new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 6

LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection

Computational efficiency in deep neural networks is critical for object detection, especially as newer models prioritize speed over efficient computation (FLOP). This evolution has somewhat left behind embedded and mobile-oriented AI object detection applications. In this paper, we focus on design choices of neural network architectures for efficient object detection computation based on FLOP and propose several optimizations to enhance the efficiency of YOLO-based models. Firstly, we introduce an efficient backbone scaling inspired by inverted bottlenecks and theoretical insights from the Information Bottleneck principle. Secondly, we present the Fast Pyramidal Architecture Network (FPAN), designed to facilitate fast multiscale feature sharing while reducing computational resources. Lastly, we propose a Decoupled Network-in-Network (DNiN) detection head engineered to deliver rapid yet lightweight computations for classification and regression tasks. Building upon these optimizations and leveraging more efficient backbones, this paper contributes to a new scaling paradigm for object detection and YOLO-centric models called LeYOLO. Our contribution consistently outperforms existing models in various resource constraints, achieving unprecedented accuracy and flop ratio. Notably, LeYOLO-Small achieves a competitive mAP score of 38.2% on the COCOval with just 4.5 FLOP(G), representing a 42% reduction in computational load compared to the latest state-of-the-art YOLOv9-Tiny model while achieving similar accuracy. Our novel model family achieves a FLOP-to-accuracy ratio previously unattained, offering scalability that spans from ultra-low neural network configurations (< 1 GFLOP) to efficient yet demanding object detection setups (> 4 GFLOPs) with 25.2, 31.3, 35.2, 38.2, 39.3 and 41 mAP for 0.66, 1.47, 2.53, 4.51, 5.8 and 8.4 FLOP(G).

  • 4 authors
·
Jun 20, 2024

P-YOLOv8: Efficient and Accurate Real-Time Detection of Distracted Driving

Distracted driving is a critical safety issue that leads to numerous fatalities and injuries worldwide. This study addresses the urgent need for efficient and real-time machine learning models to detect distracted driving behaviors. Leveraging the Pretrained YOLOv8 (P-YOLOv8) model, a real-time object detection system is introduced, optimized for both speed and accuracy. This approach addresses the computational constraints and latency limitations commonly associated with conventional detection models. The study demonstrates P-YOLOv8 versatility in both object detection and image classification tasks using the Distracted Driver Detection dataset from State Farm, which includes 22,424 images across ten behavior categories. Our research explores the application of P-YOLOv8 for image classification, evaluating its performance compared to deep learning models such as VGG16, VGG19, and ResNet. Some traditional models often struggle with low accuracy, while others achieve high accuracy but come with high computational costs and slow detection speeds, making them unsuitable for real-time applications. P-YOLOv8 addresses these issues by achieving competitive accuracy with significant computational cost and efficiency advantages. In particular, P-YOLOv8 generates a lightweight model with a size of only 2.84 MB and a lower number of parameters, totaling 1,451,098, due to its innovative architecture. It achieves a high accuracy of 99.46 percent with this small model size, opening new directions for deployment on inexpensive and small embedded devices using Tiny Machine Learning (TinyML). The experimental results show robust performance, making P-YOLOv8 a cost-effective solution for real-time deployment. This study provides a detailed analysis of P-YOLOv8's architecture, training, and performance benchmarks, highlighting its potential for real-time use in detecting distracted driving.

  • 4 authors
·
Oct 20, 2024