- ViConBERT: Context-Gloss Aligned Vietnamese Word Embedding for Polysemous and Sense-Aware Representations Recent advances in contextualized word embeddings have greatly improved semantic tasks such as Word Sense Disambiguation (WSD) and contextual similarity, but most progress has been limited to high-resource languages like English. Vietnamese, in contrast, still lacks robust models and evaluation resources for fine-grained semantic understanding. In this paper, we present ViConBERT, a novel framework for learning Vietnamese contextualized embeddings that integrates contrastive learning (SimCLR) and gloss-based distillation to better capture word meaning. We also introduce ViConWSD, the first large-scale synthetic dataset for evaluating semantic understanding in Vietnamese, covering both WSD and contextual similarity. Experimental results show that ViConBERT outperforms strong baselines on WSD (F1 = 0.87) and achieves competitive performance on ViCon (AP = 0.88) and ViSim-400 (Spearman's rho = 0.60), demonstrating its effectiveness in modeling both discrete senses and graded semantic relations. Our code, models, and data are available at https://github.com/tkhangg0910/ViConBERT 3 authors · Nov 15
- Multi-Dialect Vietnamese: Task, Dataset, Baseline Models and Challenges Vietnamese, a low-resource language, is typically categorized into three primary dialect groups that belong to Northern, Central, and Southern Vietnam. However, each province within these regions exhibits its own distinct pronunciation variations. Despite the existence of various speech recognition datasets, none of them has provided a fine-grained classification of the 63 dialects specific to individual provinces of Vietnam. To address this gap, we introduce Vietnamese Multi-Dialect (ViMD) dataset, a novel comprehensive dataset capturing the rich diversity of 63 provincial dialects spoken across Vietnam. Our dataset comprises 102.56 hours of audio, consisting of approximately 19,000 utterances, and the associated transcripts contain over 1.2 million words. To provide benchmarks and simultaneously demonstrate the challenges of our dataset, we fine-tune state-of-the-art pre-trained models for two downstream tasks: (1) Dialect identification and (2) Speech recognition. The empirical results suggest two implications including the influence of geographical factors on dialects, and the constraints of current approaches in speech recognition tasks involving multi-dialect speech data. Our dataset is available for research purposes. 4 authors · Oct 4, 2024
- Vietnamese Legal Information Retrieval in Question-Answering System In the modern era of rapidly increasing data volumes, accurately retrieving and recommending relevant documents has become crucial in enhancing the reliability of Question Answering (QA) systems. Recently, Retrieval Augmented Generation (RAG) has gained significant recognition for enhancing the capabilities of large language models (LLMs) by mitigating hallucination issues in QA systems, which is particularly beneficial in the legal domain. Various methods, such as semantic search using dense vector embeddings or a combination of multiple techniques to improve results before feeding them to LLMs, have been proposed. However, these methods often fall short when applied to the Vietnamese language due to several challenges, namely inefficient Vietnamese data processing leading to excessive token length or overly simplistic ensemble techniques that lead to instability and limited improvement. Moreover, a critical issue often overlooked is the ordering of final relevant documents which are used as reference to ensure the accuracy of the answers provided by LLMs. In this report, we introduce our three main modifications taken to address these challenges. First, we explore various practical approaches to data processing to overcome the limitations of the embedding model. Additionally, we enhance Reciprocal Rank Fusion by normalizing order to combine results from keyword and vector searches effectively. We also meticulously re-rank the source pieces of information used by LLMs with Active Retrieval to improve user experience when refining the information generated. In our opinion, this technique can also be considered as a new re-ranking method that might be used in place of the traditional cross encoder. Finally, we integrate these techniques into a comprehensive QA system, significantly improving its performance and reliability 4 authors · Sep 4, 2024
- Vietnamese AI Generated Text Detection In recent years, Large Language Models (LLMs) have become integrated into our daily lives, serving as invaluable assistants in completing tasks. Widely embraced by users, the abuse of LLMs is inevitable, particularly in using them to generate text content for various purposes, leading to difficulties in distinguishing between text generated by LLMs and that written by humans. In this study, we present a dataset named ViDetect, comprising 6.800 samples of Vietnamese essay, with 3.400 samples authored by humans and the remainder generated by LLMs, serving the purpose of detecting text generated by AI. We conducted evaluations using state-of-the-art methods, including ViT5, BartPho, PhoBERT, mDeberta V3, and mBERT. These results contribute not only to the growing body of research on detecting text generated by AI but also demonstrate the adaptability and effectiveness of different methods in the Vietnamese language context. This research lays the foundation for future advancements in AI-generated text detection and provides valuable insights for researchers in the field of natural language processing. 5 authors · May 6, 2024
- Vietnamese Hate and Offensive Detection using PhoBERT-CNN and Social Media Streaming Data Society needs to develop a system to detect hate and offense to build a healthy and safe environment. However, current research in this field still faces four major shortcomings, including deficient pre-processing techniques, indifference to data imbalance issues, modest performance models, and lacking practical applications. This paper focused on developing an intelligent system capable of addressing these shortcomings. Firstly, we proposed an efficient pre-processing technique to clean comments collected from Vietnamese social media. Secondly, a novel hate speech detection (HSD) model, which is the combination of a pre-trained PhoBERT model and a Text-CNN model, was proposed for solving tasks in Vietnamese. Thirdly, EDA techniques are applied to deal with imbalanced data to improve the performance of classification models. Besides, various experiments were conducted as baselines to compare and investigate the proposed model's performance against state-of-the-art methods. The experiment results show that the proposed PhoBERT-CNN model outperforms SOTA methods and achieves an F1-score of 67,46% and 98,45% on two benchmark datasets, ViHSD and HSD-VLSP, respectively. Finally, we also built a streaming HSD application to demonstrate the practicality of our proposed system. 6 authors · Jun 1, 2022
- Vietnamese Complaint Detection on E-Commerce Websites Customer product reviews play a role in improving the quality of products and services for business organizations or their brands. Complaining is an attitude that expresses dissatisfaction with an event or a product not meeting customer expectations. In this paper, we build a Open-domain Complaint Detection dataset (UIT-ViOCD), including 5,485 human-annotated reviews on four categories about product reviews on e-commerce sites. After the data collection phase, we proceed to the annotation task and achieve the inter-annotator agreement Am of 87%. Then, we present an extensive methodology for the research purposes and achieve 92.16% by F1-score for identifying complaints. With the results, in the future, we aim to build a system for open-domain complaint detection in E-commerce websites. 5 authors · Apr 24, 2021
- Vietnamese Word Segmentation with SVM: Ambiguity Reduction and Suffix Capture In this paper, we approach Vietnamese word segmentation as a binary classification by using the Support Vector Machine classifier. We inherit features from prior works such as n-gram of syllables, n-gram of syllable types, and checking conjunction of adjacent syllables in the dictionary. We propose two novel ways to feature extraction, one to reduce the overlap ambiguity and the other to increase the ability to predict unknown words containing suffixes. Different from UETsegmenter and RDRsegmenter, two state-of-the-art Vietnamese word segmentation methods, we do not employ the longest matching algorithm as an initial processing step or any post-processing technique. According to experimental results on benchmark Vietnamese datasets, our proposed method obtained a better F1-score than the prior state-of-the-art methods UETsegmenter, and RDRsegmenter. 4 authors · Jun 14, 2020
- Vietnamese Semantic Role Labelling In this paper, we study semantic role labelling (SRL), a subtask of semantic parsing of natural language sentences and its application for the Vietnamese language. We present our effort in building Vietnamese PropBank, the first Vietnamese SRL corpus and a software system for labelling semantic roles of Vietnamese texts. In particular, we present a novel constituent extraction algorithm in the argument candidate identification step which is more suitable and more accurate than the common node-mapping method. In the machine learning part, our system integrates distributed word features produced by two recent unsupervised learning models in two learned statistical classifiers and makes use of integer linear programming inference procedure to improve the accuracy. The system is evaluated in a series of experiments and achieves a good result, an F_1 score of 74.77%. Our system, including corpus and software, is available as an open source project for free research and we believe that it is a good baseline for the development of future Vietnamese SRL systems. 6 authors · Nov 27, 2017
2 ViMRHP: A Vietnamese Benchmark Dataset for Multimodal Review Helpfulness Prediction via Human-AI Collaborative Annotation Multimodal Review Helpfulness Prediction (MRHP) is an essential task in recommender systems, particularly in E-commerce platforms. Determining the helpfulness of user-generated reviews enhances user experience and improves consumer decision-making. However, existing datasets focus predominantly on English and Indonesian, resulting in a lack of linguistic diversity, especially for low-resource languages such as Vietnamese. In this paper, we introduce ViMRHP (Vietnamese Multimodal Review Helpfulness Prediction), a large-scale benchmark dataset for MRHP task in Vietnamese. This dataset covers four domains, including 2K products with 46K reviews. Meanwhile, a large-scale dataset requires considerable time and cost. To optimize the annotation process, we leverage AI to assist annotators in constructing the ViMRHP dataset. With AI assistance, annotation time is reduced (90 to 120 seconds per task down to 20 to 40 seconds per task) while maintaining data quality and lowering overall costs by approximately 65%. However, AI-generated annotations still have limitations in complex annotation tasks, which we further examine through a detailed performance analysis. In our experiment on ViMRHP, we evaluate baseline models on human-verified and AI-generated annotations to assess their quality differences. The ViMRHP dataset is publicly available at https://github.com/trng28/ViMRHP 4 authors · May 12 2
