new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

GSOT3D: Towards Generic 3D Single Object Tracking in the Wild

In this paper, we present a novel benchmark, GSOT3D, that aims at facilitating development of generic 3D single object tracking (SOT) in the wild. Specifically, GSOT3D offers 620 sequences with 123K frames, and covers a wide selection of 54 object categories. Each sequence is offered with multiple modalities, including the point cloud (PC), RGB image, and depth. This allows GSOT3D to support various 3D tracking tasks, such as single-modal 3D SOT on PC and multi-modal 3D SOT on RGB-PC or RGB-D, and thus greatly broadens research directions for 3D object tracking. To provide highquality per-frame 3D annotations, all sequences are labeled manually with multiple rounds of meticulous inspection and refinement. To our best knowledge, GSOT3D is the largest benchmark dedicated to various generic 3D object tracking tasks. To understand how existing 3D trackers perform and to provide comparisons for future research on GSOT3D, we assess eight representative point cloud-based tracking models. Our evaluation results exhibit that these models heavily degrade on GSOT3D, and more efforts are required for robust and generic 3D object tracking. Besides, to encourage future research, we present a simple yet effective generic 3D tracker, named PROT3D, that localizes the target object via a progressive spatial-temporal network and outperforms all current solutions by a large margin. By releasing GSOT3D, we expect to advance further 3D tracking in future research and applications. Our benchmark and model as well as the evaluation results will be publicly released at our webpage https://github.com/ailovejinx/GSOT3D.

  • 7 authors
·
Dec 2, 2024

LaSOT: A High-quality Large-scale Single Object Tracking Benchmark

Despite great recent advances in visual tracking, its further development, including both algorithm design and evaluation, is limited due to lack of dedicated large-scale benchmarks. To address this problem, we present LaSOT, a high-quality Large-scale Single Object Tracking benchmark. LaSOT contains a diverse selection of 85 object classes, and offers 1,550 totaling more than 3.87 million frames. Each video frame is carefully and manually annotated with a bounding box. This makes LaSOT, to our knowledge, the largest densely annotated tracking benchmark. Our goal in releasing LaSOT is to provide a dedicated high quality platform for both training and evaluation of trackers. The average video length of LaSOT is around 2,500 frames, where each video contains various challenge factors that exist in real world video footage,such as the targets disappearing and re-appearing. These longer video lengths allow for the assessment of long-term trackers. To take advantage of the close connection between visual appearance and natural language, we provide language specification for each video in LaSOT. We believe such additions will allow for future research to use linguistic features to improve tracking. Two protocols, full-overlap and one-shot, are designated for flexible assessment of trackers. We extensively evaluate 48 baseline trackers on LaSOT with in-depth analysis, and results reveal that there still exists significant room for improvement. The complete benchmark, tracking results as well as analysis are available at http://vision.cs.stonybrook.edu/~lasot/.

  • 14 authors
·
Sep 7, 2020

Towards Category Unification of 3D Single Object Tracking on Point Clouds

Category-specific models are provenly valuable methods in 3D single object tracking (SOT) regardless of Siamese or motion-centric paradigms. However, such over-specialized model designs incur redundant parameters, thus limiting the broader applicability of 3D SOT task. This paper first introduces unified models that can simultaneously track objects across all categories using a single network with shared model parameters. Specifically, we propose to explicitly encode distinct attributes associated to different object categories, enabling the model to adapt to cross-category data. We find that the attribute variances of point cloud objects primarily occur from the varying size and shape (e.g., large and square vehicles v.s. small and slender humans). Based on this observation, we design a novel point set representation learning network inheriting transformer architecture, termed AdaFormer, which adaptively encodes the dynamically varying shape and size information from cross-category data in a unified manner. We further incorporate the size and shape prior derived from the known template targets into the model's inputs and learning objective, facilitating the learning of unified representation. Equipped with such designs, we construct two category-unified models SiamCUT and MoCUT.Extensive experiments demonstrate that SiamCUT and MoCUT exhibit strong generalization and training stability. Furthermore, our category-unified models outperform the category-specific counterparts by a significant margin (e.g., on KITTI dataset, 12% and 3% performance gains on the Siamese and motion paradigms). Our code will be available.

