gradient-based training algorithms remains poorly understood. To better understand this process, we introduce an in-context learning task that requires learning latent causal structure. We prove that gradient descent on a simplified two-layer transformer learns to solve this task by encoding the latent causal graph in the first attention layer. The key insight of our proof is that the gradient of the attention matrix encodes the mutual information between tokens. As a consequence of the data processing inequality, the largest entries of this gradient correspond to edges in the latent causal graph. As a special case, when the sequences are generated from in-context Markov chains, we prove that transformers learn an induction head (Olsson et al., 2022). We confirm our theoretical findings by showing that transformers trained on our in-context learning task are able to recover a wide variety of causal structures.
Transformers Use Causal World Models in Maze-Solving Tasks
Recent studies in interpretability have explored the inner workings of transformer models trained on tasks across various domains, often discovering that these networks naturally develop highly structured representations. When such representations comprehensively reflect the task domain's structure, they are commonly referred to as "World Models" (WMs). In this work, we identify WMs in transformers trained on maze-solving tasks. By using Sparse Autoencoders (SAEs) and analyzing attention patterns, we examine the construction of WMs and demonstrate consistency between SAE feature-based and circuit-based analyses. By subsequently intervening on isolated features to confirm their causal role, we find that it is easier to activate features than to suppress them. Furthermore, we find that models can reason about mazes involving more simultaneously active features than they encountered during training; however, when these same mazes (with greater numbers of connections) are provided to models via input tokens instead, the models fail. Finally, we demonstrate that positional encoding schemes appear to influence how World Models are structured within the model's residual stream.
A Meta-Learning Perspective on Transformers for Causal Language Modeling
The Transformer architecture has become prominent in developing large causal language models. However, mechanisms to explain its capabilities are not well understood. Focused on the training process, here we establish a meta-learning view of the Transformer architecture when trained for the causal language modeling task, by explicating an inner optimization process that may happen within the Transformer. Further, from within the inner optimization, we discover and theoretically analyze a special characteristic of the norms of learned token representations within Transformer-based causal language models. Our analysis is supported by experiments conducted on pre-trained large language models and real-world data.
Future Token Prediction -- Causal Language Modelling with Per-Token Semantic State Vector for Multi-Token Prediction
Causal decoder-only transformer models used for generative language modelling, such as Generative Pre-trained Transformers (GPT), are trained to predict the next token in a sequence based only on its previous tokens. Despite this simple training objective, they have proved to be powerful AI tools. However, only predicting the next token results in top layer embedding vectors that are highly token-focused. There may be benefits in generating embedding vectors at each token position that better capture the overall meaning of longer sequences of future text. Recent studies matching brain scans with deep language models suggest that humans also predict upcoming words when listening or reading but consider multiple future tokens rather than just one. This research investigates a new pretraining method called Future Token Prediction (FTP). In FTP, a large transformer encoder generates top layer embedding vectors for each token position, which, instead of being passed to a language head, are linearly and expansively projected to a pseudo-sequence, which is cross attended to by a small transformer decoder to predict the next N tokens forward from that position in the sequence. The top layer embedding vectors from FTP models exhibit distinct properties compared to those from standard GPT models, varying smoothly along a text sequence as measured by cosine similarity between adjacent tokens. Text generated by FTP models show improved topic coherence compared to standard GPT-like models trained with the same prediction perplexity for the next single token. The vectors are shown to better represent the topic of text based on the results of text classification examples. On a toy, but complex, coding problem, FTP networks produce significantly better results than GPT networks.
Behind RoPE: How Does Causal Mask Encode Positional Information?
While explicit positional encodings such as RoPE are a primary source of positional information in Transformer decoders, the causal mask also provides positional information. In this work, we prove that the causal mask can induce position-dependent patterns in attention scores, even without parameters or causal dependency in the input. Our theoretical analysis indicates that the induced attention pattern tends to favor nearby query-key pairs, mirroring the behavior of common positional encodings. Empirical analysis confirms that trained models exhibit the same behavior, with learned parameters further amplifying these patterns. Notably, we found that the interaction of causal mask and RoPE distorts RoPE's relative attention score patterns into non-relative ones. We consistently observed this effect in modern large language models, suggesting the importance of considering the causal mask as a source of positional information alongside explicit positional encodings.
A Length-Extrapolatable Transformer
Position modeling plays a critical role in Transformers. In this paper, we focus on length extrapolation, i.e., training on short texts while evaluating longer sequences. We define attention resolution as an indicator of extrapolation. Then we propose two designs to improve the above metric of Transformers. Specifically, we introduce a relative position embedding to explicitly maximize attention resolution. Moreover, we use blockwise causal attention during inference for better resolution. We evaluate different Transformer variants with language modeling. Experimental results show that our model achieves strong performance in both interpolation and extrapolation settings. The code will be available at https://aka.ms/LeX-Transformer.
Linear Attention for Efficient Bidirectional Sequence Modeling
Linear Transformers and State Space Models have emerged as efficient alternatives to softmax Transformers for causal sequence modeling, enabling parallel training via matrix multiplication and efficient RNN-style inference. However, despite their success in causal tasks, no unified framework exists for applying Linear Transformers to bidirectional sequence modeling. We introduce LION, the first framework to systematically extend Linear Transformers to the bidirectional setting. LION generalizes three core representations commonly used in the causal case - full Linear Attention , bidirectional RNN, and chunkwise parallel form - to the bidirectional setting. These forms are theoretically equivalent and enable models to exploit the strengths of each during training and inference. We prove that a broad class of Linear Transformers can be extended using LION and validate our framework via three core examples based on the choice of decay type: LION-LIT, the bidirectional extension of arXiv:2006.16236; LION-D, based on arXiv:2307.08621; and LION-S, a variant using selective decay arXiv:2103.02143, arXiv:2312.0075. Across standard bidirectional tasks, LION enables models to match or exceed the performance of softmax Transformers, while offering significantly faster training and more efficient inference than existing State Space Models.
ENTP: Encoder-only Next Token Prediction
Next-token prediction models have predominantly relied on decoder-only Transformers with causal attention, driven by the common belief that causal attention is essential to prevent "cheating" by masking future tokens. We challenge this widely accepted notion and argue that this design choice is about efficiency rather than necessity. While decoder-only Transformers are still a good choice for practical reasons, they are not the only viable option. In this work, we introduce Encoder-only Next Token Prediction (ENTP). We explore the differences between ENTP and decoder-only Transformers in expressive power and complexity, highlighting potential advantages of ENTP. We introduce the Triplet-Counting task and show, both theoretically and experimentally, that while ENTP can perform this task easily, a decoder-only Transformer cannot. Finally, we empirically demonstrate ENTP's superior performance across various realistic tasks, such as length generalization and in-context learning.
Scaling Laws Beyond Backpropagation
Alternatives to backpropagation have long been studied to better understand how biological brains may learn. Recently, they have also garnered interest as a way to train neural networks more efficiently. By relaxing constraints inherent to backpropagation (e.g., symmetric feedforward and feedback weights, sequential updates), these methods enable promising prospects, such as local learning. However, the tradeoffs between different methods in terms of final task performance, convergence speed, and ultimately compute and data requirements are rarely outlined. In this work, we use scaling laws to study the ability of Direct Feedback Alignment~(DFA) to train causal decoder-only Transformers efficiently. Scaling laws provide an overview of the tradeoffs implied by a modeling decision, up to extrapolating how it might transfer to increasingly large models. We find that DFA fails to offer more efficient scaling than backpropagation: there is never a regime for which the degradation in loss incurred by using DFA is worth the potential reduction in compute budget. Our finding comes at variance with previous beliefs in the alternative training methods community, and highlights the need for holistic empirical approaches to better understand modeling decisions.
Encoding Multi-level Dynamics in Effect Heterogeneity Estimation
Earth Observation (EO) data are increasingly used in policy analysis by enabling granular estimation of treatment effects. However, a challenge in EO-based causal inference lies in balancing the trade-off between capturing fine-grained individual heterogeneity and broader contextual information. This paper introduces Multi-scale Concatenation, a family of composable procedures that transform arbitrary single-scale CATE estimation algorithms into multi-scale algorithms. We benchmark the performance of Multi-scale Concatenation on a CATE estimation pipeline combining Vision Transformer (ViT) models fine-tuned on satellite images to encode images of different scales with Causal Forests to obtain the final CATE estimate. We first perform simulation studies, showing how a multi-scale approach captures multi-level dynamics that single-scale ViT models fail to capture. We then apply the multi-scale method to two randomized controlled trials (RCTs) conducted in Peru and Uganda using Landsat satellite imagery. In the RCT analysis, the Rank Average Treatment Effect Ratio (RATE Ratio) measure is employed to assess performance without ground truth individual treatment effects. Results indicate that Multi-scale Concatenation improves the performance of deep learning models in EO-based CATE estimation without the complexity of designing new multi-scale architectures for a specific use case.
Masked Mixers for Language Generation and Retrieval
Attention mechanisms that confer selective focus on a strict subset of input elements are nearly ubiquitous in language models today. We posit there to be downside to the use of attention: most information present in the input is necessarily lost. In support of this idea we observe poor input representation accuracy in transformers, but find more accurate representation in what we term masked mixers which replace self-attention with masked convolutions. Applied to TinyStories the masked mixer learns causal language tasks more efficiently than early transformer implementations and somewhat less efficiently than optimized, current implementations. The most efficient learning algorithm observed for this dataset is a transformer-masked mixer hybrid, suggesting that these models learn in an orthogonal manner. We hypothesized that the information loss exhibited by transformers would be much more detrimental to retrieval than generation, and to test this we introduce an efficient training approach for retrieval models based on existing generative model embeddings. With this method, embeddings from masked mixers are found to result in far better summary-to-story retrieval compared to embeddings from transformers.
Causal Head Gating: A Framework for Interpreting Roles of Attention Heads in Transformers
We present causal head gating (CHG), a scalable method for interpreting the functional roles of attention heads in transformer models. CHG learns soft gates over heads and assigns them a causal taxonomy - facilitating, interfering, or irrelevant - based on their impact on task performance. Unlike prior approaches in mechanistic interpretability, which are hypothesis-driven and require prompt templates or target labels, CHG applies directly to any dataset using standard next-token prediction. We evaluate CHG across multiple large language models (LLMs) in the Llama 3 model family and diverse tasks, including syntax, commonsense, and mathematical reasoning, and show that CHG scores yield causal, not merely correlational, insight validated via ablation and causal mediation analyses. We also introduce contrastive CHG, a variant that isolates sub-circuits for specific task components. Our findings reveal that LLMs contain multiple sparse task-sufficient sub-circuits, that individual head roles depend on interactions with others (low modularity), and that instruction following and in-context learning rely on separable mechanisms.