1 VN-MTEB: Vietnamese Massive Text Embedding Benchmark Vietnam ranks among the top countries in terms of both internet traffic and online toxicity. As a result, implementing embedding models for recommendation and content control duties in applications is crucial. However, a lack of large-scale test datasets, both in volume and task diversity, makes it tricky for scientists to effectively evaluate AI models before deploying them in real-world, large-scale projects. To solve this important problem, we introduce a Vietnamese benchmark, VN-MTEB for embedding models, which we created by translating a large number of English samples from the Massive Text Embedding Benchmark using our new automated framework. We leverage the strengths of large language models (LLMs) and cutting-edge embedding models to conduct translation and filtering processes to retain high-quality samples, guaranteeing a natural flow of language and semantic fidelity while preserving named entity recognition (NER) and code snippets. Our comprehensive benchmark consists of 41 datasets from six tasks specifically designed for Vietnamese text embeddings. In our analysis, we find that bigger and more complex models using Rotary Positional Embedding outperform those using Absolute Positional Embedding in embedding tasks. Datasets are available at HuggingFace: https://huggingface.co/collections/GreenNode/vn-mteb-68871433f0f7573b8e1a6686 5 authors · Jul 29
1 BERT-VBD: Vietnamese Multi-Document Summarization Framework In tackling the challenge of Multi-Document Summarization (MDS), numerous methods have been proposed, spanning both extractive and abstractive summarization techniques. However, each approach has its own limitations, making it less effective to rely solely on either one. An emerging and promising strategy involves a synergistic fusion of extractive and abstractive summarization methods. Despite the plethora of studies in this domain, research on the combined methodology remains scarce, particularly in the context of Vietnamese language processing. This paper presents a novel Vietnamese MDS framework leveraging a two-component pipeline architecture that integrates extractive and abstractive techniques. The first component employs an extractive approach to identify key sentences within each document. This is achieved by a modification of the pre-trained BERT network, which derives semantically meaningful phrase embeddings using siamese and triplet network structures. The second component utilizes the VBD-LLaMA2-7B-50b model for abstractive summarization, ultimately generating the final summary document. Our proposed framework demonstrates a positive performance, attaining ROUGE-2 scores of 39.6% on the VN-MDS dataset and outperforming the state-of-the-art baselines. 3 authors · Sep 18, 2024 2
- VM14K: First Vietnamese Medical Benchmark Medical benchmarks are indispensable for evaluating the capabilities of language models in healthcare for non-English-speaking communities,therefore help ensuring the quality of real-life applications. However, not every community has sufficient resources and standardized methods to effectively build and design such benchmark, and available non-English medical data is normally fragmented and difficult to verify. We developed an approach to tackle this problem and applied it to create the first Vietnamese medical question benchmark, featuring 14,000 multiple-choice questions across 34 medical specialties. Our benchmark was constructed using various verifiable sources, including carefully curated medical exams and clinical records, and eventually annotated by medical experts. The benchmark includes four difficulty levels, ranging from foundational biological knowledge commonly found in textbooks to typical clinical case studies that require advanced reasoning. This design enables assessment of both the breadth and depth of language models' medical understanding in the target language thanks to its extensive coverage and in-depth subject-specific expertise. We release the benchmark in three parts: a sample public set (4k questions), a full public set (10k questions), and a private set (2k questions) used for leaderboard evaluation. Each set contains all medical subfields and difficulty levels. Our approach is scalable to other languages, and we open-source our data construction pipeline to support the development of future multilingual benchmarks in the medical domain. 9 authors · Jun 2
- GreenMind: A Next-Generation Vietnamese Large Language Model for Structured and Logical Reasoning Chain-of-Thought (CoT) is a robust approach for tackling LLM tasks that require intermediate reasoning steps prior to generating a final answer. In this paper, we present GreenMind-Medium-14B-R1, the Vietnamese reasoning model inspired by the finetuning strategy based on Group Relative Policy Optimization. We also leverage a high-quality Vietnamese synthesized reasoning dataset and design two reward functions to tackle the main limitations of this technique: (i) language mixing, where we explicitly detect the presence of biased language characters during the process of sampling tokens, and (ii) we leverage Sentence Transformer-based models to ensure that the generated reasoning content maintains factual correctness and does not distort the final output. Experimental results on the Vietnamese dataset from the VLSP 2023 Challenge demonstrate that our model outperforms prior works and enhances linguistic consistency in its responses. Furthermore, we extend our evaluation to SeaExam-a multilingual multiple-choice dataset, showing the effectiveness of our reasoning method compared to few-shot prompting techniques. 3 authors · Apr 23
- Advancing Vietnamese Information Retrieval with Learning Objective and Benchmark With the rapid development of natural language processing, many language models have been invented for multiple tasks. One important task is information retrieval (IR), which requires models to retrieve relevant documents. Despite its importance in many real-life applications, especially in retrieval augmented generation (RAG) systems, this task lacks Vietnamese benchmarks. This situation causes difficulty in assessing and comparing many existing Vietnamese embedding language models on the task and slows down the advancement of Vietnamese natural language processing (NLP) research. In this work, we aim to provide the Vietnamese research community with a new benchmark for information retrieval, which mainly focuses on retrieval and reranking tasks. Furthermore, we also present a new objective function based on the InfoNCE loss function, which is used to train our Vietnamese embedding model. Our function aims to be better than the origin in information retrieval tasks. Finally, we analyze the effect of temperature, a hyper-parameter in both objective functions, on the performance of text embedding models. 4 authors · Mar 10
- Enhancing Vietnamese VQA through Curriculum Learning on Raw and Augmented Text Representations Visual Question Answering (VQA) is a multimodal task requiring reasoning across textual and visual inputs, which becomes particularly challenging in low-resource languages like Vietnamese due to linguistic variability and the lack of high-quality datasets. Traditional methods often rely heavily on extensive annotated datasets, computationally expensive pipelines, and large pre-trained models, specifically in the domain of Vietnamese VQA, limiting their applicability in such scenarios. To address these limitations, we propose a training framework that combines a paraphrase-based feature augmentation module with a dynamic curriculum learning strategy. Explicitly, augmented samples are considered "easy" while raw samples are regarded as "hard". The framework then utilizes a mechanism that dynamically adjusts the ratio of easy to hard samples during training, progressively modifying the same dataset to increase its difficulty level. By enabling gradual adaptation to task complexity, this approach helps the Vietnamese VQA model generalize well, thus improving overall performance. Experimental results show consistent improvements on the OpenViVQA dataset and mixed outcomes on the ViVQA dataset, highlighting both the potential and challenges of our approach in advancing VQA for Vietnamese language. 6 authors · Mar 5
- LaVy: Vietnamese Multimodal Large Language Model Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. Our project is public at https://github.com/baochi0212/LaVy 2 authors · Apr 11, 2024
- Improving Vietnamese-English Medical Machine Translation Machine translation for Vietnamese-English in the medical domain is still an under-explored research area. In this paper, we introduce MedEV -- a high-quality Vietnamese-English parallel dataset constructed specifically for the medical domain, comprising approximately 360K sentence pairs. We conduct extensive experiments comparing Google Translate, ChatGPT (gpt-3.5-turbo), state-of-the-art Vietnamese-English neural machine translation models and pre-trained bilingual/multilingual sequence-to-sequence models on our new MedEV dataset. Experimental results show that the best performance is achieved by fine-tuning "vinai-translate" for each translation direction. We publicly release our dataset to promote further research. 5 authors · Mar 28, 2024
- VNHSGE: VietNamese High School Graduation Examination Dataset for Large Language Models The VNHSGE (VietNamese High School Graduation Examination) dataset, developed exclusively for evaluating large language models (LLMs), is introduced in this article. The dataset, which covers nine subjects, was generated from the Vietnamese National High School Graduation Examination and comparable tests. 300 literary essays have been included, and there are over 19,000 multiple-choice questions on a range of topics. The dataset assesses LLMs in multitasking situations such as question answering, text generation, reading comprehension, visual question answering, and more by including both textual data and accompanying images. Using ChatGPT and BingChat, we evaluated LLMs on the VNHSGE dataset and contrasted their performance with that of Vietnamese students to see how well they performed. The results show that ChatGPT and BingChat both perform at a human level in a number of areas, including literature, English, history, geography, and civics education. They still have space to grow, though, especially in the areas of mathematics, physics, chemistry, and biology. The VNHSGE dataset seeks to provide an adequate benchmark for assessing the abilities of LLMs with its wide-ranging coverage and variety of activities. We intend to promote future developments in the creation of LLMs by making this dataset available to the scientific community, especially in resolving LLMs' limits in disciplines involving mathematics and the natural sciences. 8 authors · May 20, 2023