  • 6 authors
·
Jan 20, 2024

Detection and Tracking Meet Drones Challenge

Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and drones more and more closely. To promote and track the developments of object detection and tracking algorithms, we have organized three challenge workshops in conjunction with ECCV 2018, ICCV 2019 and ECCV 2020, attracting more than 100 teams around the world. We provide a large-scale drone captured dataset, VisDrone, which includes four tracks, i.e., (1) image object detection, (2) video object detection, (3) single object tracking, and (4) multi-object tracking. In this paper, we first present a thorough review of object detection and tracking datasets and benchmarks, and discuss the challenges of collecting large-scale drone-based object detection and tracking datasets with fully manual annotations. After that, we describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South. Being the largest such dataset ever published, VisDrone enables extensive evaluation and investigation of visual analysis algorithms for the drone platform. We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions. We expect the benchmark largely boost the research and development in video analysis on drone platforms. All the datasets and experimental results can be downloaded from https://github.com/VisDrone/VisDrone-Dataset.

  • 7 authors
·
Jan 15, 2020

HOT3D: Hand and Object Tracking in 3D from Egocentric Multi-View Videos

We introduce HOT3D, a publicly available dataset for egocentric hand and object tracking in 3D. The dataset offers over 833 minutes (more than 3.7M images) of multi-view RGB/monochrome image streams showing 19 subjects interacting with 33 diverse rigid objects, multi-modal signals such as eye gaze or scene point clouds, as well as comprehensive ground-truth annotations including 3D poses of objects, hands, and cameras, and 3D models of hands and objects. In addition to simple pick-up/observe/put-down actions, HOT3D contains scenarios resembling typical actions in a kitchen, office, and living room environment. The dataset is recorded by two head-mounted devices from Meta: Project Aria, a research prototype of light-weight AR/AI glasses, and Quest 3, a production VR headset sold in millions of units. Ground-truth poses were obtained by a professional motion-capture system using small optical markers attached to hands and objects. Hand annotations are provided in the UmeTrack and MANO formats and objects are represented by 3D meshes with PBR materials obtained by an in-house scanner. In our experiments, we demonstrate the effectiveness of multi-view egocentric data for three popular tasks: 3D hand tracking, 6DoF object pose estimation, and 3D lifting of unknown in-hand objects. The evaluated multi-view methods, whose benchmarking is uniquely enabled by HOT3D, significantly outperform their single-view counterparts.

  • 14 authors
·
Nov 28, 2024

Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking

Kalman filter (KF) based methods for multi-object tracking (MOT) make an assumption that objects move linearly. While this assumption is acceptable for very short periods of occlusion, linear estimates of motion for prolonged time can be highly inaccurate. Moreover, when there is no measurement available to update Kalman filter parameters, the standard convention is to trust the priori state estimations for posteriori update. This leads to the accumulation of errors during a period of occlusion. The error causes significant motion direction variance in practice. In this work, we show that a basic Kalman filter can still obtain state-of-the-art tracking performance if proper care is taken to fix the noise accumulated during occlusion. Instead of relying only on the linear state estimate (i.e., estimation-centric approach), we use object observations (i.e., the measurements by object detector) to compute a virtual trajectory over the occlusion period to fix the error accumulation of filter parameters during the occlusion period. This allows more time steps to correct errors accumulated during occlusion. We name our method Observation-Centric SORT (OC-SORT). It remains Simple, Online, and Real-Time but improves robustness during occlusion and non-linear motion. Given off-the-shelf detections as input, OC-SORT runs at 700+ FPS on a single CPU. It achieves state-of-the-art on multiple datasets, including MOT17, MOT20, KITTI, head tracking, and especially DanceTrack where the object motion is highly non-linear. The code and models are available at https://github.com/noahcao/OC_SORT.

  • 5 authors
·
Mar 27, 2022

DIVOTrack: A Novel Dataset and Baseline Method for Cross-View Multi-Object Tracking in DIVerse Open Scenes

Cross-view multi-object tracking aims to link objects between frames and camera views with substantial overlaps. Although cross-view multi-object tracking has received increased attention in recent years, existing datasets still have several issues, including 1) missing real-world scenarios, 2) lacking diverse scenes, 3) owning a limited number of tracks, 4) comprising only static cameras, and 5) lacking standard benchmarks, which hinder the investigation and comparison of cross-view tracking methods. To solve the aforementioned issues, we introduce DIVOTrack: a new cross-view multi-object tracking dataset for DIVerse Open scenes with dense tracking pedestrians in realistic and non-experimental environments. Our DIVOTrack has ten distinct scenarios and 550 cross-view tracks, surpassing all cross-view multi-object tracking datasets currently available. Furthermore, we provide a novel baseline cross-view tracking method with a unified joint detection and cross-view tracking framework named CrossMOT, which learns object detection, single-view association, and cross-view matching with an all-in-one embedding model. Finally, we present a summary of current methodologies and a set of standard benchmarks with our DIVOTrack to provide a fair comparison and conduct a comprehensive analysis of current approaches and our proposed CrossMOT. The dataset and code are available at https://github.com/shengyuhao/DIVOTrack.

