new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 16

Image-Free Timestep Distillation via Continuous-Time Consistency with Trajectory-Sampled Pairs

Timestep distillation is an effective approach for improving the generation efficiency of diffusion models. The Consistency Model (CM), as a trajectory-based framework, demonstrates significant potential due to its strong theoretical foundation and high-quality few-step generation. Nevertheless, current continuous-time consistency distillation methods still rely heavily on training data and computational resources, hindering their deployment in resource-constrained scenarios and limiting their scalability to diverse domains. To address this issue, we propose Trajectory-Backward Consistency Model (TBCM), which eliminates the dependence on external training data by extracting latent representations directly from the teacher model's generation trajectory. Unlike conventional methods that require VAE encoding and large-scale datasets, our self-contained distillation paradigm significantly improves both efficiency and simplicity. Moreover, the trajectory-extracted samples naturally bridge the distribution gap between training and inference, thereby enabling more effective knowledge transfer. Empirically, TBCM achieves 6.52 FID and 28.08 CLIP scores on MJHQ-30k under one-step generation, while reducing training time by approximately 40% compared to Sana-Sprint and saving a substantial amount of GPU memory, demonstrating superior efficiency without sacrificing quality. We further reveal the diffusion-generation space discrepancy in continuous-time consistency distillation and analyze how sampling strategies affect distillation performance, offering insights for future distillation research. GitHub Link: https://github.com/hustvl/TBCM.

  • 8 authors
·
Nov 25, 2025 2

Boosting Latent Diffusion Models via Disentangled Representation Alignment

Latent Diffusion Models (LDMs) generate high-quality images by operating in a compressed latent space, typically obtained through image tokenizers such as Variational Autoencoders (VAEs). In pursuit of a generation-friendly VAE, recent studies have explored leveraging Vision Foundation Models (VFMs) as representation alignment targets for VAEs, mirroring the approach commonly adopted for LDMs. Although this yields certain performance gains, using the same alignment target for both VAEs and LDMs overlooks their fundamentally different representational requirements. We advocate that while LDMs benefit from latents retaining high-level semantic concepts, VAEs should excel in semantic disentanglement, enabling encoding of attribute-level information in a structured way. To address this, we propose the Semantic disentangled VAE (Send-VAE), explicitly optimized for disentangled representation learning through aligning its latent space with the semantic hierarchy of pre-trained VFMs. Our approach employs a non-linear mapper network to transform VAE latents, aligning them with VFMs to bridge the gap between attribute-level disentanglement and high-level semantics, facilitating effective guidance for VAE learning. We evaluate semantic disentanglement via linear probing on attribute prediction tasks, showing strong correlation with improved generation performance. Finally, using Send-VAE, we train flow-based transformers SiTs; experiments show Send-VAE significantly speeds up training and achieves a state-of-the-art FID of 1.21 and 1.75 with and without classifier-free guidance on ImageNet 256x256.

Enhancing Diffusion Models for High-Quality Image Generation

This report presents the comprehensive implementation, evaluation, and optimization of Denoising Diffusion Probabilistic Models (DDPMs) and Denoising Diffusion Implicit Models (DDIMs), which are state-of-the-art generative models. During inference, these models take random noise as input and iteratively generate high-quality images as output. The study focuses on enhancing their generative capabilities by incorporating advanced techniques such as Classifier-Free Guidance (CFG), Latent Diffusion Models with Variational Autoencoders (VAE), and alternative noise scheduling strategies. The motivation behind this work is the growing demand for efficient and scalable generative AI models that can produce realistic images across diverse datasets, addressing challenges in applications such as art creation, image synthesis, and data augmentation. Evaluations were conducted on datasets including CIFAR-10 and ImageNet-100, with a focus on improving inference speed, computational efficiency, and image quality metrics like Frechet Inception Distance (FID). Results demonstrate that DDIM + CFG achieves faster inference and superior image quality. Challenges with VAE and noise scheduling are also highlighted, suggesting opportunities for future optimization. This work lays the groundwork for developing scalable, efficient, and high-quality generative AI systems to benefit industries ranging from entertainment to robotics.

  • 3 authors
·
Dec 18, 2024

DragMesh: Interactive 3D Generation Made Easy

While generative models have excelled at creating static 3D content, the pursuit of systems that understand how objects move and respond to interactions remains a fundamental challenge. Current methods for articulated motion lie at a crossroads: they are either physically consistent but too slow for real-time use, or generative but violate basic kinematic constraints. We present DragMesh, a robust framework for real-time interactive 3D articulation built around a lightweight motion generation core. Our core contribution is a novel decoupled kinematic reasoning and motion generation framework. First, we infer the latent joint parameters by decoupling semantic intent reasoning (which determines the joint type) from geometric regression (which determines the axis and origin using our Kinematics Prediction Network (KPP-Net)). Second, to leverage the compact, continuous, and singularity-free properties of dual quaternions for representing rigid body motion, we develop a novel Dual Quaternion VAE (DQ-VAE). This DQ-VAE receives these predicted priors, along with the original user drag, to generate a complete, plausible motion trajectory. To ensure strict adherence to kinematics, we inject the joint priors at every layer of the DQ-VAE's non-autoregressive Transformer decoder using FiLM (Feature-wise Linear Modulation) conditioning. This persistent, multi-scale guidance is complemented by a numerically-stable cross-product loss to guarantee axis alignment. This decoupled design allows DragMesh to achieve real-time performance and enables plausible, generative articulation on novel objects without retraining, offering a practical step toward generative 3D intelligence. Code: https://github.com/AIGeeksGroup/DragMesh. Website: https://aigeeksgroup.github.io/DragMesh.

PekingUniversity Peking University
·
Dec 6, 2025 2

Beyond External Guidance: Unleashing the Semantic Richness Inside Diffusion Transformers for Improved Training

Recent works such as REPA have shown that guiding diffusion models with external semantic features (e.g., DINO) can significantly accelerate the training of diffusion transformers (DiTs). However, this requires the use of pretrained external networks, introducing additional dependencies and reducing flexibility. In this work, we argue that DiTs actually have the power to guide the training of themselves, and propose Self-Transcendence, a simple yet effective method that achieves fast convergence using internal feature supervision only. It is found that the slow convergence in DiT training primarily stems from the difficulty of representation learning in shallow layers. To address this, we initially train the DiT model by aligning its shallow features with the latent representations from the pretrained VAE for a short phase (e.g., 40 epochs), then apply classifier-free guidance to the intermediate features, enhancing their discriminative capability and semantic expressiveness. These enriched internal features, learned entirely within the model, are used as supervision signals to guide a new DiT training. Compared to existing self-contained methods, our approach brings a significant performance boost. It can even surpass REPA in terms of generation quality and convergence speed, but without the need for any external pretrained models. Our method is not only more flexible for different backbones but also has the potential to be adopted for a wider range of diffusion-based generative tasks. The source code of our method can be found at https://github.com/csslc/Self-Transcendence.

  • 7 authors
·
Jan 12