- VLSP 2021 - ViMRC Challenge: Vietnamese Machine Reading Comprehension One of the emerging research trends in natural language understanding is machine reading comprehension (MRC) which is the task to find answers to human questions based on textual data. Existing Vietnamese datasets for MRC research concentrate solely on answerable questions. However, in reality, questions can be unanswerable for which the correct answer is not stated in the given textual data. To address the weakness, we provide the research community with a benchmark dataset named UIT-ViQuAD 2.0 for evaluating the MRC task and question answering systems for the Vietnamese language. We use UIT-ViQuAD 2.0 as a benchmark dataset for the challenge on Vietnamese MRC at the Eighth Workshop on Vietnamese Language and Speech Processing (VLSP 2021). This task attracted 77 participant teams from 34 universities and other organizations. In this article, we present details of the organization of the challenge, an overview of the methods employed by shared-task participants, and the results. The highest performances are 77.24% in F1-score and 67.43% in Exact Match on the private test set. The Vietnamese MRC systems proposed by the top 3 teams use XLM-RoBERTa, a powerful pre-trained language model based on the transformer architecture. The UIT-ViQuAD 2.0 dataset motivates researchers to further explore the Vietnamese machine reading comprehension task and related tasks such as question answering, question generation, and natural language inference. 6 authors · Mar 21, 2022
- Improving Vietnamese Named Entity Recognition from Speech Using Word Capitalization and Punctuation Recovery Models Studies on the Named Entity Recognition (NER) task have shown outstanding results that reach human parity on input texts with correct text formattings, such as with proper punctuation and capitalization. However, such conditions are not available in applications where the input is speech, because the text is generated from a speech recognition system (ASR), and that the system does not consider the text formatting. In this paper, we (1) presented the first Vietnamese speech dataset for NER task, and (2) the first pre-trained public large-scale monolingual language model for Vietnamese that achieved the new state-of-the-art for the Vietnamese NER task by 1.3% absolute F1 score comparing to the latest study. And finally, (3) we proposed a new pipeline for NER task from speech that overcomes the text formatting problem by introducing a text capitalization and punctuation recovery model (CaPu) into the pipeline. The model takes input text from an ASR system and performs two tasks at the same time, producing proper text formatting that helps to improve NER performance. Experimental results indicated that the CaPu model helps to improve by nearly 4% of F1-score. 5 authors · Oct 1, 2020
- A Vietnamese Dataset for Evaluating Machine Reading Comprehension Over 97 million people speak Vietnamese as their native language in the world. However, there are few research studies on machine reading comprehension (MRC) for Vietnamese, the task of understanding a text and answering questions related to it. Due to the lack of benchmark datasets for Vietnamese, we present the Vietnamese Question Answering Dataset (UIT-ViQuAD), a new dataset for the low-resource language as Vietnamese to evaluate MRC models. This dataset comprises over 23,000 human-generated question-answer pairs based on 5,109 passages of 174 Vietnamese articles from Wikipedia. In particular, we propose a new process of dataset creation for Vietnamese MRC. Our in-depth analyses illustrate that our dataset requires abilities beyond simple reasoning like word matching and demands single-sentence and multiple-sentence inferences. Besides, we conduct experiments on state-of-the-art MRC methods for English and Chinese as the first experimental models on UIT-ViQuAD. We also estimate human performance on the dataset and compare it to the experimental results of powerful machine learning models. As a result, the substantial differences between human performance and the best model performance on the dataset indicate that improvements can be made on UIT-ViQuAD in future research. Our dataset is freely available on our website to encourage the research community to overcome challenges in Vietnamese MRC. 4 authors · Sep 30, 2020
- UIT-ViIC: A Dataset for the First Evaluation on Vietnamese Image Captioning Image Captioning, the task of automatic generation of image captions, has attracted attentions from researchers in many fields of computer science, being computer vision, natural language processing and machine learning in recent years. This paper contributes to research on Image Captioning task in terms of extending dataset to a different language - Vietnamese. So far, there is no existed Image Captioning dataset for Vietnamese language, so this is the foremost fundamental step for developing Vietnamese Image Captioning. In this scope, we first build a dataset which contains manually written captions for images from Microsoft COCO dataset relating to sports played with balls, we called this dataset UIT-ViIC. UIT-ViIC consists of 19,250 Vietnamese captions for 3,850 images. Following that, we evaluate our dataset on deep neural network models and do comparisons with English dataset and two Vietnamese datasets built by different methods. UIT-ViIC is published on our lab website for research purposes. 4 authors · Feb 1, 2020
- A neural joint model for Vietnamese word segmentation, POS tagging and dependency parsing We propose the first multi-task learning model for joint Vietnamese word segmentation, part-of-speech (POS) tagging and dependency parsing. In particular, our model extends the BIST graph-based dependency parser (Kiperwasser and Goldberg, 2016) with BiLSTM-CRF-based neural layers (Huang et al., 2015) for word segmentation and POS tagging. On Vietnamese benchmark datasets, experimental results show that our joint model obtains state-of-the-art or competitive performances. 1 authors · Dec 29, 2018
23 VinaLLaMA: LLaMA-based Vietnamese Foundation Model In this technical report, we present VinaLLaMA, an open-weight, state-of-the-art (SOTA) Large Language Model for the Vietnamese language, built upon LLaMA-2 with an additional 800 billion trained tokens. VinaLLaMA not only demonstrates fluency in Vietnamese but also exhibits a profound understanding of Vietnamese culture, making it a truly indigenous model. VinaLLaMA-7B-chat, trained on 1 million high-quality synthetic samples, achieves SOTA results on key benchmarks, including VLSP, VMLU, and Vicuna Benchmark Vietnamese, marking a significant advancement in the Vietnamese AI landscape and offering a versatile resource for various applications. 3 authors · Dec 18, 2023 2
5 ViExam: Are Vision Language Models Better than Humans on Vietnamese Multimodal Exam Questions? Vision language models (VLMs) demonstrate remarkable capabilities on English multimodal tasks, but their performance on low-resource languages with genuinely multimodal educational content remains largely unexplored. In this work, we test how VLMs perform on Vietnamese educational assessments, investigating whether VLMs trained predominantly on English data can handle real-world cross-lingual multimodal reasoning. Our work presents the first comprehensive evaluation of VLM capabilities on multimodal Vietnamese exams through proposing ViExam, a benchmark containing 2,548 multimodal questions. We find that state-of-the-art VLMs achieve only 57.74% while open-source models achieve 27.70% mean accuracy across 7 academic domains, including Mathematics, Physics, Chemistry, Biology, Geography, Driving Test, and IQ Test. Most VLMs underperform average human test-takers (66.54%), with only the thinking VLM o3 (74.07%) exceeding human average performance, yet still falling substantially short of human best performance (99.60%). Cross-lingual prompting with English instructions while maintaining Vietnamese content fails to improve performance, decreasing accuracy by 1 percentage point for SOTA VLMs. Human-in-the-loop collaboration can partially improve VLM performance by 5 percentage points. Code and data are available at: https://vi-exam.github.io. 5 authors · Aug 19 3
1 Enhancing OCR for Sino-Vietnamese Language Processing via Fine-tuned PaddleOCRv5 Recognizing and processing Classical Chinese (Han-Nom) texts play a vital role in digitizing Vietnamese historical documents and enabling cross-lingual semantic research. However, existing OCR systems struggle with degraded scans, non-standard glyphs, and handwriting variations common in ancient sources. In this work, we propose a fine-tuning approach for PaddleOCRv5 to improve character recognition on Han-Nom texts. We retrain the text recognition module using a curated subset of ancient Vietnamese Chinese manuscripts, supported by a full training pipeline covering preprocessing, LMDB conversion, evaluation, and visualization. Experimental results show a significant improvement over the base model, with exact accuracy increasing from 37.5 percent to 50.0 percent, particularly under noisy image conditions. Furthermore, we develop an interactive demo that visually compares pre- and post-fine-tuning recognition results, facilitating downstream applications such as Han-Vietnamese semantic alignment, machine translation, and historical linguistics research. The demo is available at https://huggingface.co/spaces/MinhDS/Fine-tuned-PaddleOCRv5. 2 authors · Oct 4
1 VoxVietnam: a Large-Scale Multi-Genre Dataset for Vietnamese Speaker Recognition Recent research in speaker recognition aims to address vulnerabilities due to variations between enrolment and test utterances, particularly in the multi-genre phenomenon where the utterances are in different speech genres. Previous resources for Vietnamese speaker recognition are either limited in size or do not focus on genre diversity, leaving studies in multi-genre effects unexplored. This paper introduces VoxVietnam, the first multi-genre dataset for Vietnamese speaker recognition with over 187,000 utterances from 1,406 speakers and an automated pipeline to construct a dataset on a large scale from public sources. Our experiments show the challenges posed by the multi-genre phenomenon to models trained on a single-genre dataset, and demonstrate a significant increase in performance upon incorporating the VoxVietnam into the training process. Our experiments are conducted to study the challenges of the multi-genre phenomenon in speaker recognition and the performance gain when the proposed dataset is used for multi-genre training. 5 authors · Dec 31, 2024
- VietMEAgent: Culturally-Aware Few-Shot Multimodal Explanation for Vietnamese Visual Question Answering Contemporary Visual Question Answering (VQA) systems remain constrained when confronted with culturally specific content, largely because cultural knowledge is under-represented in training corpora and the reasoning process is not rendered interpretable to end users. This paper introduces VietMEAgent, a multimodal explainable framework engineered for Vietnamese cultural understanding. The method integrates a cultural object detection backbone with a structured program generation layer, yielding a pipeline in which answer prediction and explanation are tightly coupled. A curated knowledge base of Vietnamese cultural entities serves as an explicit source of background information, while a dual-modality explanation module combines attention-based visual evidence with structured, human-readable textual rationales. We further construct a Vietnamese Cultural VQA dataset sourced from public repositories and use it to demonstrate the practicality of programming-based methodologies for cultural AI. The resulting system provides transparent explanations that disclose both the computational rationale and the underlying cultural context, supporting education and cultural preservation with an emphasis on interpretability and cultural sensitivity. 4 authors · Nov 12