Breaking Symmetry When Training Transformers
As we show in this paper, the prediction for output token n+1 of Transformer architectures without one of the mechanisms of positional encodings and causal attention is invariant to permutations of input tokens 1, 2, ..., n-1. Usually, both mechanisms are employed and the symmetry with respect to the input tokens is broken. Recently, it has been shown that one can train Transformers without positional encodings. This must be enabled by the causal attention mechanism. In this paper, we elaborate on the argument that the causal connection mechanism must be responsible for the fact that Transformers are able to model input sequences where the order is important. Vertical "slices" of Transformers are all encouraged to represent the same location k in the input sequence. We hypothesize that residual connections contribute to this phenomenon, and demonstrate evidence for this.
Graph-of-Causal Evolution: Challenging Chain-of-Model for Reasoning
In view of the problem that each subchain in the chain-of-model (CoM) relies only on the information of the previous subchain and may lose long-range dependencies due to the causal mask blocking the global context flow between multi-level subchains, this work proposes a graph of causal evolution (GoCE). Its core principle is to map the implicit token representation into a differentiable and sparse causal adjacency matrix, then permeate causal constraints through each layer of calculation using causal-masked attention and causal-MoE. By combining intervention consistency loss test and self-evolution gate, the dynamic balance between causal structure learning and adaptive updating of transformer architecture is realized. The researcher built experimental environments in sandboxes built with Claude Sonnet 4, o4-mini-high, and DeepSeek R1 respectively with the transformer variant architecture introduced in GoCE. It is evaluated on publicly available datasets including CLUTRR, CLADDER, EX-FEVER, and CausalQA and compared with the baseline LLMs. The finding proves that GoCE strengthens the transformer's ability to capture long-range causal dependencies, while the ability to self-evolve is improved. It not only surpasses the design of CoM in terms of design principles, but also provides experience for future research on causal learning and continuous adaptive improvement.
Causal Language Modeling Can Elicit Search and Reasoning Capabilities on Logic Puzzles
Causal language modeling using the Transformer architecture has yielded remarkable capabilities in Large Language Models (LLMs) over the last few years. However, the extent to which fundamental search and reasoning capabilities emerged within LLMs remains a topic of ongoing debate. In this work, we study if causal language modeling can learn a complex task such as solving Sudoku puzzles. To solve a Sudoku, the model is first required to search over all empty cells of the puzzle to decide on a cell to fill and then apply an appropriate strategy to fill the decided cell. Sometimes, the application of a strategy only results in thinning down the possible values in a cell rather than concluding the exact value of the cell. In such cases, multiple strategies are applied one after the other to fill a single cell. We observe that Transformer models trained on this synthetic task can indeed learn to solve Sudokus (our model solves 94.21% of the puzzles fully correctly) when trained on a logical sequence of steps taken by a solver. We find that training Transformers with the logical sequence of steps is necessary and without such training, they fail to learn Sudoku. We also extend our analysis to Zebra puzzles (known as Einstein puzzles) and show that the model solves 92.04 % of the puzzles fully correctly. In addition, we study the internal representations of the trained Transformer and find that through linear probing, we can decode information about the set of possible values in any given cell from them, pointing to the presence of a strong reasoning engine implicit in the Transformer weights.
Faster Causal Attention Over Large Sequences Through Sparse Flash Attention
Transformer-based language models have found many diverse applications requiring them to process sequences of increasing length. For these applications, the causal self-attention -- which is the only component scaling quadratically w.r.t. the sequence length -- becomes a central concern. While many works have proposed schemes to sparsify the attention patterns and reduce the computational overhead of self-attention, those are often limited by implementations concerns and end up imposing a simple and static structure over the attention matrix. Conversely, implementing more dynamic sparse attentions often results in runtimes significantly slower than computing the full attention using the Flash implementation from Dao et al. (2022). We extend FlashAttention to accommodate a large class of attention sparsity patterns that, in particular, encompass key/query dropping and hashing-based attention. This leads to implementations with no computational complexity overhead and a multi-fold runtime speedup on top of FlashAttention. Even with relatively low degrees of sparsity, our method improves visibly upon FlashAttention as the sequence length increases. Without sacrificing perplexity, we increase the training speed of a transformer language model by 2.0times and 3.3times for sequences of respectively 8k and 16k tokens.
Adapting LLaMA Decoder to Vision Transformer
This work examines whether decoder-only Transformers such as LLaMA, which were originally designed for large language models (LLMs), can be adapted to the computer vision field. We first "LLaMAfy" a standard ViT step-by-step to align with LLaMA's architecture, and find that directly applying a casual mask to the self-attention brings an attention collapse issue, resulting in the failure to the network training. We suggest to reposition the class token behind the image tokens with a post-sequence class token technique to overcome this challenge, enabling causal self-attention to efficiently capture the entire image's information. Additionally, we develop a soft mask strategy that gradually introduces a casual mask to the self-attention at the onset of training to facilitate the optimization behavior. The tailored model, dubbed as image LLaMA (iLLaMA), is akin to LLaMA in architecture and enables direct supervised learning. Its causal self-attention boosts computational efficiency and learns complex representation by elevating attention map ranks. iLLaMA rivals the performance with its encoder-only counterparts, achieving 75.1% ImageNet top-1 accuracy with only 5.7M parameters. Scaling the model to ~310M and pre-training on ImageNet-21K further enhances the accuracy to 86.0%. Extensive experiments demonstrate iLLaMA's reliable properties: calibration, shape-texture bias, quantization compatibility, ADE20K segmentation and CIFAR transfer learning. We hope our study can kindle fresh views to visual model design in the wave of LLMs. Pre-trained models and codes are available here.
Steering Conceptual Bias via Transformer Latent-Subspace Activation
This work examines whether activating latent subspaces in language models (LLMs) can steer scientific code generation toward a specific programming language. Five causal LLMs were first evaluated on scientific coding prompts to quantify their baseline bias among four programming languages. A static neuron-attribution method, perturbing the highest activated MLP weight for a C++ or CPP token, proved brittle and exhibited limited generalization across prompt styles and model scales. To address these limitations, a gradient-refined adaptive activation steering framework (G-ACT) was developed: per-prompt activation differences are clustered into a small set of steering directions, and lightweight per-layer probes are trained and refined online to select the appropriate steering vector. In LLaMA-3.2 3B, this approach reliably biases generation towards the CPP language by increasing the average probe classification accuracy by 15% and the early layers (0-6) improving the probe classification accuracy by 61.5% compared to the standard ACT framework. For LLaMA-3.3 70B, where attention-head signals become more diffuse, targeted injections at key layers still improve language selection. Although per-layer probing introduces a modest inference overhead, it remains practical by steering only a subset of layers and enables reproducible model behavior. These results demonstrate a scalable, interpretable and efficient mechanism for concept-level control for practical agentic systems.
Eliciting Latent Predictions from Transformers with the Tuned Lens
We analyze transformers from the perspective of iterative inference, seeking to understand how model predictions are refined layer by layer. To do so, we train an affine probe for each block in a frozen pretrained model, making it possible to decode every hidden state into a distribution over the vocabulary. Our method, the tuned lens, is a refinement of the earlier "logit lens" technique, which yielded useful insights but is often brittle. We test our method on various autoregressive language models with up to 20B parameters, showing it to be more predictive, reliable and unbiased than the logit lens. With causal experiments, we show the tuned lens uses similar features to the model itself. We also find the trajectory of latent predictions can be used to detect malicious inputs with high accuracy. All code needed to reproduce our results can be found at https://github.com/AlignmentResearch/tuned-lens.
TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second
We present TabPFN, a trained Transformer that can do supervised classification for small tabular datasets in less than a second, needs no hyperparameter tuning and is competitive with state-of-the-art classification methods. TabPFN performs in-context learning (ICL), it learns to make predictions using sequences of labeled examples (x, f(x)) given in the input, without requiring further parameter updates. TabPFN is fully entailed in the weights of our network, which accepts training and test samples as a set-valued input and yields predictions for the entire test set in a single forward pass. TabPFN is a Prior-Data Fitted Network (PFN) and is trained offline once, to approximate Bayesian inference on synthetic datasets drawn from our prior. This prior incorporates ideas from causal reasoning: It entails a large space of structural causal models with a preference for simple structures. On the 18 datasets in the OpenML-CC18 suite that contain up to 1 000 training data points, up to 100 purely numerical features without missing values, and up to 10 classes, we show that our method clearly outperforms boosted trees and performs on par with complex state-of-the-art AutoML systems with up to 230times speedup. This increases to a 5 700times speedup when using a GPU. We also validate these results on an additional 67 small numerical datasets from OpenML. We provide all our code, the trained TabPFN, an interactive browser demo and a Colab notebook at https://github.com/automl/TabPFN.
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
Causal effect estimation from observational data is fundamental across various applications. However, selecting an appropriate estimator from dozens of specialized methods demands substantial manual effort and domain expertise. We present CausalPFN, a single transformer that amortizes this workflow: trained once on a large library of simulated data-generating processes that satisfy ignorability, it infers causal effects for new observational datasets out-of-the-box. CausalPFN combines ideas from Bayesian causal inference with the large-scale training protocol of prior-fitted networks (PFNs), learning to map raw observations directly to causal effects without any task-specific adjustment. Our approach achieves superior average performance on heterogeneous and average treatment effect estimation benchmarks (IHDP, Lalonde, ACIC). Moreover, it shows competitive performance for real-world policy making on uplift modeling tasks. CausalPFN provides calibrated uncertainty estimates to support reliable decision-making based on Bayesian principles. This ready-to-use model does not require any further training or tuning and takes a step toward automated causal inference (https://github.com/vdblm/CausalPFN).
Causal Interventions on Causal Paths: Mapping GPT-2's Reasoning From Syntax to Semantics
While interpretability research has shed light on some internal algorithms utilized by transformer-based LLMs, reasoning in natural language, with its deep contextuality and ambiguity, defies easy categorization. As a result, formulating clear and motivating questions for circuit analysis that rely on well-defined in-domain and out-of-domain examples required for causal interventions is challenging. Although significant work has investigated circuits for specific tasks, such as indirect object identification (IOI), deciphering natural language reasoning through circuits remains difficult due to its inherent complexity. In this work, we take initial steps to characterize causal reasoning in LLMs by analyzing clear-cut cause-and-effect sentences like "I opened an umbrella because it started raining," where causal interventions may be possible through carefully crafted scenarios using GPT-2 small. Our findings indicate that causal syntax is localized within the first 2-3 layers, while certain heads in later layers exhibit heightened sensitivity to nonsensical variations of causal sentences. This suggests that models may infer reasoning by (1) detecting syntactic cues and (2) isolating distinct heads in the final layers that focus on semantic relationships.
Resource-Efficient Separation Transformer
Transformers have recently achieved state-of-the-art performance in speech separation. These models, however, are computationally-demanding and require a lot of learnable parameters. This paper explores Transformer-based speech separation with a reduced computational cost. Our main contribution is the development of the Resource-Efficient Separation Transformer (RE-SepFormer), a self-attention-based architecture that reduces the computational burden in two ways. First, it uses non-overlapping blocks in the latent space. Second, it operates on compact latent summaries calculated from each chunk. The RE-SepFormer reaches a competitive performance on the popular WSJ0-2Mix and WHAM! datasets in both causal and non-causal settings. Remarkably, it scales significantly better than the previous Transformer and RNN-based architectures in terms of memory and inference-time, making it more suitable for processing long mixtures.