  • 8 authors
·
Feb 15, 2023

GFlow: Recovering 4D World from Monocular Video

Reconstructing 4D scenes from video inputs is a crucial yet challenging task. Conventional methods usually rely on the assumptions of multi-view video inputs, known camera parameters, or static scenes, all of which are typically absent under in-the-wild scenarios. In this paper, we relax all these constraints and tackle a highly ambitious but practical task, which we termed as AnyV4D: we assume only one monocular video is available without any camera parameters as input, and we aim to recover the dynamic 4D world alongside the camera poses. To this end, we introduce GFlow, a new framework that utilizes only 2D priors (depth and optical flow) to lift a video (3D) to a 4D explicit representation, entailing a flow of Gaussian splatting through space and time. GFlow first clusters the scene into still and moving parts, then applies a sequential optimization process that optimizes camera poses and the dynamics of 3D Gaussian points based on 2D priors and scene clustering, ensuring fidelity among neighboring points and smooth movement across frames. Since dynamic scenes always introduce new content, we also propose a new pixel-wise densification strategy for Gaussian points to integrate new visual content. Moreover, GFlow transcends the boundaries of mere 4D reconstruction; it also enables tracking of any points across frames without the need for prior training and segments moving objects from the scene in an unsupervised way. Additionally, the camera poses of each frame can be derived from GFlow, allowing for rendering novel views of a video scene through changing camera pose. By employing the explicit representation, we may readily conduct scene-level or object-level editing as desired, underscoring its versatility and power. Visit our project website at: https://littlepure2333.github.io/GFlow

  • 5 authors
·
May 28, 2024 3

Probabilistic 3D Multi-Object Cooperative Tracking for Autonomous Driving via Differentiable Multi-Sensor Kalman Filter

Current state-of-the-art autonomous driving vehicles mainly rely on each individual sensor system to perform perception tasks. Such a framework's reliability could be limited by occlusion or sensor failure. To address this issue, more recent research proposes using vehicle-to-vehicle (V2V) communication to share perception information with others. However, most relevant works focus only on cooperative detection and leave cooperative tracking an underexplored research field. A few recent datasets, such as V2V4Real, provide 3D multi-object cooperative tracking benchmarks. However, their proposed methods mainly use cooperative detection results as input to a standard single-sensor Kalman Filter-based tracking algorithm. In their approach, the measurement uncertainty of different sensors from different connected autonomous vehicles (CAVs) may not be properly estimated to utilize the theoretical optimality property of Kalman Filter-based tracking algorithms. In this paper, we propose a novel 3D multi-object cooperative tracking algorithm for autonomous driving via a differentiable multi-sensor Kalman Filter. Our algorithm learns to estimate measurement uncertainty for each detection that can better utilize the theoretical property of Kalman Filter-based tracking methods. The experiment results show that our algorithm improves the tracking accuracy by 17% with only 0.037x communication costs compared with the state-of-the-art method in V2V4Real. Our code and videos are available at https://github.com/eddyhkchiu/DMSTrack/ and https://eddyhkchiu.github.io/dmstrack.github.io/ .

  • 4 authors
·
Sep 26, 2023

InterTrack: Tracking Human Object Interaction without Object Templates

Tracking human object interaction from videos is important to understand human behavior from the rapidly growing stream of video data. Previous video-based methods require predefined object templates while single-image-based methods are template-free but lack temporal consistency. In this paper, we present a method to track human object interaction without any object shape templates. We decompose the 4D tracking problem into per-frame pose tracking and canonical shape optimization. We first apply a single-view reconstruction method to obtain temporally-inconsistent per-frame interaction reconstructions. Then, for the human, we propose an efficient autoencoder to predict SMPL vertices directly from the per-frame reconstructions, introducing temporally consistent correspondence. For the object, we introduce a pose estimator that leverages temporal information to predict smooth object rotations under occlusions. To train our model, we propose a method to generate synthetic interaction videos and synthesize in total 10 hour videos of 8.5k sequences with full 3D ground truth. Experiments on BEHAVE and InterCap show that our method significantly outperforms previous template-based video tracking and single-frame reconstruction methods. Our proposed synthetic video dataset also allows training video-based methods that generalize to real-world videos. Our code and dataset will be publicly released.