- ViToSA: Audio-Based Toxic Spans Detection on Vietnamese Speech Utterances Toxic speech on online platforms is a growing concern, impacting user experience and online safety. While text-based toxicity detection is well-studied, audio-based approaches remain underexplored, especially for low-resource languages like Vietnamese. This paper introduces ViToSA (Vietnamese Toxic Spans Audio), the first dataset for toxic spans detection in Vietnamese speech, comprising 11,000 audio samples (25 hours) with accurate human-annotated transcripts. We propose a pipeline that combines ASR and toxic spans detection for fine-grained identification of toxic content. Our experiments show that fine-tuning ASR models on ViToSA significantly reduces WER when transcribing toxic speech, while the text-based toxic spans detection (TSD) models outperform existing baselines. These findings establish a novel benchmark for Vietnamese audio-based toxic spans detection, paving the way for future research in speech content moderation. 3 authors · May 31
- VietASR: Achieving Industry-level Vietnamese ASR with 50-hour labeled data and Large-Scale Speech Pretraining Automatic speech recognition (ASR) has made remarkable progress but heavily relies on large-scale labeled data, which is scarce for low-resource languages like Vietnamese. While existing systems such as Whisper, USM, and MMS achieve promising performance, their efficacy remains inadequate in terms of training costs, latency, and accessibility. To address these issues, we propose VietASR, a novel ASR training pipeline that leverages vast amounts of unlabeled data and a small set of labeled data. Through multi-iteration ASR-biased self-supervised learning on a large-scale unlabeled dataset, VietASR offers a cost-effective and practical solution for enhancing ASR performance. Experiments demonstrate that pre-training on 70,000-hour unlabeled data and fine-tuning on merely 50-hour labeled data yield a lightweight but powerful ASR model. It outperforms Whisper Large-v3 and commercial ASR systems on real-world data. Our code and models will be open-sourced to facilitate research in low-resource ASR. 7 authors · May 23
- Privacy-Preserving Real-Time Vietnamese-English Translation on iOS using Edge AI This research addresses the growing need for privacy-preserving and accessible language translation by developing a fully offline Neural Machine Translation (NMT) system for Vietnamese-English translation on iOS devices. Given increasing concerns about data privacy and unreliable network connectivity, on-device translation offers critical advantages. This project confronts challenges in deploying complex NMT models on resource-limited mobile devices, prioritizing efficiency, accuracy, and a seamless user experience. Leveraging advances such as MobileBERT and, specifically, the lightweight TinyLlama 1.1B Chat v1.0 in GGUF format, a quantized Transformer-based model is implemented and optimized. The application is realized as a real-time iOS prototype, tightly integrating modern iOS frameworks and privacy-by-design principles. Comprehensive documentation covers model selection, technical architecture, challenges, and final implementation, including functional Swift code for deployment. 1 authors · May 12
- VNJPTranslate: A comprehensive pipeline for Vietnamese-Japanese translation Neural Machine Translation (NMT) driven by Transformer architectures has advanced significantly, yet faces challenges with low-resource language pairs like Vietnamese-Japanese (Vi-Ja). Issues include sparse parallel data and handling linguistic/cultural nuances. Recent progress in Large Language Models (LLMs) with strong reasoning, often refined via Reinforcement Learning (RL), enables high-quality synthetic data generation. We introduce VNJPTranslate, a pipeline designed to systematically address the Vi-Ja translation task. It features a targeted data augmentation strategy using advanced LLMs with Chain-of-Thought prompting for challenging segments identified via corpus analysis. Subsequently, we employ efficient fine-tuning techniques (Unsloth with QLoRA) on a capable, low-parameter autoregressive model (specifically, a fine-tuned version of the 1.8B parameter Sailor model, which is based on the Qwen architecture) to create a practical and high-performing translation system. This integrated approach aims to improve Vi-Ja translation quality significantly over existing baselines. 3 authors · Mar 31
- ViWikiFC: Fact-Checking for Vietnamese Wikipedia-Based Textual Knowledge Source Fact-checking is essential due to the explosion of misinformation in the media ecosystem. Although false information exists in every language and country, most research to solve the problem mainly concentrated on huge communities like English and Chinese. Low-resource languages like Vietnamese are necessary to explore corpora and models for fact verification. To bridge this gap, we construct ViWikiFC, the first manual annotated open-domain corpus for Vietnamese Wikipedia Fact Checking more than 20K claims generated by converting evidence sentences extracted from Wikipedia articles. We analyze our corpus through many linguistic aspects, from the new dependency rate, the new n-gram rate, and the new word rate. We conducted various experiments for Vietnamese fact-checking, including evidence retrieval and verdict prediction. BM25 and InfoXLM (Large) achieved the best results in two tasks, with BM25 achieving an accuracy of 88.30% for SUPPORTS, 86.93% for REFUTES, and only 56.67% for the NEI label in the evidence retrieval task, InfoXLM (Large) achieved an F1 score of 86.51%. Furthermore, we also conducted a pipeline approach, which only achieved a strict accuracy of 67.00% when using InfoXLM (Large) and BM25. These results demonstrate that our dataset is challenging for the Vietnamese language model in fact-checking tasks. 4 authors · May 13, 2024
- ViOCRVQA: Novel Benchmark Dataset and Vision Reader for Visual Question Answering by Understanding Vietnamese Text in Images Optical Character Recognition - Visual Question Answering (OCR-VQA) is the task of answering text information contained in images that have just been significantly developed in the English language in recent years. However, there are limited studies of this task in low-resource languages such as Vietnamese. To this end, we introduce a novel dataset, ViOCRVQA (Vietnamese Optical Character Recognition - Visual Question Answering dataset), consisting of 28,000+ images and 120,000+ question-answer pairs. In this dataset, all the images contain text and questions about the information relevant to the text in the images. We deploy ideas from state-of-the-art methods proposed for English to conduct experiments on our dataset, revealing the challenges and difficulties inherent in a Vietnamese dataset. Furthermore, we introduce a novel approach, called VisionReader, which achieved 0.4116 in EM and 0.6990 in the F1-score on the test set. Through the results, we found that the OCR system plays a very important role in VQA models on the ViOCRVQA dataset. In addition, the objects in the image also play a role in improving model performance. We open access to our dataset at link (https://github.com/qhnhynmm/ViOCRVQA.git) for further research in OCR-VQA task in Vietnamese. 7 authors · Apr 28, 2024 1
- VLUE: A New Benchmark and Multi-task Knowledge Transfer Learning for Vietnamese Natural Language Understanding The success of Natural Language Understanding (NLU) benchmarks in various languages, such as GLUE for English, CLUE for Chinese, KLUE for Korean, and IndoNLU for Indonesian, has facilitated the evaluation of new NLU models across a wide range of tasks. To establish a standardized set of benchmarks for Vietnamese NLU, we introduce the first Vietnamese Language Understanding Evaluation (VLUE) benchmark. The VLUE benchmark encompasses five datasets covering different NLU tasks, including text classification, span extraction, and natural language understanding. To provide an insightful overview of the current state of Vietnamese NLU, we then evaluate seven state-of-the-art pre-trained models, including both multilingual and Vietnamese monolingual models, on our proposed VLUE benchmark. Furthermore, we present CafeBERT, a new state-of-the-art pre-trained model that achieves superior results across all tasks in the VLUE benchmark. Our model combines the proficiency of a multilingual pre-trained model with Vietnamese linguistic knowledge. CafeBERT is developed based on the XLM-RoBERTa model, with an additional pretraining step utilizing a significant amount of Vietnamese textual data to enhance its adaptation to the Vietnamese language. For the purpose of future research, CafeBERT is made publicly available for research purposes. 5 authors · Mar 23, 2024
- Towards Comprehensive Vietnamese Retrieval-Augmented Generation and Large Language Models This paper presents our contributions towards advancing the state of Vietnamese language understanding and generation through the development and dissemination of open datasets and pre-trained models for Vietnamese Retrieval-Augmented Generation (RAG) and Large Language Models (LLMs). 6 authors · Mar 3, 2024
- KTVIC: A Vietnamese Image Captioning Dataset on the Life Domain Image captioning is a crucial task with applications in a wide range of domains, including healthcare and education. Despite extensive research on English image captioning datasets, the availability of such datasets for Vietnamese remains limited, with only two existing datasets. In this study, we introduce KTVIC, a comprehensive Vietnamese Image Captioning dataset focused on the life domain, covering a wide range of daily activities. This dataset comprises 4,327 images and 21,635 Vietnamese captions, serving as a valuable resource for advancing image captioning in the Vietnamese language. We conduct experiments using various deep neural networks as the baselines on our dataset, evaluating them using the standard image captioning metrics, including BLEU, METEOR, CIDEr, and ROUGE. Our findings underscore the effectiveness of the proposed dataset and its potential contributions to the field of image captioning in the Vietnamese context. 4 authors · Jan 15, 2024
- PhoGPT: Generative Pre-training for Vietnamese We open-source a state-of-the-art 7.5B-parameter generative model series named PhoGPT for Vietnamese, which includes the base pre-trained monolingual model PhoGPT-7B5 and its instruction-following variant, PhoGPT-7B5-Instruct. In addition, we also demonstrate its superior performance compared to previous open-source models through a human evaluation experiment. GitHub: https://github.com/VinAIResearch/PhoGPT 8 authors · Nov 6, 2023