Mechanistic evaluation of Transformers and state space models
State space models (SSMs) for language modelling promise an efficient and performant alternative to quadratic-attention Transformers, yet show variable performance on recalling basic information from the context. While performance on synthetic tasks like Associative Recall (AR) can point to this deficiency, behavioural metrics provide little information as to why--on a mechanistic level--certain architectures fail and others succeed. To address this, we conduct experiments on AR and find that only Transformers and Based SSM models fully succeed at AR, with Mamba a close third, whereas the other SSMs (H3, Hyena) fail. We then use causal interventions to explain why. We find that Transformers and Based learn to store key-value associations in-context using induction heads. By contrast, the SSMs compute these associations only at the last state, with only Mamba succeeding because of its short convolution component. To extend and deepen these findings, we introduce Associative Treecall (ATR), a synthetic task similar to AR based on PCFG induction. ATR introduces language-like hierarchical structure into the AR setting. We find that all architectures learn the same mechanism as they did for AR, and the same three models succeed at the task. These results reveal that architectures with similar accuracy may still have substantive differences, motivating the adoption of mechanistic evaluations.
Mitigating Adversarial Vulnerability through Causal Parameter Estimation by Adversarial Double Machine Learning
Adversarial examples derived from deliberately crafted perturbations on visual inputs can easily harm decision process of deep neural networks. To prevent potential threats, various adversarial training-based defense methods have grown rapidly and become a de facto standard approach for robustness. Despite recent competitive achievements, we observe that adversarial vulnerability varies across targets and certain vulnerabilities remain prevalent. Intriguingly, such peculiar phenomenon cannot be relieved even with deeper architectures and advanced defense methods. To address this issue, in this paper, we introduce a causal approach called Adversarial Double Machine Learning (ADML), which allows us to quantify the degree of adversarial vulnerability for network predictions and capture the effect of treatments on outcome of interests. ADML can directly estimate causal parameter of adversarial perturbations per se and mitigate negative effects that can potentially damage robustness, bridging a causal perspective into the adversarial vulnerability. Through extensive experiments on various CNN and Transformer architectures, we corroborate that ADML improves adversarial robustness with large margins and relieve the empirical observation.
Controllable Text Generation with Residual Memory Transformer
Large-scale Causal Language Models (CLMs), e.g., GPT3 and ChatGPT, have brought great success in text generation. However, it is still an open challenge to control the generation process of CLM while balancing flexibility, control granularity, and generation efficiency. In this paper, we provide a new alternative for controllable text generation (CTG), by designing a non-intrusive, lightweight control plugin to accompany the generation of CLM at arbitrary time steps. The proposed control plugin, namely Residual Memory Transformer (RMT), has an encoder-decoder setup, which can accept any types of control conditions and cooperate with CLM through a residual learning paradigm, to achieve a more flexible, general, and efficient CTG. Extensive experiments are carried out on various control tasks, in the form of both automatic and human evaluations. The results show the superiority of RMT over a range of state-of-the-art approaches, proving the effectiveness and versatility of our approach.
Video Pre-trained Transformer: A Multimodal Mixture of Pre-trained Experts
We present Video Pre-trained Transformer. VPT uses four SOTA encoder models from prior work to convert a video into a sequence of compact embeddings. Our backbone, based on a reference Flan-T5-11B architecture, learns a universal representation of the video that is a non-linear sum of the encoder models. It learns using an autoregressive causal language modeling loss by predicting the words spoken in YouTube videos. Finally, we evaluate on standard downstream benchmarks by training fully connected prediction heads for each task. To the best of our knowledge, this is the first use of multiple frozen SOTA models as encoders in an "embedding -> backbone -> prediction head" design pattern - all others have trained their own joint encoder models. Additionally, we include more modalities than the current SOTA, Merlot Reserve, by adding explicit Scene Graph information. For these two reasons, we believe it could combine the world's best open-source models to achieve SOTA performance. Initial experiments demonstrate the model is learning appropriately, but more experimentation and compute is necessary, and already in progress, to realize our loftier goals. Alongside this work, we build on the YT-20M dataset, reproducing it and adding 25,000 personally selected YouTube videos to its corpus. All code and model checkpoints are open sourced under a standard MIT license.
A Mechanistic Interpretation of Arithmetic Reasoning in Language Models using Causal Mediation Analysis
Mathematical reasoning in large language models (LMs) has garnered significant attention in recent work, but there is a limited understanding of how these models process and store information related to arithmetic tasks within their architecture. In order to improve our understanding of this aspect of language models, we present a mechanistic interpretation of Transformer-based LMs on arithmetic questions using a causal mediation analysis framework. By intervening on the activations of specific model components and measuring the resulting changes in predicted probabilities, we identify the subset of parameters responsible for specific predictions. This provides insights into how information related to arithmetic is processed by LMs. Our experimental results indicate that LMs process the input by transmitting the information relevant to the query from mid-sequence early layers to the final token using the attention mechanism. Then, this information is processed by a set of MLP modules, which generate result-related information that is incorporated into the residual stream. To assess the specificity of the observed activation dynamics, we compare the effects of different model components on arithmetic queries with other tasks, including number retrieval from prompts and factual knowledge questions.
Cottention: Linear Transformers With Cosine Attention
Attention mechanisms, particularly softmax attention, have been instrumental in the success of transformer-based models such as GPT. However, the quadratic memory complexity of softmax attention with respect to sequence length poses significant challenges for processing longer sequences. We introduce Cottention, a novel attention mechanism that replaces the softmax operation with cosine similarity. By leveraging the properties of cosine similarity and rearranging the attention equation, Cottention achieves native linear memory complexity with respect to sequence length, making it inherently more memory-efficient than softmax attention. We demonstrate that Cottention can be reformulated as a recurrent neural network (RNN) with a finite hidden state, allowing for constant memory usage during inference. We evaluate Cottention on both the bidirectional BERT and causal GPT tasks, demonstrating comparable performance to softmax attention while significantly reducing memory requirements. To ensure efficient computation, we develop a custom CUDA kernel for Cottention. Our results show that Cottention is a promising alternative to softmax attention, enabling the processing of longer sequences without sacrificing performance, due to its native linear memory complexity and ability to maintain a constant memory footprint during inference.
Analyzing Feed-Forward Blocks in Transformers through the Lens of Attention Map
Given that Transformers are ubiquitous in wide tasks, interpreting their internals is a pivotal issue. Still, their particular components, feed-forward (FF) blocks, have typically been less analyzed despite their substantial parameter amounts. We analyze the input contextualization effects of FF blocks by rendering them in the attention maps as a human-friendly visualization scheme. Our experiments with both masked- and causal-language models reveal that FF networks modify the input contextualization to emphasize specific types of linguistic compositions. In addition, FF and its surrounding components tend to cancel out each other's effects, suggesting potential redundancy in the processing of the Transformer layer.
TRecViT: A Recurrent Video Transformer
We propose a novel block for video modelling. It relies on a time-space-channel factorisation with dedicated blocks for each dimension: gated linear recurrent units (LRUs) perform information mixing over time, self-attention layers perform mixing over space, and MLPs over channels. The resulting architecture TRecViT performs well on sparse and dense tasks, trained in supervised or self-supervised regimes. Notably, our model is causal and outperforms or is on par with a pure attention model ViViT-L on large scale video datasets (SSv2, Kinetics400), while having 3times less parameters, 12times smaller memory footprint, and 5times lower FLOPs count. Code and checkpoints will be made available online at https://github.com/google-deepmind/trecvit.
CarelessWhisper: Turning Whisper into a Causal Streaming Model
Automatic Speech Recognition (ASR) has seen remarkable progress, with models like OpenAI Whisper and NVIDIA Canary achieving state-of-the-art (SOTA) performance in offline transcription. However, these models are not designed for streaming (online or real-time) transcription, due to limitations in their architecture and training methodology. We propose a method to turn the transformer encoder-decoder model into a low-latency streaming model that is careless about future context. We present an analysis explaining why it is not straightforward to convert an encoder-decoder transformer to a low-latency streaming model. Our proposed method modifies the existing (non-causal) encoder to a causal encoder by fine-tuning both the encoder and decoder using Low-Rank Adaptation (LoRA) and a weakly aligned dataset. We then propose an updated inference mechanism that utilizes the fine-tune causal encoder and decoder to yield greedy and beam-search decoding, and is shown to be locally optimal. Experiments on low-latency chunk sizes (less than 300 msec) show that our fine-tuned model outperforms existing non-fine-tuned streaming approaches in most cases, while using a lower complexity. Additionally, we observe that our training process yields better alignment, enabling a simple method for extracting word-level timestamps. We release our training and inference code, along with the fine-tuned models, to support further research and development in streaming ASR.
AntLM: Bridging Causal and Masked Language Models
Causal Language Modeling (CLM) and Masked Language Modeling (MLM) are two mainstream learning paradigms based on Transformer networks, specifically the Decoder-only and Encoder-only architectures. The strengths of each paradigm in downstream tasks have shown a mix of advantages and disadvantages. In the past BabyLM Challenge 2023, although the MLM paradigm achieved the best average performance, the CLM paradigm demonstrated significantly faster convergence rates. For the BabyLM Challenge 2024, we propose a novel language modeling paradigm named AntLM, which integrates both CLM and MLM to leverage the advantages of these two classic paradigms. We chose the strict-small track and conducted experiments on two foundation models: BabyLlama, representing CLM, and LTG-BERT, representing MLM. During the training process for specific foundation models, we alternate between applying CLM or MLM training objectives and causal or bidirectional attention masks. Experimental results show that combining the two pretraining objectives leverages their strengths, enhancing overall training performance. Under the same epochs, AntLM_{BabyLlama} improves Macro-average by 1%, and AntLM_{LTG-BERT} achieves a 2.2% increase over the baselines.
CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer
We introduce CogVideoX, a large-scale diffusion transformer model designed for generating videos based on text prompts. To efficently model video data, we propose to levearge a 3D Variational Autoencoder (VAE) to compress videos along both spatial and temporal dimensions. To improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. By employing a progressive training technique, CogVideoX is adept at producing coherent, long-duration videos characterized by significant motions. In addition, we develop an effective text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method. It significantly helps enhance the performance of CogVideoX, improving both generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weights of both the 3D Causal VAE and CogVideoX are publicly available at https://github.com/THUDM/CogVideo.