  • 3 authors
·
Aug 25, 2024

6DOPE-GS: Online 6D Object Pose Estimation using Gaussian Splatting

Efficient and accurate object pose estimation is an essential component for modern vision systems in many applications such as Augmented Reality, autonomous driving, and robotics. While research in model-based 6D object pose estimation has delivered promising results, model-free methods are hindered by the high computational load in rendering and inferring consistent poses of arbitrary objects in a live RGB-D video stream. To address this issue, we present 6DOPE-GS, a novel method for online 6D object pose estimation \& tracking with a single RGB-D camera by effectively leveraging advances in Gaussian Splatting. Thanks to the fast differentiable rendering capabilities of Gaussian Splatting, 6DOPE-GS can simultaneously optimize for 6D object poses and 3D object reconstruction. To achieve the necessary efficiency and accuracy for live tracking, our method uses incremental 2D Gaussian Splatting with an intelligent dynamic keyframe selection procedure to achieve high spatial object coverage and prevent erroneous pose updates. We also propose an opacity statistic-based pruning mechanism for adaptive Gaussian density control, to ensure training stability and efficiency. We evaluate our method on the HO3D and YCBInEOAT datasets and show that 6DOPE-GS matches the performance of state-of-the-art baselines for model-free simultaneous 6D pose tracking and reconstruction while providing a 5times speedup. We also demonstrate the method's suitability for live, dynamic object tracking and reconstruction in a real-world setting.

  • 5 authors
·
Dec 2, 2024

RoundaboutHD: High-Resolution Real-World Urban Environment Benchmark for Multi-Camera Vehicle Tracking

The multi-camera vehicle tracking (MCVT) framework holds significant potential for smart city applications, including anomaly detection, traffic density estimation, and suspect vehicle tracking. However, current publicly available datasets exhibit limitations, such as overly simplistic scenarios, low-resolution footage, and insufficiently diverse conditions, creating a considerable gap between academic research and real-world scenario. To fill this gap, we introduce RoundaboutHD, a comprehensive, high-resolution multi-camera vehicle tracking benchmark dataset specifically designed to represent real-world roundabout scenarios. RoundaboutHD provides a total of 40 minutes of labelled video footage captured by four non-overlapping, high-resolution (4K resolution, 15 fps) cameras. In total, 512 unique vehicle identities are annotated across different camera views, offering rich cross-camera association data. RoundaboutHD offers temporal consistency video footage and enhanced challenges, including increased occlusions and nonlinear movement inside the roundabout. In addition to the full MCVT dataset, several subsets are also available for object detection, single camera tracking, and image-based vehicle re-identification (ReID) tasks. Vehicle model information and camera modelling/ geometry information are also included to support further analysis. We provide baseline results for vehicle detection, single-camera tracking, image-based vehicle re-identification, and multi-camera tracking. The dataset and the evaluation code are publicly available at: https://github.com/siri-rouser/RoundaboutHD.git

  • 9 authors
·
Jul 11

StrongSORT: Make DeepSORT Great Again

Recently, Multi-Object Tracking (MOT) has attracted rising attention, and accordingly, remarkable progresses have been achieved. However, the existing methods tend to use various basic models (e.g, detector and embedding model), and different training or inference tricks, etc. As a result, the construction of a good baseline for a fair comparison is essential. In this paper, a classic tracker, i.e., DeepSORT, is first revisited, and then is significantly improved from multiple perspectives such as object detection, feature embedding, and trajectory association. The proposed tracker, named StrongSORT, contributes a strong and fair baseline for the MOT community. Moreover, two lightweight and plug-and-play algorithms are proposed to address two inherent "missing" problems of MOT: missing association and missing detection. Specifically, unlike most methods, which associate short tracklets into complete trajectories at high computation complexity, we propose an appearance-free link model (AFLink) to perform global association without appearance information, and achieve a good balance between speed and accuracy. Furthermore, we propose a Gaussian-smoothed interpolation (GSI) based on Gaussian process regression to relieve the missing detection. AFLink and GSI can be easily plugged into various trackers with a negligible extra computational cost (1.7 ms and 7.1 ms per image, respectively, on MOT17). Finally, by fusing StrongSORT with AFLink and GSI, the final tracker (StrongSORT++) achieves state-of-the-art results on multiple public benchmarks, i.e., MOT17, MOT20, DanceTrack and KITTI. Codes are available at https://github.com/dyhBUPT/StrongSORT and https://github.com/open-mmlab/mmtracking.

