new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

MANTIS: Interleaved Multi-Image Instruction Tuning

The recent years have witnessed a great array of large multimodal models (LMMs) to effectively solve single-image vision language tasks. However, their abilities to solve multi-image visual language tasks is yet to be improved. The existing multi-image LMMs (e.g. OpenFlamingo, Emu, Idefics, etc) mostly gain their multi-image ability through pre-training on hundreds of millions of noisy interleaved image-text data from web, which is neither efficient nor effective. In this paper, we aim at building strong multi-image LMMs via instruction tuning with academic-level resources. Therefore, we meticulously construct Mantis-Instruct containing 721K instances from 14 multi-image datasets. We design Mantis-Instruct to cover different multi-image skills like co-reference, reasoning, comparing, temporal understanding. We combine Mantis-Instruct with several single-image visual-language datasets to train our model Mantis to handle any interleaved image-text inputs. We evaluate the trained Mantis on five multi-image benchmarks and eight single-image benchmarks. Though only requiring academic-level resources (i.e. 36 hours on 16xA100-40G), Mantis-8B can achieve state-of-the-art performance on all the multi-image benchmarks and beats the existing best multi-image LMM Idefics2-8B by an average of 9 absolute points. We observe that Mantis performs equivalently well on the held-in and held-out evaluation benchmarks. We further evaluate Mantis on single-image benchmarks and demonstrate that Mantis can maintain a strong single-image performance on par with CogVLM and Emu2. Our results are particularly encouraging as it shows that low-cost instruction tuning is indeed much more effective than intensive pre-training in terms of building multi-image LMMs.

  • 7 authors
·
May 2, 2024 1

ProVision: Programmatically Scaling Vision-centric Instruction Data for Multimodal Language Models

With the rise of multimodal applications, instruction data has become critical for training multimodal language models capable of understanding complex image-based queries. Existing practices rely on powerful but costly large language models (LLMs) or multimodal language models (MLMs) to produce instruction data. These are often prone to hallucinations, licensing issues and the generation process is often hard to scale and interpret. In this work, we present a programmatic approach that employs scene graphs as symbolic representations of images and human-written programs to systematically synthesize vision-centric instruction data. Our approach ensures the interpretability and controllability of the data generation process and scales efficiently while maintaining factual accuracy. By implementing a suite of 24 single-image, 14 multi-image instruction generators, and a scene graph generation pipeline, we build a scalable, cost-effective system: ProVision which produces diverse question-answer pairs concerning objects, attributes, relations, depth, etc., for any given image. Applied to Visual Genome and DataComp datasets, we generate over 10 million instruction data points, ProVision-10M, and leverage them in both pretraining and instruction tuning stages of MLMs. When adopted in the instruction tuning stage, our single-image instruction data yields up to a 7% improvement on the 2D split and 8% on the 3D split of CVBench, along with a 3% increase in performance on QBench2, RealWorldQA, and MMMU. Our multi-image instruction data leads to an 8% improvement on Mantis-Eval. Incorporation of our data in both pre-training and fine-tuning stages of xGen-MM-4B leads to an averaged improvement of 1.6% across 11 benchmarks.

  • 14 authors
·
Dec 9, 2024

Mantis: A Versatile Vision-Language-Action Model with Disentangled Visual Foresight

Recent advances in Vision-Language-Action (VLA) models demonstrate that visual signals can effectively complement sparse action supervisions. However, letting VLA directly predict high-dimensional visual states can distribute model capacity and incur prohibitive training cost, while compressing visual states into more compact supervisory signals inevitably incurs information bottlenecks. Moreover, existing methods often suffer from poor comprehension and reasoning capabilities due to the neglect of language supervision. This paper introduces Mantis, a novel framework featuring a Disentangled Visual Foresight (DVF) to tackle these issues. Specifically, Mantis decouples visual foresight prediction from the backbone with the combination of meta queries and a diffusion Transformer (DiT) head. With the current visual state provided to the DiT via a residual connection, a simple next-state prediction objective enables the meta queries to automatically capture the latent actions that delineate the visual trajectory, and hence boost the learning of explicit actions. The disentanglement reduces the burden of the VLA backbone, enabling it to maintain comprehension and reasoning capabilities through language supervision. Empirically, pretrained on human manipulation videos, robot demonstrations, and image-text pairs, Mantis achieves a 96.7% success rate on LIBERO benchmark after fine-tuning, surpassing powerful baselines while exhibiting high convergence speed. Real-world evaluations show that Mantis outperforms π_{0.5}, a leading open-source VLA model, particularly in instruction-following capability, generalization to unseen instructions, and reasoning ability. Code and weights are released to support the open-source community.

DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models

Generative Pre-trained Transformer (GPT) models have exhibited exciting progress in capabilities, capturing the interest of practitioners and the public alike. Yet, while the literature on the trustworthiness of GPT models remains limited, practitioners have proposed employing capable GPT models for sensitive applications to healthcare and finance - where mistakes can be costly. To this end, this work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5, considering diverse perspectives - including toxicity, stereotype bias, adversarial robustness, out-of-distribution robustness, robustness on adversarial demonstrations, privacy, machine ethics, and fairness. Based on our evaluations, we discover previously unpublished vulnerabilities to trustworthiness threats. For instance, we find that GPT models can be easily misled to generate toxic and biased outputs and leak private information in both training data and conversation history. We also find that although GPT-4 is usually more trustworthy than GPT-3.5 on standard benchmarks, GPT-4 is more vulnerable given jailbreaking system or user prompts, potentially due to the reason that GPT-4 follows the (misleading) instructions more precisely. Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps. Our benchmark is publicly available at https://decodingtrust.github.io/.

  • 19 authors
·
Jun 20, 2023