- Evaluating the Symbol Binding Ability of Large Language Models for Multiple-Choice Questions in Vietnamese General Education In this paper, we evaluate the ability of large language models (LLMs) to perform multiple choice symbol binding (MCSB) for multiple choice question answering (MCQA) tasks in zero-shot, one-shot, and few-shot settings. We focus on Vietnamese, with fewer challenging MCQA datasets than in English. The two existing datasets, ViMMRC 1.0 and ViMMRC 2.0, focus on literature. Recent research in Vietnamese natural language processing (NLP) has focused on the Vietnamese National High School Graduation Examination (VNHSGE) from 2019 to 2023 to evaluate ChatGPT. However, these studies have mainly focused on how ChatGPT solves the VNHSGE step by step. We aim to create a novel and high-quality dataset by providing structured guidelines for typing LaTeX formulas for mathematics, physics, chemistry, and biology. This dataset can be used to evaluate the MCSB ability of LLMs and smaller language models (LMs) because it is typed in a strict LaTeX style. We focus on predicting the character (A, B, C, or D) that is the most likely answer to a question, given the context of the question. Our evaluation of six well-known LLMs, namely BLOOMZ-7.1B-MT, LLaMA-2-7B, LLaMA-2-70B, GPT-3, GPT-3.5, and GPT-4.0, on the ViMMRC 1.0 and ViMMRC 2.0 benchmarks and our proposed dataset shows promising results on the MCSB ability of LLMs for Vietnamese. The dataset is available for research purposes only. 2 authors · Oct 18, 2023
- Unsupervised Pre-Training for Vietnamese Automatic Speech Recognition in the HYKIST Project In today's interconnected globe, moving abroad is more and more prevalent, whether it's for employment, refugee resettlement, or other causes. Language difficulties between natives and immigrants present a common issue on a daily basis, especially in medical domain. This can make it difficult for patients and doctors to communicate during anamnesis or in the emergency room, which compromises patient care. The goal of the HYKIST Project is to develop a speech translation system to support patient-doctor communication with ASR and MT. ASR systems have recently displayed astounding performance on particular tasks for which enough quantities of training data are available, such as LibriSpeech. Building a good model is still difficult due to a variety of speaking styles, acoustic and recording settings, and a lack of in-domain training data. In this thesis, we describe our efforts to construct ASR systems for a conversational telephone speech recognition task in the medical domain for Vietnamese language to assist emergency room contact between doctors and patients across linguistic barriers. In order to enhance the system's performance, we investigate various training schedules and data combining strategies. We also examine how best to make use of the little data that is available. The use of publicly accessible models like XLSR-53 is compared to the use of customized pre-trained models, and both supervised and unsupervised approaches are utilized using wav2vec 2.0 as architecture. 1 authors · Sep 26, 2023
- Can ChatGPT pass the Vietnamese National High School Graduation Examination? This research article highlights the potential of AI-powered chatbots in education and presents the results of using ChatGPT, a large language model, to complete the Vietnamese National High School Graduation Examination (VNHSGE). The study dataset included 30 essays in the literature test case and 1,700 multiple-choice questions designed for other subjects. The results showed that ChatGPT was able to pass the examination with an average score of 6-7, demonstrating the technology's potential to revolutionize the educational landscape. The analysis of ChatGPT performance revealed its proficiency in a range of subjects, including mathematics, English, physics, chemistry, biology, history, geography, civic education, and literature, which suggests its potential to provide effective support for learners. However, further research is needed to assess ChatGPT performance on more complex exam questions and its potential to support learners in different contexts. As technology continues to evolve and improve, we can expect to see the use of AI tools like ChatGPT become increasingly common in educational settings, ultimately enhancing the educational experience for both students and educators. 4 authors · Jun 15, 2023
- UIT-OpenViIC: A Novel Benchmark for Evaluating Image Captioning in Vietnamese Image Captioning is one of the vision-language tasks that still interest the research community worldwide in the 2020s. MS-COCO Caption benchmark is commonly used to evaluate the performance of advanced captioning models, although it was published in 2015. Recent captioning models trained on the MS-COCO Caption dataset only have good performance in language patterns of English; they do not have such good performance in contexts captured in Vietnam or fluently caption images using Vietnamese. To contribute to the low-resources research community as in Vietnam, we introduce a novel image captioning dataset in Vietnamese, the Open-domain Vietnamese Image Captioning dataset (UIT-OpenViIC). The introduced dataset includes complex scenes captured in Vietnam and manually annotated by Vietnamese under strict rules and supervision. In this paper, we present in more detail the dataset creation process. From preliminary analysis, we show that our dataset is challenging to recent state-of-the-art (SOTA) Transformer-based baselines, which performed well on the MS COCO dataset. Then, the modest results prove that UIT-OpenViIC has room to grow, which can be one of the standard benchmarks in Vietnamese for the research community to evaluate their captioning models. Furthermore, we present a CAMO approach that effectively enhances the image representation ability by a multi-level encoder output fusion mechanism, which helps improve the quality of generated captions compared to previous captioning models. 3 authors · May 6, 2023
- VSEC: Transformer-based Model for Vietnamese Spelling Correction Spelling error correction is one of topics which have a long history in natural language processing. Although previous studies have achieved remarkable results, challenges still exist. In the Vietnamese language, a state-of-the-art method for the task infers a syllable's context from its adjacent syllables. The method's accuracy can be unsatisfactory, however, because the model may lose the context if two (or more) spelling mistakes stand near each other. In this paper, we propose a novel method to correct Vietnamese spelling errors. We tackle the problems of mistyped errors and misspelled errors by using a deep learning model. The embedding layer, in particular, is powered by the byte pair encoding technique. The sequence to sequence model based on the Transformer architecture makes our approach different from the previous works on the same problem. In the experiment, we train the model with a large synthetic dataset, which is randomly introduced spelling errors. We test the performance of the proposed method using a realistic dataset. This dataset contains 11,202 human-made misspellings in 9,341 different Vietnamese sentences. The experimental results show that our method achieves encouraging performance with 86.8% errors detected and 81.5% errors corrected, which improves the state-of-the-art approach 5.6% and 2.2%, respectively. 4 authors · Oct 31, 2021
- Intent Detection and Slot Filling for Vietnamese Intent detection and slot filling are important tasks in spoken and natural language understanding. However, Vietnamese is a low-resource language in these research topics. In this paper, we present the first public intent detection and slot filling dataset for Vietnamese. In addition, we also propose a joint model for intent detection and slot filling, that extends the recent state-of-the-art JointBERT+CRF model with an intent-slot attention layer to explicitly incorporate intent context information into slot filling via "soft" intent label embedding. Experimental results on our Vietnamese dataset show that our proposed model significantly outperforms JointBERT+CRF. We publicly release our dataset and the implementation of our model at: https://github.com/VinAIResearch/JointIDSF 3 authors · Apr 5, 2021
- Improving Sequence Tagging for Vietnamese Text Using Transformer-based Neural Models This paper describes our study on using mutilingual BERT embeddings and some new neural models for improving sequence tagging tasks for the Vietnamese language. We propose new model architectures and evaluate them extensively on two named entity recognition datasets of VLSP 2016 and VLSP 2018, and on two part-of-speech tagging datasets of VLSP 2010 and VLSP 2013. Our proposed models outperform existing methods and achieve new state-of-the-art results. In particular, we have pushed the accuracy of part-of-speech tagging to 95.40% on the VLSP 2010 corpus, to 96.77% on the VLSP 2013 corpus; and the F1 score of named entity recognition to 94.07% on the VLSP 2016 corpus, to 90.31% on the VLSP 2018 corpus. Our code and pre-trained models viBERT and vELECTRA are released as open source to facilitate adoption and further research. 3 authors · Jun 29, 2020
- An Efficient Model for Sentiment Analysis of Electronic Product Reviews in Vietnamese In the past few years, the growth of e-commerce and digital marketing in Vietnam has generated a huge volume of opinionated data. Analyzing those data would provide enterprises with insight for better business decisions. In this work, as part of the Advosights project, we study sentiment analysis of product reviews in Vietnamese. The final solution is based on Self-attention neural networks, a flexible architecture for text classification task with about 90.16% of accuracy in 0.0124 second, a very fast inference time. 4 authors · Oct 29, 2019
- Neural sequence labeling for Vietnamese POS Tagging and NER This paper presents a neural architecture for Vietnamese sequence labeling tasks including part-of-speech (POS) tagging and named entity recognition (NER). We applied the model described in lample-EtAl:2016:N16-1 that is a combination of bidirectional Long-Short Term Memory and Conditional Random Fields, which rely on two sources of information about words: character-based word representations learned from the supervised corpus and pre-trained word embeddings learned from other unannotated corpora. Experiments on benchmark datasets show that this work achieves state-of-the-art performances on both tasks - 93.52\% accuracy for POS tagging and 94.88\% F1 for NER. Our sourcecode is available at here. 3 authors · Nov 8, 2018
- From Word Segmentation to POS Tagging for Vietnamese This paper presents an empirical comparison of two strategies for Vietnamese Part-of-Speech (POS) tagging from unsegmented text: (i) a pipeline strategy where we consider the output of a word segmenter as the input of a POS tagger, and (ii) a joint strategy where we predict a combined segmentation and POS tag for each syllable. We also make a comparison between state-of-the-art (SOTA) feature-based and neural network-based models. On the benchmark Vietnamese treebank (Nguyen et al., 2009), experimental results show that the pipeline strategy produces better scores of POS tagging from unsegmented text than the joint strategy, and the highest accuracy is obtained by using a feature-based model. 5 authors · Nov 14, 2017