  • 7 authors
·
Feb 27, 2022

SPMTrack: Spatio-Temporal Parameter-Efficient Fine-Tuning with Mixture of Experts for Scalable Visual Tracking

Most state-of-the-art trackers adopt one-stream paradigm, using a single Vision Transformer for joint feature extraction and relation modeling of template and search region images. However, relation modeling between different image patches exhibits significant variations. For instance, background regions dominated by target-irrelevant information require reduced attention allocation, while foreground, particularly boundary areas, need to be be emphasized. A single model may not effectively handle all kinds of relation modeling simultaneously. In this paper, we propose a novel tracker called SPMTrack based on mixture-of-experts tailored for visual tracking task (TMoE), combining the capability of multiple experts to handle diverse relation modeling more flexibly. Benefiting from TMoE, we extend relation modeling from image pairs to spatio-temporal context, further improving tracking accuracy with minimal increase in model parameters. Moreover, we employ TMoE as a parameter-efficient fine-tuning method, substantially reducing trainable parameters, which enables us to train SPMTrack of varying scales efficiently and preserve the generalization ability of pretrained models to achieve superior performance. We conduct experiments on seven datasets, and experimental results demonstrate that our method significantly outperforms current state-of-the-art trackers. The source code is available at https://github.com/WenRuiCai/SPMTrack.

  • 3 authors
·
Mar 24

History-Aware Transformation of ReID Features for Multiple Object Tracking

The aim of multiple object tracking (MOT) is to detect all objects in a video and bind them into multiple trajectories. Generally, this process is carried out in two steps: detecting objects and associating them across frames based on various cues and metrics. Many studies and applications adopt object appearance, also known as re-identification (ReID) features, for target matching through straightforward similarity calculation. However, we argue that this practice is overly naive and thus overlooks the unique characteristics of MOT tasks. Unlike regular re-identification tasks that strive to distinguish all potential targets in a general representation, multi-object tracking typically immerses itself in differentiating similar targets within the same video sequence. Therefore, we believe that seeking a more suitable feature representation space based on the different sample distributions of each sequence will enhance tracking performance. In this paper, we propose using history-aware transformations on ReID features to achieve more discriminative appearance representations. Specifically, we treat historical trajectory features as conditions and employ a tailored Fisher Linear Discriminant (FLD) to find a spatial projection matrix that maximizes the differentiation between different trajectories. Our extensive experiments reveal that this training-free projection can significantly boost feature-only trackers to achieve competitive, even superior tracking performance compared to state-of-the-art methods while also demonstrating impressive zero-shot transfer capabilities. This demonstrates the effectiveness of our proposal and further encourages future investigation into the importance and customization of ReID models in multiple object tracking. The code will be released at https://github.com/HELLORPG/HATReID-MOT.

  • 4 authors
·
Mar 16

Multiple Object Tracking as ID Prediction

Multi-Object Tracking (MOT) has been a long-standing challenge in video understanding. A natural and intuitive approach is to split this task into two parts: object detection and association. Most mainstream methods employ meticulously crafted heuristic techniques to maintain trajectory information and compute cost matrices for object matching. Although these methods can achieve notable tracking performance, they often require a series of elaborate handcrafted modifications while facing complicated scenarios. We believe that manually assumed priors limit the method's adaptability and flexibility in learning optimal tracking capabilities from domain-specific data. Therefore, we introduce a new perspective that treats Multiple Object Tracking as an in-context ID Prediction task, transforming the aforementioned object association into an end-to-end trainable task. Based on this, we propose a simple yet effective method termed MOTIP. Given a set of trajectories carried with ID information, MOTIP directly decodes the ID labels for current detections to accomplish the association process. Without using tailored or sophisticated architectures, our method achieves state-of-the-art results across multiple benchmarks by solely leveraging object-level features as tracking cues. The simplicity and impressive results of MOTIP leave substantial room for future advancements, thereby making it a promising baseline for subsequent research. Our code and checkpoints are released at https://github.com/MCG-NJU/MOTIP.