EasyControl: Adding Efficient and Flexible Control for Diffusion Transformer
Recent advancements in Unet-based diffusion models, such as ControlNet and IP-Adapter, have introduced effective spatial and subject control mechanisms. However, the DiT (Diffusion Transformer) architecture still struggles with efficient and flexible control. To tackle this issue, we propose EasyControl, a novel framework designed to unify condition-guided diffusion transformers with high efficiency and flexibility. Our framework is built on three key innovations. First, we introduce a lightweight Condition Injection LoRA Module. This module processes conditional signals in isolation, acting as a plug-and-play solution. It avoids modifying the base model weights, ensuring compatibility with customized models and enabling the flexible injection of diverse conditions. Notably, this module also supports harmonious and robust zero-shot multi-condition generalization, even when trained only on single-condition data. Second, we propose a Position-Aware Training Paradigm. This approach standardizes input conditions to fixed resolutions, allowing the generation of images with arbitrary aspect ratios and flexible resolutions. At the same time, it optimizes computational efficiency, making the framework more practical for real-world applications. Third, we develop a Causal Attention Mechanism combined with the KV Cache technique, adapted for conditional generation tasks. This innovation significantly reduces the latency of image synthesis, improving the overall efficiency of the framework. Through extensive experiments, we demonstrate that EasyControl achieves exceptional performance across various application scenarios. These innovations collectively make our framework highly efficient, flexible, and suitable for a wide range of tasks.
SeedVR: Seeding Infinity in Diffusion Transformer Towards Generic Video Restoration
Video restoration poses non-trivial challenges in maintaining fidelity while recovering temporally consistent details from unknown degradations in the wild. Despite recent advances in diffusion-based restoration, these methods often face limitations in generation capability and sampling efficiency. In this work, we present SeedVR, a diffusion transformer designed to handle real-world video restoration with arbitrary length and resolution. The core design of SeedVR lies in the shifted window attention that facilitates effective restoration on long video sequences. SeedVR further supports variable-sized windows near the boundary of both spatial and temporal dimensions, overcoming the resolution constraints of traditional window attention. Equipped with contemporary practices, including causal video autoencoder, mixed image and video training, and progressive training, SeedVR achieves highly-competitive performance on both synthetic and real-world benchmarks, as well as AI-generated videos. Extensive experiments demonstrate SeedVR's superiority over existing methods for generic video restoration.
Playing with Transformer at 30+ FPS via Next-Frame Diffusion
Autoregressive video models offer distinct advantages over bidirectional diffusion models in creating interactive video content and supporting streaming applications with arbitrary duration. In this work, we present Next-Frame Diffusion (NFD), an autoregressive diffusion transformer that incorporates block-wise causal attention, enabling iterative sampling and efficient inference via parallel token generation within each frame. Nonetheless, achieving real-time video generation remains a significant challenge for such models, primarily due to the high computational cost associated with diffusion sampling and the hardware inefficiencies inherent to autoregressive generation. To address this, we introduce two innovations: (1) We extend consistency distillation to the video domain and adapt it specifically for video models, enabling efficient inference with few sampling steps; (2) To fully leverage parallel computation, motivated by the observation that adjacent frames often share the identical action input, we propose speculative sampling. In this approach, the model generates next few frames using current action input, and discard speculatively generated frames if the input action differs. Experiments on a large-scale action-conditioned video generation benchmark demonstrate that NFD beats autoregressive baselines in terms of both visual quality and sampling efficiency. We, for the first time, achieves autoregressive video generation at over 30 Frames Per Second (FPS) on an A100 GPU using a 310M model.
The Impossibility of Inverse Permutation Learning in Transformer Models
In this technical note, we study the problem of inverse permutation learning in decoder-only transformers. Given a permutation and a string to which that permutation has been applied, the model is tasked with producing the original (``canonical'') string. We argue that this task models a natural robustness property across a variety of reasoning tasks, including long-context retrieval, multiple choice QA and in-context learning. Our primary contribution is an impossibility result: we show that an arbitrary depth, decoder-only transformer cannot learn this task. This result concerns the expressive capacity of decoder-only transformer models and is agnostic to training dynamics or sample complexity. We give a pair of alternative constructions under which inverse permutation learning is feasible. The first of these highlights the fundamental role of the causal attention mask, and reveals a gap between the expressivity of encoder-decoder transformers and the more popular decoder-only architecture. The latter result is more surprising: we show that simply padding the input with ``scratch tokens" yields a construction under which inverse permutation learning is possible. We conjecture that this may suggest an alternative mechanism by which chain-of-thought prompting or, more generally, intermediate ``thinking'' tokens can enable reasoning in large language models, even when these tokens encode no meaningful semantic information (e.g., the results of intermediate computations).
Multiscale Byte Language Models -- A Hierarchical Architecture for Causal Million-Length Sequence Modeling
Bytes form the basis of the digital world and thus are a promising building block for multimodal foundation models. Recently, Byte Language Models (BLMs) have emerged to overcome tokenization, yet the excessive length of bytestreams requires new architectural paradigms. Therefore, we present the Multiscale Byte Language Model (MBLM), a model-agnostic hierarchical decoder stack that allows training with context windows of 5M bytes on single GPU in full model precision. We thoroughly examine MBLM's performance with Transformer and Mamba blocks on both unimodal and multimodal tasks. Our experiments demonstrate that hybrid architectures are efficient in handling extremely long byte sequences during training while achieving near-linear generational efficiency. To the best of our knowledge, we present the first evaluation of BLMs on visual Q\&A tasks and find that, despite serializing images and the absence of an encoder, a MBLM with pure next token prediction can match custom CNN-LSTM architectures with designated classification heads. We show that MBLMs exhibit strong adaptability in integrating diverse data representations, including pixel and image filestream bytes, underlining their potential toward omnimodal foundation models. Source code is publicly available at: https://github.com/ai4sd/multiscale-byte-lm
MaskMamba: A Hybrid Mamba-Transformer Model for Masked Image Generation
Image generation models have encountered challenges related to scalability and quadratic complexity, primarily due to the reliance on Transformer-based backbones. In this study, we introduce MaskMamba, a novel hybrid model that combines Mamba and Transformer architectures, utilizing Masked Image Modeling for non-autoregressive image synthesis. We meticulously redesign the bidirectional Mamba architecture by implementing two key modifications: (1) replacing causal convolutions with standard convolutions to better capture global context, and (2) utilizing concatenation instead of multiplication, which significantly boosts performance while accelerating inference speed. Additionally, we explore various hybrid schemes of MaskMamba, including both serial and grouped parallel arrangements. Furthermore, we incorporate an in-context condition that allows our model to perform both class-to-image and text-to-image generation tasks. Our MaskMamba outperforms Mamba-based and Transformer-based models in generation quality. Notably, it achieves a remarkable 54.44% improvement in inference speed at a resolution of 2048times 2048 over Transformer.
Latent Attention for Linear Time Transformers
The time complexity of the standard attention mechanism in a transformer scales quadratically with the length of the sequence. We introduce a method to reduce this to linear scaling with time, based on defining attention via latent vectors. The method is readily usable as a drop-in replacement for the standard attention mechanism. Our "Latte Transformer" model can be implemented for both bidirectional and unidirectional tasks, with the causal version allowing a recurrent implementation which is memory and time-efficient during inference of language generation tasks. Whilst next token prediction scales linearly with the sequence length for a standard transformer, a Latte Transformer requires constant time to compute the next token. The empirical performance of our method is comparable to standard attention, yet allows scaling to context windows much larger than practical in standard attention.
DARTS-GT: Differentiable Architecture Search for Graph Transformers with Quantifiable Instance-Specific Interpretability Analysis
Graph Transformers (GTs) have emerged as powerful architectures for graph-structured data, yet remain constrained by rigid designs and lack quantifiable interpretability. Current state-of-the-art GTs commit to fixed GNN types across all layers, missing potential benefits of depth-specific component selection, while their complex architectures become opaque where performance gains cannot be distinguished between meaningful patterns and spurious correlations. We redesign GT attention through asymmetry, decoupling structural encoding from feature representation: queries derive from node features while keys and values come from GNN transformations. Within this framework, we use Differentiable ARchiTecture Search (DARTS) to select optimal GNN operators at each layer, enabling depth-wise heterogeneity inside transformer attention itself (DARTS-GT). To understand discovered architectures, we develop the first quantitative interpretability framework for GTs through causal ablation. Our metrics (Head-deviation, Specialization, and Focus), identify which heads and nodes drive predictions while enabling model comparison. Experiments across eight benchmarks show DARTS-GT achieves state-of-the-art on four datasets while remaining competitive on others, with discovered architectures revealing dataset-specific patterns. Our interpretability analysis reveals that visual attention salience and causal importance do not always correlate, indicating widely used visualization approaches may miss components that actually matter. Crucially, heterogeneous architectures found by DARTS-GT consistently produced more interpretable models than baselines, establishing that Graph Transformers need not choose between performance and interpretability.
Can Transformers Do Enumerative Geometry?
How can Transformers model and learn enumerative geometry? What is a robust procedure for using Transformers in abductive knowledge discovery within a mathematician-machine collaboration? In this work, we introduce a Transformer-based approach to computational enumerative geometry, specifically targeting the computation of psi-class intersection numbers on the moduli space of curves. By reformulating the problem as a continuous optimization task, we compute intersection numbers across a wide value range from 10^{-45} to 10^{45}. To capture the recursive nature inherent in these intersection numbers, we propose the Dynamic Range Activator (DRA), a new activation function that enhances the Transformer's ability to model recursive patterns and handle severe heteroscedasticity. Given precision requirements for computing the intersections, we quantify the uncertainty of the predictions using Conformal Prediction with a dynamic sliding window adaptive to the partitions of equivalent number of marked points. To the best of our knowledge, there has been no prior work on modeling recursive functions with such a high-variance and factorial growth. Beyond simply computing intersection numbers, we explore the enumerative "world-model" of Transformers. Our interpretability analysis reveals that the network is implicitly modeling the Virasoro constraints in a purely data-driven manner. Moreover, through abductive hypothesis testing, probing, and causal inference, we uncover evidence of an emergent internal representation of the the large-genus asymptotic of psi-class intersection numbers. These findings suggest that the network internalizes the parameters of the asymptotic closed-form and the polynomiality phenomenon of psi-class intersection numbers in a non-linear manner.
TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables
Deep models have demonstrated remarkable performance in time series forecasting. However, due to the partially-observed nature of real-world applications, solely focusing on the target of interest, so-called endogenous variables, is usually insufficient to guarantee accurate forecasting. Notably, a system is often recorded into multiple variables, where the exogenous variables can provide valuable external information for endogenous variables. Thus, unlike well-established multivariate or univariate forecasting paradigms that either treat all the variables equally or ignore exogenous information, this paper focuses on a more practical setting: time series forecasting with exogenous variables. We propose a novel approach, TimeXer, to ingest external information to enhance the forecasting of endogenous variables. With deftly designed embedding layers, TimeXer empowers the canonical Transformer with the ability to reconcile endogenous and exogenous information, where patch-wise self-attention and variate-wise cross-attention are used simultaneously. Moreover, global endogenous tokens are learned to effectively bridge the causal information underlying exogenous series into endogenous temporal patches. Experimentally, TimeXer achieves consistent state-of-the-art performance on twelve real-world forecasting benchmarks and exhibits notable generality and scalability. Code is available at this repository: https://github.com/thuml/TimeXer.