28 SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking The rise of misinformation, exacerbated by Large Language Models (LLMs) like GPT and Gemini, demands robust fact-checking solutions, especially for low-resource languages like Vietnamese. Existing methods struggle with semantic ambiguity, homonyms, and complex linguistic structures, often trading accuracy for efficiency. We introduce SemViQA, a novel Vietnamese fact-checking framework integrating Semantic-based Evidence Retrieval (SER) and Two-step Verdict Classification (TVC). Our approach balances precision and speed, achieving state-of-the-art results with 78.97\% strict accuracy on ISE-DSC01 and 80.82\% on ViWikiFC, securing 1st place in the UIT Data Science Challenge. Additionally, SemViQA Faster improves inference speed 7x while maintaining competitive accuracy. SemViQA sets a new benchmark for Vietnamese fact verification, advancing the fight against misinformation. The source code is available at: https://github.com/DAVID-NGUYEN-S16/SemViQA. 7 authors · Mar 2 2
27 Vintern-1B: An Efficient Multimodal Large Language Model for Vietnamese In this report, we introduce Vintern-1B, a reliable 1-billion-parameters multimodal large language model (MLLM) for Vietnamese language tasks. By integrating the Qwen2-0.5B-Instruct language model with the InternViT-300M-448px visual model, Vintern-1B is optimized for a range of applications, including optical character recognition (OCR), document extraction, and general question-answering in Vietnamese context. The model is fine-tuned on an extensive dataset of over 3 million image-question-answer pairs, achieving robust performance and reliable results across multiple Vietnamese language benchmarks like OpenViVQA and ViTextVQA. Vintern-1B is small enough to fit into various on-device applications easily. Additionally, we have open-sourced several Vietnamese vision question answering (VQA) datasets for text and diagrams, created with Gemini 1.5 Flash. Our models are available at: https://huggingface.co/5CD-AI/Vintern-1B-v2. 8 authors · Aug 22, 2024 5
3 Crossing Linguistic Horizons: Finetuning and Comprehensive Evaluation of Vietnamese Large Language Models Recent advancements in large language models (LLMs) have underscored their importance in the evolution of artificial intelligence. However, despite extensive pretraining on multilingual datasets, available open-sourced LLMs exhibit limited effectiveness in processing Vietnamese. The challenge is exacerbated by the absence of systematic benchmark datasets and metrics tailored for Vietnamese LLM evaluation. To mitigate these issues, we have finetuned LLMs specifically for Vietnamese and developed a comprehensive evaluation framework encompassing 10 common tasks and 31 metrics. Our evaluation results reveal that the fine-tuned LLMs exhibit enhanced comprehension and generative capabilities in Vietnamese. Moreover, our analysis indicates that models with more parameters can introduce more biases and uncalibrated outputs and the key factor influencing LLM performance is the quality of the training or fine-tuning datasets. These insights underscore the significance of meticulous fine-tuning with high-quality datasets in enhancing LLM performance. 7 authors · Mar 5, 2024
3 MTet: Multi-domain Translation for English and Vietnamese We introduce MTet, the largest publicly available parallel corpus for English-Vietnamese translation. MTet consists of 4.2M high-quality training sentence pairs and a multi-domain test set refined by the Vietnamese research community. Combining with previous works on English-Vietnamese translation, we grow the existing parallel dataset to 6.2M sentence pairs. We also release the first pretrained model EnViT5 for English and Vietnamese languages. Combining both resources, our model significantly outperforms previous state-of-the-art results by up to 2 points in translation BLEU score, while being 1.6 times smaller. 8 authors · Oct 11, 2022
2 A Large-Scale Benchmark for Vietnamese Sentence Paraphrases This paper presents ViSP, a high-quality Vietnamese dataset for sentence paraphrasing, consisting of 1.2M original-paraphrase pairs collected from various domains. The dataset was constructed using a hybrid approach that combines automatic paraphrase generation with manual evaluation to ensure high quality. We conducted experiments using methods such as back-translation, EDA, and baseline models like BART and T5, as well as large language models (LLMs), including GPT-4o, Gemini-1.5, Aya, Qwen-2.5, and Meta-Llama-3.1 variants. To the best of our knowledge, this is the first large-scale study on Vietnamese paraphrasing. We hope that our dataset and findings will serve as a valuable foundation for future research and applications in Vietnamese paraphrase tasks. 2 authors · Feb 10
2 ViLLM-Eval: A Comprehensive Evaluation Suite for Vietnamese Large Language Models The rapid advancement of large language models (LLMs) necessitates the development of new benchmarks to accurately assess their capabilities. To address this need for Vietnamese, this work aims to introduce ViLLM-Eval, the comprehensive evaluation suite designed to measure the advanced knowledge and reasoning abilities of foundation models within a Vietnamese context. ViLLM-Eval consists of multiple-choice questions and predict next word tasks spanning various difficulty levels and diverse disciplines, ranging from humanities to science and engineering. A thorough evaluation of the most advanced LLMs on ViLLM-Eval revealed that even the best performing models have significant room for improvement in understanding and responding to Vietnamese language tasks. ViLLM-Eval is believed to be instrumental in identifying key strengths and weaknesses of foundation models, ultimately promoting their development and enhancing their performance for Vietnamese users. This paper provides a thorough overview of ViLLM-Eval as part of the Vietnamese Large Language Model shared task, held within the 10th International Workshop on Vietnamese Language and Speech Processing (VLSP 2023). 3 authors · Apr 17, 2024
2 ViSoBERT: A Pre-Trained Language Model for Vietnamese Social Media Text Processing English and Chinese, known as resource-rich languages, have witnessed the strong development of transformer-based language models for natural language processing tasks. Although Vietnam has approximately 100M people speaking Vietnamese, several pre-trained models, e.g., PhoBERT, ViBERT, and vELECTRA, performed well on general Vietnamese NLP tasks, including POS tagging and named entity recognition. These pre-trained language models are still limited to Vietnamese social media tasks. In this paper, we present the first monolingual pre-trained language model for Vietnamese social media texts, ViSoBERT, which is pre-trained on a large-scale corpus of high-quality and diverse Vietnamese social media texts using XLM-R architecture. Moreover, we explored our pre-trained model on five important natural language downstream tasks on Vietnamese social media texts: emotion recognition, hate speech detection, sentiment analysis, spam reviews detection, and hate speech spans detection. Our experiments demonstrate that ViSoBERT, with far fewer parameters, surpasses the previous state-of-the-art models on multiple Vietnamese social media tasks. Our ViSoBERT model is available\url{https://huggingface.co/uitnlp/visobert} only for research purposes. 4 authors · Oct 17, 2023
2 Efficient Finetuning Large Language Models For Vietnamese Chatbot Large language models (LLMs), such as GPT-4, PaLM, and LLaMa, have been shown to achieve remarkable performance across a variety of natural language tasks. Recent advancements in instruction tuning bring LLMs with ability in following user's instructions and producing human-like responses. However, the high costs associated with training and implementing LLMs pose challenges to academic research. Furthermore, the availability of pretrained LLMs and instruction-tune datasets for Vietnamese language is limited. To tackle these concerns, we leverage large-scale instruction-following datasets from open-source projects, namely Alpaca, GPT4All, and Chat-Doctor, which cover general domain and specific medical domain. To the best of our knowledge, these are the first instructional dataset for Vietnamese. Subsequently, we utilize parameter-efficient tuning through Low-Rank Adaptation (LoRA) on two open LLMs: Bloomz (Multilingual) and GPTJ-6B (Vietnamese), resulting four models: Bloomz-Chat, Bloomz-Doctor, GPTJ-Chat, GPTJ-Doctor.Finally, we assess the effectiveness of our methodology on a per-sample basis, taking into consideration the helpfulness, relevance, accuracy, level of detail in their responses. This evaluation process entails the utilization of GPT-4 as an automated scoring mechanism. Despite utilizing a low-cost setup, our method demonstrates about 20-30\% improvement over the original models in our evaluation tasks. 5 authors · Sep 8, 2023
1 Zero-Shot Text-to-Speech for Vietnamese This paper introduces PhoAudiobook, a newly curated dataset comprising 941 hours of high-quality audio for Vietnamese text-to-speech. Using PhoAudiobook, we conduct experiments on three leading zero-shot TTS models: VALL-E, VoiceCraft, and XTTS-V2. Our findings demonstrate that PhoAudiobook consistently enhances model performance across various metrics. Moreover, VALL-E and VoiceCraft exhibit superior performance in synthesizing short sentences, highlighting their robustness in handling diverse linguistic contexts. We publicly release PhoAudiobook to facilitate further research and development in Vietnamese text-to-speech. 3 authors · Jun 2
1 PhoBERT: Pre-trained language models for Vietnamese We present PhoBERT with two versions, PhoBERT-base and PhoBERT-large, the first public large-scale monolingual language models pre-trained for Vietnamese. Experimental results show that PhoBERT consistently outperforms the recent best pre-trained multilingual model XLM-R (Conneau et al., 2020) and improves the state-of-the-art in multiple Vietnamese-specific NLP tasks including Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference. We release PhoBERT to facilitate future research and downstream applications for Vietnamese NLP. Our PhoBERT models are available at https://github.com/VinAIResearch/PhoBERT 2 authors · Mar 2, 2020
- ViCocktail: Automated Multi-Modal Data Collection for Vietnamese Audio-Visual Speech Recognition Audio-Visual Speech Recognition (AVSR) has gained significant attention recently due to its robustness against noise, which often challenges conventional speech recognition systems that rely solely on audio features. Despite this advantage, AVSR models remain limited by the scarcity of extensive datasets, especially for most languages beyond English. Automated data collection offers a promising solution. This work presents a practical approach to generate AVSR datasets from raw video, refining existing techniques for improved efficiency and accessibility. We demonstrate its broad applicability by developing a baseline AVSR model for Vietnamese. Experiments show the automatically collected dataset enables a strong baseline, achieving competitive performance with robust ASR in clean conditions and significantly outperforming them in noisy environments like cocktail parties. This efficient method provides a pathway to expand AVSR to more languages, particularly under-resourced ones. 4 authors · Jun 5