  • 3 authors
·
Mar 25, 2024

Follow Anything: Open-set detection, tracking, and following in real-time

Tracking and following objects of interest is critical to several robotics use cases, ranging from industrial automation to logistics and warehousing, to healthcare and security. In this paper, we present a robotic system to detect, track, and follow any object in real-time. Our approach, dubbed ``follow anything'' (FAn), is an open-vocabulary and multimodal model -- it is not restricted to concepts seen at training time and can be applied to novel classes at inference time using text, images, or click queries. Leveraging rich visual descriptors from large-scale pre-trained models (foundation models), FAn can detect and segment objects by matching multimodal queries (text, images, clicks) against an input image sequence. These detected and segmented objects are tracked across image frames, all while accounting for occlusion and object re-emergence. We demonstrate FAn on a real-world robotic system (a micro aerial vehicle) and report its ability to seamlessly follow the objects of interest in a real-time control loop. FAn can be deployed on a laptop with a lightweight (6-8 GB) graphics card, achieving a throughput of 6-20 frames per second. To enable rapid adoption, deployment, and extensibility, we open-source all our code on our project webpage at https://github.com/alaamaalouf/FollowAnything . We also encourage the reader the watch our 5-minutes explainer video in this https://www.youtube.com/watch?v=6Mgt3EPytrw .

  • 8 authors
·
Aug 10, 2023

Seg2Track-SAM2: SAM2-based Multi-object Tracking and Segmentation for Zero-shot Generalization

Autonomous systems require robust Multi-Object Tracking (MOT) capabilities to operate reliably in dynamic environments. MOT ensures consistent object identity assignment and precise spatial delineation. Recent advances in foundation models, such as SAM2, have demonstrated strong zero-shot generalization for video segmentation, but their direct application to MOTS (MOT+Segmentation) remains limited by insufficient identity management and memory efficiency. This work introduces Seg2Track-SAM2, a framework that integrates pre-trained object detectors with SAM2 and a novel Seg2Track module to address track initialization, track management, and reinforcement. The proposed approach requires no fine-tuning and remains detector-agnostic. Experimental results on KITTI MOT and KITTI MOTS benchmarks show that Seg2Track-SAM2 achieves state-of-the-art (SOTA) performance, ranking fourth overall in both car and pedestrian classes on KITTI MOTS, while establishing a new benchmark in association accuracy (AssA). Furthermore, a sliding-window memory strategy reduces memory usage by up to 75% with negligible performance degradation, supporting deployment under resource constraints. These results confirm that Seg2Track-SAM2 advances MOTS by combining robust zero-shot tracking, enhanced identity preservation, and efficient memory utilization. The code is available at https://github.com/hcmr-lab/Seg2Track-SAM2

  • 4 authors
·
Sep 15

Online Unsupervised Feature Learning for Visual Tracking

Feature encoding with respect to an over-complete dictionary learned by unsupervised methods, followed by spatial pyramid pooling, and linear classification, has exhibited powerful strength in various vision applications. Here we propose to use the feature learning pipeline for visual tracking. Tracking is implemented using tracking-by-detection and the resulted framework is very simple yet effective. First, online dictionary learning is used to build a dictionary, which captures the appearance changes of the tracking target as well as the background changes. Given a test image window, we extract local image patches from it and each local patch is encoded with respect to the dictionary. The encoded features are then pooled over a spatial pyramid to form an aggregated feature vector. Finally, a simple linear classifier is trained on these features. Our experiments show that the proposed powerful---albeit simple---tracker, outperforms all the state-of-the-art tracking methods that we have tested. Moreover, we evaluate the performance of different dictionary learning and feature encoding methods in the proposed tracking framework, and analyse the impact of each component in the tracking scenario. We also demonstrate the flexibility of feature learning by plugging it into Hare et al.'s tracking method. The outcome is, to our knowledge, the best tracker ever reported, which facilitates the advantages of both feature learning and structured output prediction.

