Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization
The varying significance of distinct primitive behaviors during the policy learning process has been overlooked by prior model-free RL algorithms. Leveraging this insight, we explore the causal relationship between different action dimensions and rewards to evaluate the significance of various primitive behaviors during training. We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration. Furthermore, to prevent excessive focus on specific primitive behaviors, we analyze the gradient dormancy phenomenon and introduce a dormancy-guided reset mechanism to further enhance the efficacy of our method. Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks spanning 7 domains compared to model-free RL baselines, which underscores the effectiveness, versatility, and efficient sample efficiency of our approach. Benchmark results and videos are available at https://ace-rl.github.io/.
Command A: An Enterprise-Ready Large Language Model
In this report we describe the development of Command A, a powerful large language model purpose-built to excel at real-world enterprise use cases. Command A is an agent-optimised and multilingual-capable model, with support for 23 languages of global business, and a novel hybrid architecture balancing efficiency with top of the range performance. It offers best-in-class Retrieval Augmented Generation (RAG) capabilities with grounding and tool use to automate sophisticated business processes. These abilities are achieved through a decentralised training approach, including self-refinement algorithms and model merging techniques. We also include results for Command R7B which shares capability and architectural similarities to Command A. Weights for both models have been released for research purposes. This technical report details our original training pipeline and presents an extensive evaluation of our models across a suite of enterprise-relevant tasks and public benchmarks, demonstrating excellent performance and efficiency.
Towards Automatic Concept-based Explanations
Interpretability has become an important topic of research as more machine learning (ML) models are deployed and widely used to make important decisions. Most of the current explanation methods provide explanations through feature importance scores, which identify features that are important for each individual input. However, how to systematically summarize and interpret such per sample feature importance scores itself is challenging. In this work, we propose principles and desiderata for concept based explanation, which goes beyond per-sample features to identify higher-level human-understandable concepts that apply across the entire dataset. We develop a new algorithm, ACE, to automatically extract visual concepts. Our systematic experiments demonstrate that \alg discovers concepts that are human-meaningful, coherent and important for the neural network's predictions.
Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware
Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.
AceMath: Advancing Frontier Math Reasoning with Post-Training and Reward Modeling
In this paper, we introduce AceMath, a suite of frontier math models that excel in solving complex math problems, along with highly effective reward models capable of evaluating generated solutions and reliably identifying the correct ones. To develop the instruction-tuned math models, we propose a supervised fine-tuning (SFT) process that first achieves competitive performance across general domains, followed by targeted fine-tuning for the math domain using a carefully curated set of prompts and synthetically generated responses. The resulting model, AceMath-72B-Instruct greatly outperforms Qwen2.5-Math-72B-Instruct, GPT-4o and Claude-3.5 Sonnet. To develop math-specialized reward model, we first construct AceMath-RewardBench, a comprehensive and robust benchmark for evaluating math reward models across diverse problems and difficulty levels. After that, we present a systematic approach to build our math reward models. The resulting model, AceMath-72B-RM, consistently outperforms state-of-the-art reward models. Furthermore, when combining AceMath-72B-Instruct with AceMath-72B-RM, we achieve the highest average rm@8 score across the math reasoning benchmarks. We will release model weights, training data, and evaluation benchmarks at: https://research.nvidia.com/labs/adlr/acemath
ACECode: A Reinforcement Learning Framework for Aligning Code Efficiency and Correctness in Code Language Models
CodeLLMs have demonstrated remarkable advancements in software engineering tasks. However, while these models can generate functionally correct code, they often produce code that is inefficient in terms of runtime. This inefficiency is particularly problematic in resource-constrained environments, impacting software performance and sustainability. Existing approaches for optimizing code efficiency for CodeLLMs like SOAP and PIE exhibit certain limitations. SOAP requires a compatible execution environment and predefined test cases for iterative code modification, while PIE focuses on instruction tuning, improving efficiency but compromising correctness. These shortcomings highlight the need for a fine-tuning framework that optimizes both efficiency and correctness without relying on predefined test cases or specific execution environments. To bridge this gap, we introduce ACECode, a reinforcement learning-based fine-tuning framework that aligns CodeLLMs with dual objectives of efficiency and correctness. ACECode combines three key steps: (1) generating code with an actor CodeLLM, (2) calculating a training-free reward signal derived from code execution feedback for each generated code, and (3) optimizing the CodeLLM via Proximal Policy Optimization (PPO) algorithm. This reward signal enables joint assessment of efficiency and correctness without manual labeling. We evaluate ACECode by fine-tuning four SOTA (state-of-the-art) CodeLLMs and comparing their code with three baselines: original, instruction-tuned, and PIE-tuned CodeLLMs. Extensive experiment results suggest that significantly improves the efficiency and correctness of generated code against all baselines for all CodeLLMs. Specifically, CodeLLMs fine-tuned with ACECode improve pass@1 by 1.84% to 14.51% and reduce runtime in 65% to 72% of cases compared to original CodeLLMs.