- Nested Named-Entity Recognition on Vietnamese COVID-19: Dataset and Experiments The COVID-19 pandemic caused great losses worldwide, efforts are taken place to prevent but many countries have failed. In Vietnam, the traceability, localization, and quarantine of people who contact with patients contribute to effective disease prevention. However, this is done by hand, and take a lot of work. In this research, we describe a named-entity recognition (NER) study that assists in the prevention of COVID-19 pandemic in Vietnam. We also present our manually annotated COVID-19 dataset with nested named entity recognition task for Vietnamese which be defined new entity types using for our system. 9 authors · Apr 21
- ViANLI: Adversarial Natural Language Inference for Vietnamese The development of Natural Language Processing (NLI) datasets and models has been inspired by innovations in annotation design. With the rapid development of machine learning models today, the performance of existing machine learning models has quickly reached state-of-the-art results on a variety of tasks related to natural language processing, including natural language inference tasks. By using a pre-trained model during the annotation process, it is possible to challenge current NLI models by having humans produce premise-hypothesis combinations that the machine model cannot correctly predict. To remain attractive and challenging in the research of natural language inference for Vietnamese, in this paper, we introduce the adversarial NLI dataset to the NLP research community with the name ViANLI. This data set contains more than 10K premise-hypothesis pairs and is built by a continuously adjusting process to obtain the most out of the patterns generated by the annotators. ViANLI dataset has brought many difficulties to many current SOTA models when the accuracy of the most powerful model on the test set only reached 48.4%. Additionally, the experimental results show that the models trained on our dataset have significantly improved the results on other Vietnamese NLI datasets. 3 authors · Jun 25, 2024
- ViHateT5: Enhancing Hate Speech Detection in Vietnamese With A Unified Text-to-Text Transformer Model Recent advancements in hate speech detection (HSD) in Vietnamese have made significant progress, primarily attributed to the emergence of transformer-based pre-trained language models, particularly those built on the BERT architecture. However, the necessity for specialized fine-tuned models has resulted in the complexity and fragmentation of developing a multitasking HSD system. Moreover, most current methodologies focus on fine-tuning general pre-trained models, primarily trained on formal textual datasets like Wikipedia, which may not accurately capture human behavior on online platforms. In this research, we introduce ViHateT5, a T5-based model pre-trained on our proposed large-scale domain-specific dataset named VOZ-HSD. By harnessing the power of a text-to-text architecture, ViHateT5 can tackle multiple tasks using a unified model and achieve state-of-the-art performance across all standard HSD benchmarks in Vietnamese. Our experiments also underscore the significance of label distribution in pre-training data on model efficacy. We provide our experimental materials for research purposes, including the VOZ-HSD dataset, pre-trained checkpoint, the unified HSD-multitask ViHateT5 model, and related source code on GitHub publicly. 1 authors · May 22, 2024
- Vi-Mistral-X: Building a Vietnamese Language Model with Advanced Continual Pre-training The advancement of Large Language Models (LLMs) has significantly transformed the field of natural language processing, although the focus on English-centric models has created a noticeable research gap for specific languages, including Vietnamese. To address this issue, this paper presents vi-mistral-x, an innovative Large Language Model designed expressly for the Vietnamese language. It utilizes a unique method of continual pre-training, based on the Mistral architecture, which incorporates grouped-query attention and sliding window attention techniques. This model, vi-Mistral-X, marks a significant step forward in improving the understanding and generation of the Vietnamese language. It introduces an additional phase of continual pre-training, specifically adapted for Vietnamese, enhancing the model's capability in understanding complex language nuances and generating accurate, context-aware Vietnamese text. Through comprehensive testing on various benchmarks, vi-mistral-x has shown to outperform existing Vietnamese LLMs in several key areas, including text classification, question answering, and text generation. Particularly, in the Vietnamese Multitask Language Understanding (VMLU) benchmark, vi-mistral-x sets a new standard, outperforming other available models significantly. This paper highlights the critical role of continual pre-training in advancing language-specific LLMs and opens new avenues for the development of multilingual models. We aim for vi-mistral-x to not just be an important asset for processing the Vietnamese language but also to encourage more advancements in creating large language models for languages that are less represented. 1 authors · Mar 20, 2024
- ViMMRC 2.0 -- Enhancing Machine Reading Comprehension on Vietnamese Literature Text Machine reading comprehension has been an interesting and challenging task in recent years, with the purpose of extracting useful information from texts. To attain the computer ability to understand the reading text and answer relevant information, we introduce ViMMRC 2.0 - an extension of the previous ViMMRC for the task of multiple-choice reading comprehension in Vietnamese Textbooks which contain the reading articles for students from Grade 1 to Grade 12. This dataset has 699 reading passages which are prose and poems, and 5,273 questions. The questions in the new dataset are not fixed with four options as in the previous version. Moreover, the difficulty of questions is increased, which challenges the models to find the correct choice. The computer must understand the whole context of the reading passage, the question, and the content of each choice to extract the right answers. Hence, we propose a multi-stage approach that combines the multi-step attention network (MAN) with the natural language inference (NLI) task to enhance the performance of the reading comprehension model. Then, we compare the proposed methodology with the baseline BERTology models on the new dataset and the ViMMRC 1.0. From the results of the error analysis, we found that the challenge of the reading comprehension models is understanding the implicit context in texts and linking them together in order to find the correct answers. Finally, we hope our new dataset will motivate further research to enhance the ability of computers to understand the Vietnamese language. 5 authors · Mar 31, 2023
- ViT5: Pretrained Text-to-Text Transformer for Vietnamese Language Generation We present ViT5, a pretrained Transformer-based encoder-decoder model for the Vietnamese language. With T5-style self-supervised pretraining, ViT5 is trained on a large corpus of high-quality and diverse Vietnamese texts. We benchmark ViT5 on two downstream text generation tasks, Abstractive Text Summarization and Named Entity Recognition. Although Abstractive Text Summarization has been widely studied for the English language thanks to its rich and large source of data, there has been minimal research into the same task in Vietnamese, a much lower resource language. In this work, we perform exhaustive experiments on both Vietnamese Abstractive Summarization and Named Entity Recognition, validating the performance of ViT5 against many other pretrained Transformer-based encoder-decoder models. Our experiments show that ViT5 significantly outperforms existing models and achieves state-of-the-art results on Vietnamese Text Summarization. On the task of Named Entity Recognition, ViT5 is competitive against previous best results from pretrained encoder-based Transformer models. Further analysis shows the importance of context length during the self-supervised pretraining on downstream performance across different settings. 4 authors · May 13, 2022
- Sentence Extraction-Based Machine Reading Comprehension for Vietnamese The development of natural language processing (NLP) in general and machine reading comprehension in particular has attracted the great attention of the research community. In recent years, there are a few datasets for machine reading comprehension tasks in Vietnamese with large sizes, such as UIT-ViQuAD and UIT-ViNewsQA. However, the datasets are not diverse in answers to serve the research. In this paper, we introduce UIT-ViWikiQA, the first dataset for evaluating sentence extraction-based machine reading comprehension in the Vietnamese language. The UIT-ViWikiQA dataset is converted from the UIT-ViQuAD dataset, consisting of comprises 23.074 question-answers based on 5.109 passages of 174 Wikipedia Vietnamese articles. We propose a conversion algorithm to create the dataset for sentence extraction-based machine reading comprehension and three types of approaches for sentence extraction-based machine reading comprehension in Vietnamese. Our experiments show that the best machine model is XLM-R_Large, which achieves an exact match (EM) of 85.97% and an F1-score of 88.77% on our dataset. Besides, we analyze experimental results in terms of the question type in Vietnamese and the effect of context on the performance of the MRC models, thereby showing the challenges from the UIT-ViWikiQA dataset that we propose to the language processing community. 6 authors · May 19, 2021
- From Universal Language Model to Downstream Task: Improving RoBERTa-Based Vietnamese Hate Speech Detection Natural language processing is a fast-growing field of artificial intelligence. Since the Transformer was introduced by Google in 2017, a large number of language models such as BERT, GPT, and ELMo have been inspired by this architecture. These models were trained on huge datasets and achieved state-of-the-art results on natural language understanding. However, fine-tuning a pre-trained language model on much smaller datasets for downstream tasks requires a carefully-designed pipeline to mitigate problems of the datasets such as lack of training data and imbalanced data. In this paper, we propose a pipeline to adapt the general-purpose RoBERTa language model to a specific text classification task: Vietnamese Hate Speech Detection. We first tune the PhoBERT on our dataset by re-training the model on the Masked Language Model task; then, we employ its encoder for text classification. In order to preserve pre-trained weights while learning new feature representations, we further utilize different training techniques: layer freezing, block-wise learning rate, and label smoothing. Our experiments proved that our proposed pipeline boosts the performance significantly, achieving a new state-of-the-art on Vietnamese Hate Speech Detection campaign with 0.7221 F1 score. 5 authors · Feb 24, 2021