MonoFormer: One Transformer for Both Diffusion and Autoregression
Most existing multimodality methods use separate backbones for autoregression-based discrete text generation and diffusion-based continuous visual generation, or the same backbone by discretizing the visual data to use autoregression for both text and visual generation. In this paper, we propose to study a simple idea: share one transformer for both autoregression and diffusion. The feasibility comes from two main aspects: (i) Transformer is successfully applied to diffusion for visual generation, and (ii) transformer training for autoregression and diffusion is very similar, and the difference merely lies in that diffusion uses bidirectional attention mask and autoregression uses causal attention mask. Experimental results show that our approach achieves comparable image generation performance to current state-of-the-art methods as well as maintains the text generation capability. The project is publicly available at https://monoformer.github.io/.
TPTT: Transforming Pretrained Transformer into Titans
Recent advances in large language models (LLMs) have led to remarkable progress in natural language processing, but their computational and memory demands remain a significant challenge, particularly for long-context inference. We introduce TPTT (Transforming Pretrained Transformer into Titans), a novel framework for enhancing pretrained Transformer models with efficient linearized attention mechanisms and advanced memory management. TPTT employs techniques such as Memory as Gate (MaG) and mixed linearized attention (LiZA). It is fully compatible with the Hugging Face Transformers library, enabling seamless adaptation of any causal LLM through parameter-efficient fine-tuning (LoRA) without full retraining. We show the effectiveness of TPTT on the MMLU benchmark with models of approximately 1 billion parameters, observing substantial improvements in both efficiency and accuracy. For instance, Titans-Llama-3.2-1B achieves a 20% increase in Exact Match (EM) over its baseline. Statistical analyses and comparisons with recent state-of-the-art methods confirm the practical scalability and robustness of TPTT. Code is available at https://github.com/fabienfrfr/tptt . Python package at https://pypi.org/project/tptt/ .
Timer-XL: Long-Context Transformers for Unified Time Series Forecasting
We present Timer-XL, a generative Transformer for unified time series forecasting. To uniformly predict 1D and 2D time series, we generalize next token prediction, predominantly adopted for causal generation of 1D sequences, to multivariate next token prediction. The proposed paradigm uniformly formulates various forecasting scenarios as a long-context generation problem. We opt for the generative Transformer, which can capture global-range and causal dependencies while providing contextual flexibility, to implement unified forecasting on univariate series characterized by non-stationarity, multivariate time series with complicated dynamics and correlations, and covariate-informed contexts that include both endogenous and exogenous variables. Technically, we propose a universal TimeAttention to facilitate generative Transformers on time series, which can effectively capture fine-grained intra- and inter-series dependencies of flattened time series tokens (patches) and is further strengthened by position embeddings in both temporal and variable dimensions. Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach. As a large time series model, it demonstrates notable model transferability by large-scale pre-training, as well as contextual flexibility in token lengths, positioning it as a one-for-all forecaster.
Disentangling Recall and Reasoning in Transformer Models through Layer-wise Attention and Activation Analysis
Transformer-based language models excel at both recall (retrieving memorized facts) and reasoning (performing multi-step inference), but whether these abilities rely on distinct internal mechanisms remains unclear. Distinguishing recall from reasoning is crucial for predicting model generalization, designing targeted evaluations, and building safer interventions that affect one ability without disrupting the other.We approach this question through mechanistic interpretability, using controlled datasets of synthetic linguistic puzzles to probe transformer models at the layer, head, and neuron level. Our pipeline combines activation patching and structured ablations to causally measure component contributions to each task type. Across two model families (Qwen and LLaMA), we find that interventions on distinct layers and attention heads lead to selective impairments: disabling identified "recall circuits" reduces fact-retrieval accuracy by up to 15\% while leaving reasoning intact, whereas disabling "reasoning circuits" reduces multi-step inference by a comparable margin. At the neuron level, we observe task-specific firing patterns, though these effects are less robust, consistent with neuronal polysemanticity.Our results provide the first causal evidence that recall and reasoning rely on separable but interacting circuits in transformer models. These findings advance mechanistic interpretability by linking circuit-level structure to functional specialization and demonstrate how controlled datasets and causal interventions can yield mechanistic insights into model cognition, informing safer deployment of large language models.
NormFormer: Improved Transformer Pretraining with Extra Normalization
During pretraining, the Pre-LayerNorm transformer suffers from a gradient magnitude mismatch: gradients at early layers are much larger than at later layers. These issues can be alleviated by our proposed NormFormer architecture, which adds three normalization operations to each layer: a Layer Norm after self attention, head-wise scaling of self-attention outputs, and a Layer Norm after the first fully connected layer. The extra operations incur negligible compute cost (+0.4% parameter increase), but improve pretraining perplexity and downstream task performance for both causal and masked language models ranging from 125 Million to 2.7 Billion parameters. For example, adding NormFormer on top of our strongest 1.3B parameter baseline can reach equal perplexity 24% faster, or converge 0.27 perplexity better in the same compute budget. This model reaches GPT3-Large (1.3B) zero shot performance 60% faster. For masked language modeling, NormFormer improves fine-tuned GLUE performance by 1.9% on average. Code to train NormFormer models is available in fairseq https://github.com/pytorch/fairseq/tree/main/examples/normformer .
Take Package as Language: Anomaly Detection Using Transformer
Network data packet anomaly detection faces numerous challenges, including exploring new anomaly supervision signals, researching weakly supervised anomaly detection, and improving model interpretability. This paper proposes NIDS-GPT, a GPT-based causal language model for network intrusion detection. Unlike previous work, NIDS-GPT innovatively treats each number in the packet as an independent "word" rather than packet fields, enabling a more fine-grained data representation. We adopt an improved GPT-2 model and design special tokenizers and embedding layers to better capture the structure and semantics of network data. NIDS-GPT has good scalability, supports unsupervised pre-training, and enhances model interpretability through attention weight visualization. Experiments on the CICIDS2017 and car-hacking datasets show that NIDS-GPT achieves 100\% accuracy under extreme imbalance conditions, far surpassing traditional methods; it also achieves over 90\% accuracy in one-shot learning. These results demonstrate NIDS-GPT's excellent performance and potential in handling complex network anomaly detection tasks, especially in data-imbalanced and resource-constrained scenarios. The code is available at \url{https://github.com/woshixiaobai2019/nids-gpt.gi
Identifying and Adapting Transformer-Components Responsible for Gender Bias in an English Language Model
Language models (LMs) exhibit and amplify many types of undesirable biases learned from the training data, including gender bias. However, we lack tools for effectively and efficiently changing this behavior without hurting general language modeling performance. In this paper, we study three methods for identifying causal relations between LM components and particular output: causal mediation analysis, automated circuit discovery and our novel, efficient method called DiffMask+ based on differential masking. We apply the methods to GPT-2 small and the problem of gender bias, and use the discovered sets of components to perform parameter-efficient fine-tuning for bias mitigation. Our results show significant overlap in the identified components (despite huge differences in the computational requirements of the methods) as well as success in mitigating gender bias, with less damage to general language modeling compared to full model fine-tuning. However, our work also underscores the difficulty of defining and measuring bias, and the sensitivity of causal discovery procedures to dataset choice. We hope our work can contribute to more attention for dataset development, and lead to more effective mitigation strategies for other types of bias.
BERTić -- The Transformer Language Model for Bosnian, Croatian, Montenegrin and Serbian
In this paper we describe a transformer model pre-trained on 8 billion tokens of crawled text from the Croatian, Bosnian, Serbian and Montenegrin web domains. We evaluate the transformer model on the tasks of part-of-speech tagging, named-entity-recognition, geo-location prediction and commonsense causal reasoning, showing improvements on all tasks over state-of-the-art models. For commonsense reasoning evaluation, we introduce COPA-HR -- a translation of the Choice of Plausible Alternatives (COPA) dataset into Croatian. The BERTi\'c model is made available for free usage and further task-specific fine-tuning through HuggingFace.
Attendre: Wait To Attend By Retrieval With Evicted Queries in Memory-Based Transformers for Long Context Processing
As LLMs have become capable of processing more complex types of inputs, researchers have recently studied how to efficiently and affordably process possibly arbitrarily long sequences. One effective approach is to use a FIFO memory to store keys and values of an attention sublayer from past chunks to allow subsequent queries to attend. However, this approach requires a large memory and/or takes into the consideration the specific LM architecture. Moreover, due to the causal nature between the key-values in prior context and the queries at present, this approach cannot be extended to bidirectional attention such as in an encoder-decoder or PrefixLM decoder-only architecture. In this paper, we propose to use eviction policies, such as LRA and LFA, to reduce the memory size and adapt to various architectures, and we also propose the Attendre layer, a wait-to-attend mechanism by retrieving the key-value memory (K/V memory) with evicted queries in the query memory (Q memory). As a first step, we evaluate this method in the context length extension setup using the TriviaQA reading comprehension task, and show the effectiveness of the approach.
ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer
The recent surge of interest in comprehensive multimodal models has necessitated the unification of diverse modalities. However, the unification suffers from disparate methodologies. Continuous visual generation necessitates the full-sequence diffusion-based approach, despite its divergence from the autoregressive modeling in the text domain. We posit that autoregressive modeling, i.e., predicting the future based on past deterministic experience, remains crucial in developing both a visual generation model and a potential unified multimodal model. In this paper, we explore an interpolation between the autoregressive modeling and full-parameters diffusion to model visual information. At its core, we present ACDiT, an Autoregressive blockwise Conditional Diffusion Transformer, where the block size of diffusion, i.e., the size of autoregressive units, can be flexibly adjusted to interpolate between token-wise autoregression and full-sequence diffusion. ACDiT is easy to implement, as simple as creating a Skip-Causal Attention Mask (SCAM) during training. During inference, the process iterates between diffusion denoising and autoregressive decoding that can make full use of KV-Cache. We verify the effectiveness of ACDiT on image and video generation tasks. We also demonstrate that benefitted from autoregressive modeling, ACDiT can be seamlessly used in visual understanding tasks despite being trained on the diffusion objective. The analysis of the trade-off between autoregressive modeling and diffusion demonstrates the potential of ACDiT to be used in long-horizon visual generation tasks. These strengths make it promising as the backbone of future unified models.
Vamba: Understanding Hour-Long Videos with Hybrid Mamba-Transformers
State-of-the-art transformer-based large multimodal models (LMMs) struggle to handle hour-long video inputs due to the quadratic complexity of the causal self-attention operations, leading to high computational costs during training and inference. Existing token compression-based methods reduce the number of video tokens but often incur information loss and remain inefficient for extremely long sequences. In this paper, we explore an orthogonal direction to build a hybrid Mamba-Transformer model (VAMBA) that employs Mamba-2 blocks to encode video tokens with linear complexity. Without any token reduction, VAMBA can encode more than 1024 frames (640times360) on a single GPU, while transformer-based models can only encode 256 frames. On long video input, VAMBA achieves at least 50% reduction in GPU memory usage during training and inference, and nearly doubles the speed per training step compared to transformer-based LMMs. Our experimental results demonstrate that VAMBA improves accuracy by 4.3% on the challenging hour-long video understanding benchmark LVBench over prior efficient video LMMs, and maintains strong performance on a broad spectrum of long and short video understanding tasks.