  • 4 authors
·
Oct 7, 2013

Large Language Models are Zero-Shot Reasoners

Pretrained large language models (LLMs) are widely used in many sub-fields of natural language processing (NLP) and generally known as excellent few-shot learners with task-specific exemplars. Notably, chain of thought (CoT) prompting, a recent technique for eliciting complex multi-step reasoning through step-by-step answer examples, achieved the state-of-the-art performances in arithmetics and symbolic reasoning, difficult system-2 tasks that do not follow the standard scaling laws for LLMs. While these successes are often attributed to LLMs' ability for few-shot learning, we show that LLMs are decent zero-shot reasoners by simply adding "Let's think step by step" before each answer. Experimental results demonstrate that our Zero-shot-CoT, using the same single prompt template, significantly outperforms zero-shot LLM performances on diverse benchmark reasoning tasks including arithmetics (MultiArith, GSM8K, AQUA-RAT, SVAMP), symbolic reasoning (Last Letter, Coin Flip), and other logical reasoning tasks (Date Understanding, Tracking Shuffled Objects), without any hand-crafted few-shot examples, e.g. increasing the accuracy on MultiArith from 17.7% to 78.7% and GSM8K from 10.4% to 40.7% with large InstructGPT model (text-davinci-002), as well as similar magnitudes of improvements with another off-the-shelf large model, 540B parameter PaLM. The versatility of this single prompt across very diverse reasoning tasks hints at untapped and understudied fundamental zero-shot capabilities of LLMs, suggesting high-level, multi-task broad cognitive capabilities may be extracted by simple prompting. We hope our work not only serves as the minimal strongest zero-shot baseline for the challenging reasoning benchmarks, but also highlights the importance of carefully exploring and analyzing the enormous zero-shot knowledge hidden inside LLMs before crafting finetuning datasets or few-shot exemplars.

  • 5 authors
·
May 24, 2022

TrackNet: A Deep Learning Network for Tracking High-speed and Tiny Objects in Sports Applications

Ball trajectory data are one of the most fundamental and useful information in the evaluation of players' performance and analysis of game strategies. Although vision-based object tracking techniques have been developed to analyze sport competition videos, it is still challenging to recognize and position a high-speed and tiny ball accurately. In this paper, we develop a deep learning network, called TrackNet, to track the tennis ball from broadcast videos in which the ball images are small, blurry, and sometimes with afterimage tracks or even invisible. The proposed heatmap-based deep learning network is trained to not only recognize the ball image from a single frame but also learn flying patterns from consecutive frames. TrackNet takes images with a size of 640times360 to generate a detection heatmap from either a single frame or several consecutive frames to position the ball and can achieve high precision even on public domain videos. The network is evaluated on the video of the men's singles final at the 2017 Summer Universiade, which is available on YouTube. The precision, recall, and F1-measure of TrackNet reach 99.7%, 97.3%, and 98.5%, respectively. To prevent overfitting, 9 additional videos are partially labeled together with a subset from the previous dataset to implement 10-fold cross-validation, and the precision, recall, and F1-measure are 95.3%, 75.7%, and 84.3%, respectively. A conventional image processing algorithm is also implemented to compare with TrackNet. Our experiments indicate that TrackNet outperforms conventional method by a big margin and achieves exceptional ball tracking performance. The dataset and demo video are available at https://nol.cs.nctu.edu.tw/ndo3je6av9/.

  • 5 authors
·
Jul 8, 2019

Griffin: Aerial-Ground Cooperative Detection and Tracking Dataset and Benchmark

Despite significant advancements, autonomous driving systems continue to struggle with occluded objects and long-range detection due to the inherent limitations of single-perspective sensing. Aerial-ground cooperation offers a promising solution by integrating UAVs' aerial views with ground vehicles' local observations. However, progress in this emerging field has been hindered by the absence of public datasets and standardized evaluation benchmarks. To address this gap, this paper presents a comprehensive solution for aerial-ground cooperative 3D perception through three key contributions: (1) Griffin, a large-scale multi-modal dataset featuring over 200 dynamic scenes (30k+ frames) with varied UAV altitudes (20-60m), diverse weather conditions, and occlusion-aware 3D annotations, enhanced by CARLA-AirSim co-simulation for realistic UAV dynamics; (2) A unified benchmarking framework for aerial-ground cooperative detection and tracking tasks, including protocols for evaluating communication efficiency, latency tolerance, and altitude adaptability; (3) AGILE, an instance-level intermediate fusion baseline that dynamically aligns cross-view features through query-based interaction, achieving an advantageous balance between communication overhead and perception accuracy. Extensive experiments prove the effectiveness of aerial-ground cooperative perception and demonstrate the direction of further research. The dataset and codes are available at https://github.com/wang-jh18-SVM/Griffin.

  • 7 authors
·
Mar 10