2 VietMed: A Dataset and Benchmark for Automatic Speech Recognition of Vietnamese in the Medical Domain Due to privacy restrictions, there's a shortage of publicly available speech recognition datasets in the medical domain. In this work, we present VietMed - a Vietnamese speech recognition dataset in the medical domain comprising 16h of labeled medical speech, 1000h of unlabeled medical speech and 1200h of unlabeled general-domain speech. To our best knowledge, VietMed is by far the world's largest public medical speech recognition dataset in 7 aspects: total duration, number of speakers, diseases, recording conditions, speaker roles, unique medical terms and accents. VietMed is also by far the largest public Vietnamese speech dataset in terms of total duration. Additionally, we are the first to present a medical ASR dataset covering all ICD-10 disease groups and all accents within a country. Moreover, we release the first public large-scale pre-trained models for Vietnamese ASR, w2v2-Viet and XLSR-53-Viet, along with the first public large-scale fine-tuned models for medical ASR. Even without any medical data in unsupervised pre-training, our best pre-trained model XLSR-53-Viet generalizes very well to the medical domain by outperforming state-of-the-art XLSR-53, from 51.8% to 29.6% WER on test set (a relative reduction of more than 40%). All code, data and models are made publicly available here: https://github.com/leduckhai/MultiMed. 1 authors · Apr 8, 2024
- ViTextVQA: A Large-Scale Visual Question Answering Dataset for Evaluating Vietnamese Text Comprehension in Images Visual Question Answering (VQA) is a complicated task that requires the capability of simultaneously processing natural language and images. Initially, this task was researched, focusing on methods to help machines understand objects and scene contexts in images. However, some text appearing in the image that carries explicit information about the full content of the image is not mentioned. Along with the continuous development of the AI era, there have been many studies on the reading comprehension ability of VQA models in the world. As a developing country, conditions are still limited, and this task is still open in Vietnam. Therefore, we introduce the first large-scale dataset in Vietnamese specializing in the ability to understand text appearing in images, we call it ViTextVQA (Vietnamese Text-based Visual Question Answering dataset) which contains over 16,000 images and over 50,000 questions with answers. Through meticulous experiments with various state-of-the-art models, we uncover the significance of the order in which tokens in OCR text are processed and selected to formulate answers. This finding helped us significantly improve the performance of the baseline models on the ViTextVQA dataset. Our dataset is available at this https://github.com/minhquan6203/ViTextVQA-Dataset{link} for research purposes. 7 authors · Apr 16, 2024
- ChatGPT is Good but Bing Chat is Better for Vietnamese Students This study examines the efficacy of two SOTA large language models (LLMs), namely ChatGPT and Microsoft Bing Chat (BingChat), in catering to the needs of Vietnamese students. Although ChatGPT exhibits proficiency in multiple disciplines, Bing Chat emerges as the more advantageous option. We conduct a comparative analysis of their academic achievements in various disciplines, encompassing mathematics, literature, English language, physics, chemistry, biology, history, geography, and civic education. The results of our study suggest that BingChat demonstrates superior performance compared to ChatGPT across a wide range of subjects, with the exception of literature, where ChatGPT exhibits better performance. Additionally, BingChat utilizes the more advanced GPT-4 technology in contrast to ChatGPT, which is built upon GPT-3.5. This allows BingChat to improve to comprehension, reasoning and generation of creative and informative text. Moreover, the fact that BingChat is accessible in Vietnam and its integration of hyperlinks and citations within responses serve to reinforce its superiority. In our analysis, it is evident that while ChatGPT exhibits praiseworthy qualities, BingChat presents a more apdated solutions for Vietnamese students. 2 authors · Jul 17, 2023
- OpenViVQA: Task, Dataset, and Multimodal Fusion Models for Visual Question Answering in Vietnamese In recent years, visual question answering (VQA) has attracted attention from the research community because of its highly potential applications (such as virtual assistance on intelligent cars, assistant devices for blind people, or information retrieval from document images using natural language as queries) and challenge. The VQA task requires methods that have the ability to fuse the information from questions and images to produce appropriate answers. Neural visual question answering models have achieved tremendous growth on large-scale datasets which are mostly for resource-rich languages such as English. However, available datasets narrow the VQA task as the answers selection task or answer classification task. We argue that this form of VQA is far from human ability and eliminates the challenge of the answering aspect in the VQA task by just selecting answers rather than generating them. In this paper, we introduce the OpenViVQA (Open-domain Vietnamese Visual Question Answering) dataset, the first large-scale dataset for VQA with open-ended answers in Vietnamese, consists of 11,000+ images associated with 37,000+ question-answer pairs (QAs). Moreover, we proposed FST, QuMLAG, and MLPAG which fuse information from images and answers, then use these fused features to construct answers as humans iteratively. Our proposed methods achieve results that are competitive with SOTA models such as SAAA, MCAN, LORA, and M4C. The dataset is available to encourage the research community to develop more generalized algorithms including transformers for low-resource languages such as Vietnamese. 4 authors · May 6, 2023
- BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese We present BARTpho with two versions, BARTpho-syllable and BARTpho-word, which are the first public large-scale monolingual sequence-to-sequence models pre-trained for Vietnamese. BARTpho uses the "large" architecture and the pre-training scheme of the sequence-to-sequence denoising autoencoder BART, thus it is especially suitable for generative NLP tasks. We conduct experiments to compare our BARTpho with its competitor mBART on a downstream task of Vietnamese text summarization and show that: in both automatic and human evaluations, BARTpho outperforms the strong baseline mBART and improves the state-of-the-art. We further evaluate and compare BARTpho and mBART on the Vietnamese capitalization and punctuation restoration tasks and also find that BARTpho is more effective than mBART on these two tasks. We publicly release BARTpho to facilitate future research and applications of generative Vietnamese NLP tasks. Our BARTpho models are available at https://github.com/VinAIResearch/BARTpho 3 authors · Sep 20, 2021
- A Large-scale Dataset for Hate Speech Detection on Vietnamese Social Media Texts In recent years, Vietnam witnesses the mass development of social network users on different social platforms such as Facebook, Youtube, Instagram, and Tiktok. On social medias, hate speech has become a critical problem for social network users. To solve this problem, we introduce the ViHSD - a human-annotated dataset for automatically detecting hate speech on the social network. This dataset contains over 30,000 comments, each comment in the dataset has one of three labels: CLEAN, OFFENSIVE, or HATE. Besides, we introduce the data creation process for annotating and evaluating the quality of the dataset. Finally, we evaluated the dataset by deep learning models and transformer models. 3 authors · Mar 21, 2021
2 ViFactCheck: A New Benchmark Dataset and Methods for Multi-domain News Fact-Checking in Vietnamese The rapid spread of information in the digital age highlights the critical need for effective fact-checking tools, particularly for languages with limited resources, such as Vietnamese. In response to this challenge, we introduce ViFactCheck, the first publicly available benchmark dataset designed specifically for Vietnamese fact-checking across multiple online news domains. This dataset contains 7,232 human-annotated pairs of claim-evidence combinations sourced from reputable Vietnamese online news, covering 12 diverse topics. It has been subjected to a meticulous annotation process to ensure high quality and reliability, achieving a Fleiss Kappa inter-annotator agreement score of 0.83. Our evaluation leverages state-of-the-art pre-trained and large language models, employing fine-tuning and prompting techniques to assess performance. Notably, the Gemma model demonstrated superior effectiveness, with an impressive macro F1 score of 89.90%, thereby establishing a new standard for fact-checking benchmarks. This result highlights the robust capabilities of Gemma in accurately identifying and verifying facts in Vietnamese. To further promote advances in fact-checking technology and improve the reliability of digital media, we have made the ViFactCheck dataset, model checkpoints, fact-checking pipelines, and source code freely available on GitHub. This initiative aims to inspire further research and enhance the accuracy of information in low-resource languages. 4 authors · Dec 19, 2024
- An Efficient Approach for Machine Translation on Low-resource Languages: A Case Study in Vietnamese-Chinese Despite the rise of recent neural networks in machine translation, those networks do not work well if the training data is insufficient. In this paper, we proposed an approach for machine translation in low-resource languages such as Vietnamese-Chinese. Our proposed method leveraged the power of the multilingual pre-trained language model (mBART) and both Vietnamese and Chinese monolingual corpus. Firstly, we built an early bird machine translation model using the bilingual training dataset. Secondly, we used TF-IDF technique to select sentences from the monolingual corpus which are the most related to domains of the parallel dataset. Finally, the first model was used to synthesize the augmented training data from the selected monolingual corpus for the translation model. Our proposed scheme showed that it outperformed 8% compared to the transformer model. The augmented dataset also pushed the model performance. 3 authors · Jan 31
- Constructive and Toxic Speech Detection for Open-domain Social Media Comments in Vietnamese The rise of social media has led to the increasing of comments on online forums. However, there still exists invalid comments which are not informative for users. Moreover, those comments are also quite toxic and harmful to people. In this paper, we create a dataset for constructive and toxic speech detection, named UIT-ViCTSD (Vietnamese Constructive and Toxic Speech Detection dataset) with 10,000 human-annotated comments. For these tasks, we propose a system for constructive and toxic speech detection with the state-of-the-art transfer learning model in Vietnamese NLP as PhoBERT. With this system, we obtain F1-scores of 78.59% and 59.40% for classifying constructive and toxic comments, respectively. Besides, we implement various baseline models as traditional Machine Learning and Deep Neural Network-Based models to evaluate the dataset. With the results, we can solve several tasks on the online discussions and develop the framework for identifying constructiveness and toxicity of Vietnamese social media comments automatically. 3 authors · Mar 18, 2021