Generative Pretrained Autoregressive Transformer Graph Neural Network applied to the Analysis and Discovery of Novel Proteins
We report a flexible language-model based deep learning strategy, applied here to solve complex forward and inverse problems in protein modeling, based on an attention neural network that integrates transformer and graph convolutional architectures in a causal multi-headed graph mechanism, to realize a generative pretrained model. The model is applied to predict secondary structure content (per-residue level and overall content), protein solubility, and sequencing tasks. Further trained on inverse tasks, the model is rendered capable of designing proteins with these properties as target features. The model is formulated as a general framework, completely prompt-based, and can be adapted for a variety of downstream tasks. We find that adding additional tasks yields emergent synergies that the model exploits in improving overall performance, beyond what would be possible by training a model on each dataset alone. Case studies are presented to validate the method, yielding protein designs specifically focused on structural proteins, but also exploring the applicability in the design of soluble, antimicrobial biomaterials. While our model is trained to ultimately perform 8 distinct tasks, with available datasets it can be extended to solve additional problems. In a broader sense, this work illustrates a form of multiscale modeling that relates a set of ultimate building blocks (here, byte-level utf8 characters) to complex output. This materiomic scheme captures complex emergent relationships between universal building block and resulting properties via a synergizing learning capacity to express a set of potentialities embedded in the knowledge used in training, via the interplay of universality and diversity.
A Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task
Transformers demonstrate impressive performance on a range of reasoning benchmarks. To evaluate the degree to which these abilities are a result of actual reasoning, existing work has focused on developing sophisticated benchmarks for behavioral studies. However, these studies do not provide insights into the internal mechanisms driving the observed capabilities. To improve our understanding of the internal mechanisms of transformers, we present a comprehensive mechanistic analysis of a transformer trained on a synthetic reasoning task. We identify a set of interpretable mechanisms the model uses to solve the task, and validate our findings using correlational and causal evidence. Our results suggest that it implements a depth-bounded recurrent mechanisms that operates in parallel and stores intermediate results in selected token positions. We anticipate that the motifs we identified in our synthetic setting can provide valuable insights into the broader operating principles of transformers and thus provide a basis for understanding more complex models.
s2s-ft: Fine-Tuning Pretrained Transformer Encoders for Sequence-to-Sequence Learning
Pretrained bidirectional Transformers, such as BERT, have achieved significant improvements in a wide variety of language understanding tasks, while it is not straightforward to directly apply them for natural language generation. In this paper, we present a sequence-to-sequence fine-tuning toolkit s2s-ft, which adopts pretrained Transformers for conditional generation tasks. Inspired by UniLM, we implement three sequence-to-sequence fine-tuning algorithms, namely, causal fine-tuning, masked fine-tuning, and pseudo-masked fine-tuning. By leveraging the existing pretrained bidirectional Transformers, experimental results show that s2s-ft achieves strong performance on several benchmarks of abstractive summarization, and question generation. Moreover, we demonstrate that the package s2s-ft supports both monolingual and multilingual NLG tasks. The s2s-ft toolkit is available at https://github.com/microsoft/unilm/tree/master/s2s-ft.
GIVT: Generative Infinite-Vocabulary Transformers
We introduce generative infinite-vocabulary transformers (GIVT) which generate vector sequences with real-valued entries, instead of discrete tokens from a finite vocabulary. To this end, we propose two surprisingly simple modifications to decoder-only transformers: 1) at the input, we replace the finite-vocabulary lookup table with a linear projection of the input vectors; and 2) at the output, we replace the logits prediction (usually mapped to a categorical distribution) with the parameters of a multivariate Gaussian mixture model. Inspired by the image-generation paradigm of VQ-GAN and MaskGIT, where transformers are used to model the discrete latent sequences of a VQ-VAE, we use GIVT to model the unquantized real-valued latent sequences of a VAE. When applying GIVT to class-conditional image generation with iterative masked modeling, we show competitive results with MaskGIT, while our approach outperforms both VQ-GAN and MaskGIT when using it for causal modeling. Finally, we obtain competitive results outside of image generation when applying our approach to panoptic segmentation and depth estimation with a VAE-based variant of the UViM framework.
InterpBench: Semi-Synthetic Transformers for Evaluating Mechanistic Interpretability Techniques
Mechanistic interpretability methods aim to identify the algorithm a neural network implements, but it is difficult to validate such methods when the true algorithm is unknown. This work presents InterpBench, a collection of semi-synthetic yet realistic transformers with known circuits for evaluating these techniques. We train these neural networks using a stricter version of Interchange Intervention Training (IIT) which we call Strict IIT (SIIT). Like the original, SIIT trains neural networks by aligning their internal computation with a desired high-level causal model, but it also prevents non-circuit nodes from affecting the model's output. We evaluate SIIT on sparse transformers produced by the Tracr tool and find that SIIT models maintain Tracr's original circuit while being more realistic. SIIT can also train transformers with larger circuits, like Indirect Object Identification (IOI). Finally, we use our benchmark to evaluate existing circuit discovery techniques.
On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability
Autoregressively trained transformers have brought a profound revolution to the world, especially with their in-context learning (ICL) ability to address downstream tasks. Recently, several studies suggest that transformers learn a mesa-optimizer during autoregressive (AR) pretraining to implement ICL. Namely, the forward pass of the trained transformer is equivalent to optimizing an inner objective function in-context. However, whether the practical non-convex training dynamics will converge to the ideal mesa-optimizer is still unclear. Towards filling this gap, we investigate the non-convex dynamics of a one-layer linear causal self-attention model autoregressively trained by gradient flow, where the sequences are generated by an AR process x_{t+1} = W x_t. First, under a certain condition of data distribution, we prove that an autoregressively trained transformer learns W by implementing one step of gradient descent to minimize an ordinary least squares (OLS) problem in-context. It then applies the learned W for next-token prediction, thereby verifying the mesa-optimization hypothesis. Next, under the same data conditions, we explore the capability limitations of the obtained mesa-optimizer. We show that a stronger assumption related to the moments of data is the sufficient and necessary condition that the learned mesa-optimizer recovers the distribution. Besides, we conduct exploratory analyses beyond the first data condition and prove that generally, the trained transformer will not perform vanilla gradient descent for the OLS problem. Finally, our simulation results verify the theoretical results.
DSC-IITISM at FinCausal 2021: Combining POS tagging with Attention-based Contextual Representations for Identifying Causal Relationships in Financial Documents
Causality detection draws plenty of attention in the field of Natural Language Processing and linguistics research. It has essential applications in information retrieval, event prediction, question answering, financial analysis, and market research. In this study, we explore several methods to identify and extract cause-effect pairs in financial documents using transformers. For this purpose, we propose an approach that combines POS tagging with the BIO scheme, which can be integrated with modern transformer models to address this challenge of identifying causality in a given text. Our best methodology achieves an F1-Score of 0.9551, and an Exact Match Score of 0.8777 on the blind test in the FinCausal-2021 Shared Task at the FinCausal 2021 Workshop.
Hallo3: Highly Dynamic and Realistic Portrait Image Animation with Diffusion Transformer Networks
Existing methodologies for animating portrait images face significant challenges, particularly in handling non-frontal perspectives, rendering dynamic objects around the portrait, and generating immersive, realistic backgrounds. In this paper, we introduce the first application of a pretrained transformer-based video generative model that demonstrates strong generalization capabilities and generates highly dynamic, realistic videos for portrait animation, effectively addressing these challenges. The adoption of a new video backbone model makes previous U-Net-based methods for identity maintenance, audio conditioning, and video extrapolation inapplicable. To address this limitation, we design an identity reference network consisting of a causal 3D VAE combined with a stacked series of transformer layers, ensuring consistent facial identity across video sequences. Additionally, we investigate various speech audio conditioning and motion frame mechanisms to enable the generation of continuous video driven by speech audio. Our method is validated through experiments on benchmark and newly proposed wild datasets, demonstrating substantial improvements over prior methods in generating realistic portraits characterized by diverse orientations within dynamic and immersive scenes. Further visualizations and the source code are available at: https://fudan-generative-vision.github.io/hallo3/.
UNCAGE: Contrastive Attention Guidance for Masked Generative Transformers in Text-to-Image Generation
Text-to-image (T2I) generation has been actively studied using Diffusion Models and Autoregressive Models. Recently, Masked Generative Transformers have gained attention as an alternative to Autoregressive Models to overcome the inherent limitations of causal attention and autoregressive decoding through bidirectional attention and parallel decoding, enabling efficient and high-quality image generation. However, compositional T2I generation remains challenging, as even state-of-the-art Diffusion Models often fail to accurately bind attributes and achieve proper text-image alignment. While Diffusion Models have been extensively studied for this issue, Masked Generative Transformers exhibit similar limitations but have not been explored in this context. To address this, we propose Unmasking with Contrastive Attention Guidance (UNCAGE), a novel training-free method that improves compositional fidelity by leveraging attention maps to prioritize the unmasking of tokens that clearly represent individual objects. UNCAGE consistently improves performance in both quantitative and qualitative evaluations across multiple benchmarks and metrics, with negligible inference overhead. Our code is available at https://github.com/furiosa-ai/uncage.
Multimodal Neurons in Pretrained Text-Only Transformers
Language models demonstrate remarkable capacity to generalize representations learned in one modality to downstream tasks in other modalities. Can we trace this ability to individual neurons? We study the case where a frozen text transformer is augmented with vision using a self-supervised visual encoder and a single linear projection learned on an image-to-text task. Outputs of the projection layer are not immediately decodable into language describing image content; instead, we find that translation between modalities occurs deeper within the transformer. We introduce a procedure for identifying "multimodal neurons" that convert visual representations into corresponding text, and decoding the concepts they inject into the model's residual stream. In a series of experiments, we show that multimodal neurons operate on specific visual concepts across inputs, and have a systematic causal effect on image captioning.
FaceFormer: Speech-Driven 3D Facial Animation with Transformers
Speech-driven 3D facial animation is challenging due to the complex geometry of human faces and the limited availability of 3D audio-visual data. Prior works typically focus on learning phoneme-level features of short audio windows with limited context, occasionally resulting in inaccurate lip movements. To tackle this limitation, we propose a Transformer-based autoregressive model, FaceFormer, which encodes the long-term audio context and autoregressively predicts a sequence of animated 3D face meshes. To cope with the data scarcity issue, we integrate the self-supervised pre-trained speech representations. Also, we devise two biased attention mechanisms well suited to this specific task, including the biased cross-modal multi-head (MH) attention and the biased causal MH self-attention with a periodic positional encoding strategy. The former effectively aligns the audio-motion modalities, whereas the latter offers abilities to generalize to longer audio sequences. Extensive experiments and a perceptual user study show that our approach outperforms the existing state-of-the-arts. The code will be made available.
Enhancing Maritime Trajectory Forecasting via H3 Index and Causal Language Modelling (CLM)
The prediction of ship trajectories is a growing field of study in artificial intelligence. Traditional methods rely on the use of LSTM, GRU networks, and even Transformer architectures for the prediction of spatio-temporal series. This study proposes a viable alternative for predicting these trajectories using only GNSS positions. It considers this spatio-temporal problem as a natural language processing problem. The latitude/longitude coordinates of AIS messages are transformed into cell identifiers using the H3 index. Thanks to the pseudo-octal representation, it becomes easier for language models to learn the spatial hierarchy of the H3 index. The method is compared with a classical Kalman filter, widely used in the maritime domain, and introduces the Fr\'echet distance as the main evaluation metric. We show that it is possible to predict ship trajectories quite precisely up to 8 hours with 30 minutes of context. We demonstrate that this alternative works well enough to predict trajectories worldwide.
Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers
Large language models (LLMs) can acquire new knowledge through fine-tuning, but this process exhibits a puzzling duality: models can generalize remarkably from new facts, yet are also prone to hallucinating incorrect information. However, the reasons for this phenomenon remain poorly understood. In this work, we argue that both behaviors stem from a single mechanism known as out-of-context reasoning (OCR): the ability to deduce implications by associating concepts, even those without a causal link. Our experiments across five prominent LLMs confirm that OCR indeed drives both generalization and hallucination, depending on whether the associated concepts are causally related. To build a rigorous theoretical understanding of this phenomenon, we then formalize OCR as a synthetic factual recall task. We empirically show that a one-layer single-head attention-only transformer with factorized output and value matrices can learn to solve this task, while a model with combined weights cannot, highlighting the crucial role of matrix factorization. Our theoretical analysis shows that the OCR capability can be attributed to the implicit bias of gradient descent, which favors solutions that minimize the nuclear norm of the combined output-value matrix. This mathematical structure explains why the model learns to associate facts and implications with high sample efficiency, regardless of whether the correlation is causal or merely spurious. Ultimately, our work provides a theoretical foundation for understanding the OCR phenomenon, offering a new lens for analyzing and mitigating undesirable behaviors from knowledge injection.
Is the Reversal Curse a Binding Problem? Uncovering Limitations of Transformers from a Basic Generalization Failure
Despite their impressive capabilities, LLMs exhibit a basic generalization failure known as the Reversal Curse, where they struggle to learn reversible factual associations. Understanding why this occurs could help identify weaknesses in current models and advance their generalization and robustness. In this paper, we conjecture that the Reversal Curse in LLMs is a manifestation of the long-standing binding problem in cognitive science, neuroscience and AI. Specifically, we identify two primary causes of the Reversal Curse stemming from transformers' limitations in conceptual binding: the inconsistency and entanglements of concept representations. We perform a series of experiments that support these conjectures. Our exploration leads to a model design based on JEPA (Joint-Embedding Predictive Architecture) that for the first time breaks the Reversal Curse without side-stepping it with specialized data augmentation or non-causal masking, and moreover, generalization could be further improved by incorporating special memory layers that support disentangled concept representations. We demonstrate that the skill of reversal unlocks a new kind of memory integration that enables models to solve large-scale arithmetic reasoning problems via parametric forward-chaining, outperforming frontier LLMs based on non-parametric memory and prolonged explicit reasoning.
Photorealistic Video Generation with Diffusion Models
We present W.A.L.T, a transformer-based approach for photorealistic video generation via diffusion modeling. Our approach has two key design decisions. First, we use a causal encoder to jointly compress images and videos within a unified latent space, enabling training and generation across modalities. Second, for memory and training efficiency, we use a window attention architecture tailored for joint spatial and spatiotemporal generative modeling. Taken together these design decisions enable us to achieve state-of-the-art performance on established video (UCF-101 and Kinetics-600) and image (ImageNet) generation benchmarks without using classifier free guidance. Finally, we also train a cascade of three models for the task of text-to-video generation consisting of a base latent video diffusion model, and two video super-resolution diffusion models to generate videos of 512 times 896 resolution at 8 frames per second.
Output Scaling: YingLong-Delayed Chain of Thought in a Large Pretrained Time Series Forecasting Model
We present a joint forecasting framework for time series prediction that contrasts with traditional direct or recursive methods. This framework achieves state-of-the-art performance for our designed foundation model, YingLong, and reveals a novel scaling effect: longer outputs significantly enhance model accuracy due to delayed chain-of-thought reasoning in our non-causal approach. YingLong is a non-causal, bidirectional attention encoder-only transformer trained through masked token recovery, aligning more effectively with language understanding tasks than with generation tasks. Additionally, we boost performance by tackling output variance with a multi-input ensemble. We release four foundation models ranging from 6M to 300M parameters, demonstrating superior results in zero-shot tasks on the ETT and Weather datasets. YingLong achieves more than 60% best performance. To ensure generalizability, we assessed the models using the GIFT-Eval benchmark, which comprises 23 time series datasets across 7 domains. Yinglong significantly outperformed the best time-series foundation models, end-to-end trained models by 14% and 44% in rank respectively.The pretrained 300M model is available at https://huggingface.co/qcw1314/YingLong_300m
GPT or BERT: why not both?
We present a simple way to merge masked language modeling with causal language modeling. This hybrid training objective results in a model that combines the strengths of both modeling paradigms within a single transformer stack: GPT-BERT can be transparently used like any standard causal or masked language model. We test the pretraining process that enables this flexible behavior on the BabyLM Challenge 2024. The results show that the hybrid pretraining outperforms masked-only or causal-only models. We openly release the models, training corpora and code.
VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild
We introduce VoiceCraft, a token infilling neural codec language model, that achieves state-of-the-art performance on both speech editing and zero-shot text-to-speech (TTS) on audiobooks, internet videos, and podcasts. VoiceCraft employs a Transformer decoder architecture and introduces a token rearrangement procedure that combines causal masking and delayed stacking to enable generation within an existing sequence. On speech editing tasks, VoiceCraft produces edited speech that is nearly indistinguishable from unedited recordings in terms of naturalness, as evaluated by humans; for zero-shot TTS, our model outperforms prior SotA models including VALLE and the popular commercial model XTTS-v2. Crucially, the models are evaluated on challenging and realistic datasets, that consist of diverse accents, speaking styles, recording conditions, and background noise and music, and our model performs consistently well compared to other models and real recordings. In particular, for speech editing evaluation, we introduce a high quality, challenging, and realistic dataset named RealEdit. We encourage readers to listen to the demos at https://jasonppy.github.io/VoiceCraft_web.
Image and Video Tokenization with Binary Spherical Quantization
We propose a new transformer-based image and video tokenizer with Binary Spherical Quantization (BSQ). BSQ projects the high-dimensional visual embedding to a lower-dimensional hypersphere and then applies binary quantization. BSQ is (1) parameter-efficient without an explicit codebook, (2) scalable to arbitrary token dimensions, and (3) compact: compressing visual data by up to 100times with minimal distortion. Our tokenizer uses a transformer encoder and decoder with simple block-wise causal masking to support variable-length videos as input. The resulting BSQ-ViT achieves state-of-the-art visual reconstruction quality on image and video reconstruction benchmarks with 2.4times throughput compared to the best prior methods. Furthermore, by learning an autoregressive prior for adaptive arithmetic coding, BSQ-ViT achieves comparable results on video compression with state-of-the-art video compression standards. BSQ-ViT also enables masked language models to achieve competitive image synthesis quality to GAN- and diffusion-based methods.
STUDY: Socially Aware Temporally Casual Decoder Recommender Systems
With the overwhelming amount of data available both on and offline today, recommender systems have become much needed to help users find items tailored to their interests. When social network information exists there are methods that utilize this information to make better recommendations, however the methods are often clunky with complex architectures and training procedures. Furthermore many of the existing methods utilize graph neural networks which are notoriously difficult to train. To address this, we propose Socially-aware Temporally caUsal Decoder recommender sYstems (STUDY). STUDY does joint inference over groups of users who are adjacent in the social network graph using a single forward pass of a modified transformer decoder network. We test our method in a school-based educational content setting, using classroom structure to define social networks. Our method outperforms both social and sequential methods while maintaining the design simplicity of a single homogeneous network that models all interactions in the data. We also carry out ablation studies to understand the drivers of our performance gains and find that our model depends on leveraging a social network structure that effectively models the similarities in user behavior.
What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?
Large pretrained Transformer language models have been shown to exhibit zero-shot generalization, i.e. they can perform a wide variety of tasks that they were not explicitly trained on. However, the architectures and pretraining objectives used across state-of-the-art models differ significantly, and there has been limited systematic comparison of these factors. In this work, we present a large-scale evaluation of modeling choices and their impact on zero-shot generalization. In particular, we focus on text-to-text models and experiment with three model architectures (causal/non-causal decoder-only and encoder-decoder), trained with two different pretraining objectives (autoregressive and masked language modeling), and evaluated with and without multitask prompted finetuning. We train models with over 5 billion parameters for more than 170 billion tokens, thereby increasing the likelihood that our conclusions will transfer to even larger scales. Our experiments show that causal decoder-only models trained on an autoregressive language modeling objective exhibit the strongest zero-shot generalization after purely unsupervised pretraining. However, models with non-causal visibility on their input trained with a masked language modeling objective followed by multitask finetuning perform the best among our experiments. We therefore consider the adaptation of pretrained models across architectures and objectives. We find that pretrained non-causal decoder models can be adapted into performant generative causal decoder models, using autoregressive language modeling as a downstream task. Furthermore, we find that pretrained causal decoder models can be efficiently adapted into non-causal decoder models, ultimately achieving competitive performance after multitask finetuning. Code and checkpoints are available at https://github.com/bigscience-workshop/architecture-objective.
What needs to go right for an induction head? A mechanistic study of in-context learning circuits and their formation
In-context learning is a powerful emergent ability in transformer models. Prior work in mechanistic interpretability has identified a circuit element that may be critical for in-context learning -- the induction head (IH), which performs a match-and-copy operation. During training of large transformers on natural language data, IHs emerge around the same time as a notable phase change in the loss. Despite the robust evidence for IHs and this interesting coincidence with the phase change, relatively little is known about the diversity and emergence dynamics of IHs. Why is there more than one IH, and how are they dependent on each other? Why do IHs appear all of a sudden, and what are the subcircuits that enable them to emerge? We answer these questions by studying IH emergence dynamics in a controlled setting by training on synthetic data. In doing so, we develop and share a novel optogenetics-inspired causal framework for modifying activations throughout training. Using this framework, we delineate the diverse and additive nature of IHs. By clamping subsets of activations throughout training, we then identify three underlying subcircuits that interact to drive IH formation, yielding the phase change. Furthermore, these subcircuits shed light on data-dependent properties of formation, such as phase change timing, already showing the promise of this more in-depth understanding of subcircuits that need to "go right" for an induction head.
An All-MLP Sequence Modeling Architecture That Excels at Copying
Recent work demonstrated Transformers' ability to efficiently copy strings of exponential sizes, distinguishing them from other architectures. We present the Causal Relation Network (CausalRN), an all-MLP sequence modeling architecture that can match Transformers on the copying task. Extending Relation Networks (RNs), we implemented key innovations to support autoregressive sequence modeling while maintaining computational feasibility. We discovered that exponentially-activated RNs are reducible to linear time complexity, and pre-activation normalization induces an infinitely growing memory pool, similar to a KV cache. In ablation study, we found both exponential activation and pre-activation normalization are indispensable for Transformer-level copying. Our findings provide new insights into what actually constitutes strong in-context retrieval.
CausalLM is not optimal for in-context learning
Recent empirical evidence indicates that transformer based in-context learning performs better when using a prefix language model (prefixLM), in which in-context samples can all attend to each other, compared to causal language models (causalLM), which use auto-regressive attention that prohibits in-context samples to attend to future samples. While this result is intuitive, it is not understood from a theoretical perspective. In this paper we take a theoretical approach and analyze the convergence behavior of prefixLM and causalLM under a certain parameter construction. Our analysis shows that both LM types converge to their stationary points at a linear rate, but that while prefixLM converges to the optimal solution of linear regression, causalLM convergence dynamics follows that of an online gradient descent algorithm, which is not guaranteed to be optimal even as the number of samples grows infinitely. We supplement our theoretical claims with empirical experiments over synthetic and real tasks and using various types of transformers. Our experiments verify that causalLM consistently underperforms prefixLM in all settings.
DiTaiListener: Controllable High Fidelity Listener Video Generation with Diffusion
Generating naturalistic and nuanced listener motions for extended interactions remains an open problem. Existing methods often rely on low-dimensional motion codes for facial behavior generation followed by photorealistic rendering, limiting both visual fidelity and expressive richness. To address these challenges, we introduce DiTaiListener, powered by a video diffusion model with multimodal conditions. Our approach first generates short segments of listener responses conditioned on the speaker's speech and facial motions with DiTaiListener-Gen. It then refines the transitional frames via DiTaiListener-Edit for a seamless transition. Specifically, DiTaiListener-Gen adapts a Diffusion Transformer (DiT) for the task of listener head portrait generation by introducing a Causal Temporal Multimodal Adapter (CTM-Adapter) to process speakers' auditory and visual cues. CTM-Adapter integrates speakers' input in a causal manner into the video generation process to ensure temporally coherent listener responses. For long-form video generation, we introduce DiTaiListener-Edit, a transition refinement video-to-video diffusion model. The model fuses video segments into smooth and continuous videos, ensuring temporal consistency in facial expressions and image quality when merging short video segments produced by DiTaiListener-Gen. Quantitatively, DiTaiListener achieves the state-of-the-art performance on benchmark datasets in both photorealism (+73.8% in FID on RealTalk) and motion representation (+6.1% in FD metric on VICO) spaces. User studies confirm the superior performance of DiTaiListener, with the model being the clear preference in terms of feedback, diversity, and smoothness, outperforming competitors by a significant margin.
LIM: Large Interpolator Model for Dynamic Reconstruction
Reconstructing dynamic assets from video data is central to many in computer vision and graphics tasks. Existing 4D reconstruction approaches are limited by category-specific models or slow optimization-based methods. Inspired by the recent Large Reconstruction Model (LRM), we present the Large Interpolation Model (LIM), a transformer-based feed-forward solution, guided by a novel causal consistency loss, for interpolating implicit 3D representations across time. Given implicit 3D representations at times t_0 and t_1, LIM produces a deformed shape at any continuous time tin[t_0,t_1], delivering high-quality interpolated frames in seconds. Furthermore, LIM allows explicit mesh tracking across time, producing a consistently uv-textured mesh sequence ready for integration into existing production pipelines. We also use LIM, in conjunction with a diffusion-based multiview generator, to produce dynamic 4D reconstructions from monocular videos. We evaluate LIM on various dynamic datasets, benchmarking against image-space interpolation methods (e.g., FiLM) and direct triplane linear interpolation, and demonstrate clear advantages. In summary, LIM is the first feed-forward model capable of high-speed tracked 4D asset reconstruction across diverse categories.
SHA256 at SemEval-2025 Task 4: Selective Amnesia -- Constrained Unlearning for Large Language Models via Knowledge Isolation
Large language models (LLMs) frequently memorize sensitive information during training, posing risks when deploying publicly accessible models. Current machine unlearning methods struggle to selectively remove specific data associations without degrading overall model capabilities. This paper presents our solution to SemEval-2025 Task 4 on targeted unlearning, which introduces a two-stage methodology that combines causal mediation analysis with layer-specific optimization. Through systematic causal tracing experiments on OLMo architectures (1B and 7B parameters), we identify the critical role of the first few transformer layers (layers 0-5) in storing subject-attribute associations within MLP modules. Building on this insight, we develop a constrained optimization approach that freezes upper layers while applying a novel joint loss function to lower layers-simultaneously maximizing forget set loss via output token cross-entropy penalties and minimizing retain set deviation through adaptive regularization. Our method achieves 2nd place in the 1B model track, demonstrating strong task performance while maintaining 88% of baseline MMLU accuracy. These results establish causal-informed layer optimization as a promising paradigm for efficient, precise unlearning in LLMs, offering a significant step forward in addressing data privacy concerns in AI systems.
Exploring the Relationship Between Model Architecture and In-Context Learning Ability
What is the relationship between model architecture and the ability to perform in-context learning? In this empirical study, we take the first steps toward answering this question. We evaluate twelve model architectures capable of causal language modeling across a suite of synthetic in-context learning tasks. These selected architectures represent a broad range of paradigms, including recurrent and convolution-based neural networks, transformers, state-space model inspired, and other emerging attention alternatives. We discover that all the considered architectures can perform in-context learning under a wider range of conditions than previously documented. Additionally, we observe stark differences in statistical efficiency and consistency by varying context length and task difficulty. We also measure each architecture's predisposition towards in-context learning when presented with alternative routes for task resolution. Finally, and somewhat surprisingly, we find that several attention alternatives are more robust in-context learners than transformers. Given that such approaches have constant-sized memory footprints at inference time, this result opens the possibility of scaling up in-context learning to accommodate vastly larger numbers of in-context examples.
EgoTwin: Dreaming Body and View in First Person
While exocentric video synthesis has achieved great progress, egocentric video generation remains largely underexplored, which requires modeling first-person view content along with camera motion patterns induced by the wearer's body movements. To bridge this gap, we introduce a novel task of joint egocentric video and human motion generation, characterized by two key challenges: 1) Viewpoint Alignment: the camera trajectory in the generated video must accurately align with the head trajectory derived from human motion; 2) Causal Interplay: the synthesized human motion must causally align with the observed visual dynamics across adjacent video frames. To address these challenges, we propose EgoTwin, a joint video-motion generation framework built on the diffusion transformer architecture. Specifically, EgoTwin introduces a head-centric motion representation that anchors the human motion to the head joint and incorporates a cybernetics-inspired interaction mechanism that explicitly captures the causal interplay between video and motion within attention operations. For comprehensive evaluation, we curate a large-scale real-world dataset of synchronized text-video-motion triplets and design novel metrics to assess video-motion consistency. Extensive experiments demonstrate the effectiveness of the EgoTwin framework.
The Hedgehog & the Porcupine: Expressive Linear Attentions with Softmax Mimicry
Linear attentions have shown potential for improving Transformer efficiency, reducing attention's quadratic complexity to linear in sequence length. This holds exciting promise for (1) training linear Transformers from scratch, (2) "finetuned-conversion" of task-specific Transformers into linear versions that recover task performance, and (3) "pretrained-conversion" of Transformers such as large language models into linear versions finetunable on downstream tasks. However, linear attentions often underperform standard softmax attention in quality. To close this performance gap, we find prior linear attentions lack key properties of softmax attention tied to good performance: low-entropy (or "spiky") weights and dot-product monotonicity. We further observe surprisingly simple feature maps that retain these properties and match softmax performance, but are inefficient to compute in linear attention. We thus propose Hedgehog, a learnable linear attention that retains the spiky and monotonic properties of softmax attention while maintaining linear complexity. Hedgehog uses simple trainable MLPs to produce attention weights mimicking softmax attention. Experiments show Hedgehog recovers over 99% of standard Transformer quality in train-from-scratch and finetuned-conversion settings, outperforming prior linear attentions up to 6 perplexity points on WikiText-103 with causal GPTs, and up to 8.7 GLUE score points on finetuned bidirectional BERTs. Hedgehog also enables pretrained-conversion. Converting a pretrained GPT-2 into a linear attention variant achieves state-of-the-art 16.7 perplexity on WikiText-103 for 125M subquadratic decoder models. We finally turn a pretrained Llama-2 7B into a viable linear attention Llama. With low-rank adaptation, Hedgehog-Llama2 7B achieves 28.1 higher ROUGE-1 points over the base standard attention model, where prior linear attentions lead to 16.5 point drops.
Long-Context Autoregressive Video Modeling with Next-Frame Prediction
Long-context autoregressive modeling has significantly advanced language generation, but video generation still struggles to fully utilize extended temporal contexts. To investigate long-context video modeling, we introduce Frame AutoRegressive (FAR), a strong baseline for video autoregressive modeling. Just as language models learn causal dependencies between tokens (i.e., Token AR), FAR models temporal causal dependencies between continuous frames, achieving better convergence than Token AR and video diffusion transformers. Building on FAR, we observe that long-context vision modeling faces challenges due to visual redundancy. Existing RoPE lacks effective temporal decay for remote context and fails to extrapolate well to long video sequences. Additionally, training on long videos is computationally expensive, as vision tokens grow much faster than language tokens. To tackle these issues, we propose balancing locality and long-range dependency. We introduce FlexRoPE, an test-time technique that adds flexible temporal decay to RoPE, enabling extrapolation to 16x longer vision contexts. Furthermore, we propose long short-term context modeling, where a high-resolution short-term context window ensures fine-grained temporal consistency, while an unlimited long-term context window encodes long-range information using fewer tokens. With this approach, we can train on long video sequences with a manageable token context length. We demonstrate that FAR achieves state-of-the-art performance in both short- and long-video generation, providing a simple yet effective baseline for video autoregressive modeling.
Segment-Based Attention Masking for GPTs
Modern Language Models (LMs) owe much of their success to masked causal attention, the backbone of Generative Pre-Trained Transformer (GPT) models. Although GPTs can process the entire user prompt at once, the causal masking is applied to all input tokens step-by-step, mimicking the generation process. This imposes an unnecessary constraint during the initial "prefill" phase when the model processes the input prompt and generates the internal representations before producing any output tokens. In this work, attention is masked based on the known block structure at the prefill phase, followed by the conventional token-by-token autoregressive process after that. For example, in a typical chat prompt, the system prompt is treated as one block, and the user prompt as the next one. Each of these is treated as a unit for the purpose of masking, such that the first tokens in each block can access the subsequent tokens in a non-causal manner. Then, the model answer is generated in the conventional causal manner. This Segment-by-Segment scheme entails no additional computational overhead. When integrating it into models such as Llama and Qwen, state-of-the-art performance is consistently achieved.