ACE: A fast, skillful learned global atmospheric model for climate prediction
Existing ML-based atmospheric models are not suitable for climate prediction, which requires long-term stability and physical consistency. We present ACE (AI2 Climate Emulator), a 200M-parameter, autoregressive machine learning emulator of an existing comprehensive 100-km resolution global atmospheric model. The formulation of ACE allows evaluation of physical laws such as the conservation of mass and moisture. The emulator is stable for 100 years, nearly conserves column moisture without explicit constraints and faithfully reproduces the reference model's climate, outperforming a challenging baseline on over 90% of tracked variables. ACE requires nearly 100x less wall clock time and is 100x more energy efficient than the reference model using typically available resources. Without fine-tuning, ACE can stably generalize to a previously unseen historical sea surface temperature dataset.
Conceptual Framework for Autonomous Cognitive Entities
The rapid development and adoption of Generative AI (GAI) technology in the form of chatbots such as ChatGPT and Claude has greatly increased interest in agentic machines. This paper introduces the Autonomous Cognitive Entity (ACE) model, a novel framework for a cognitive architecture, enabling machines and software agents to operate more independently. Drawing inspiration from the OSI model, the ACE framework presents layers of abstraction to conceptualize artificial cognitive architectures. The model is designed to harness the capabilities of the latest generative AI technologies, including large language models (LLMs) and multimodal generative models (MMMs), to build autonomous, agentic systems. The ACE framework comprises six layers: the Aspirational Layer, Global Strategy, Agent Model, Executive Function, Cognitive Control, and Task Prosecution. Each layer plays a distinct role, ranging from setting the moral compass and strategic thinking to task selection and execution. The ACE framework also incorporates mechanisms for handling failures and adapting actions, thereby enhancing the robustness and flexibility of autonomous agents. This paper introduces the conceptual framework and proposes implementation strategies that have been tested and observed in industry. The goal of this paper is to formalize this framework so as to be more accessible.
Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models
Large language model (LLM) applications such as agents and domain-specific reasoning increasingly rely on context adaptation -- modifying inputs with instructions, strategies, or evidence, rather than weight updates. Prior approaches improve usability but often suffer from brevity bias, which drops domain insights for concise summaries, and from context collapse, where iterative rewriting erodes details over time. Building on the adaptive memory introduced by Dynamic Cheatsheet, we introduce ACE (Agentic Context Engineering), a framework that treats contexts as evolving playbooks that accumulate, refine, and organize strategies through a modular process of generation, reflection, and curation. ACE prevents collapse with structured, incremental updates that preserve detailed knowledge and scale with long-context models. Across agent and domain-specific benchmarks, ACE optimizes contexts both offline (e.g., system prompts) and online (e.g., agent memory), consistently outperforming strong baselines: +10.6% on agents and +8.6% on finance, while significantly reducing adaptation latency and rollout cost. Notably, ACE could adapt effectively without labeled supervision and instead by leveraging natural execution feedback. On the AppWorld leaderboard, ACE matches the top-ranked production-level agent on the overall average and surpasses it on the harder test-challenge split, despite using a smaller open-source model. These results show that comprehensive, evolving contexts enable scalable, efficient, and self-improving LLM systems with low overhead.
AC-Band: A Combinatorial Bandit-Based Approach to Algorithm Configuration
We study the algorithm configuration (AC) problem, in which one seeks to find an optimal parameter configuration of a given target algorithm in an automated way. Recently, there has been significant progress in designing AC approaches that satisfy strong theoretical guarantees. However, a significant gap still remains between the practical performance of these approaches and state-of-the-art heuristic methods. To this end, we introduce AC-Band, a general approach for the AC problem based on multi-armed bandits that provides theoretical guarantees while exhibiting strong practical performance. We show that AC-Band requires significantly less computation time than other AC approaches providing theoretical guarantees while still yielding high-quality configurations.
AceCoder: Utilizing Existing Code to Enhance Code Generation
Large Language Models (LLMs) have shown great success in code generation. LLMs take as the input a prompt and output the code. A key question is how to make prompts (i.e., Prompting Techniques). Existing prompting techniques are designed for natural language generation and have low accuracy in code generation. In this paper, we propose a new prompting technique named AceCoder. Our motivation is that code generation meets two unique challenges (i.e., requirement understanding and code implementation). AceCoder contains two novel mechanisms (i.e., guided code generation and example retrieval) to solve these challenges. (1) Guided code generation asks LLMs first to analyze requirements and output an intermediate preliminary (e.g., test cases). The preliminary is used to clarify requirements and tell LLMs "what to write". (2) Example retrieval selects similar programs as examples in prompts, which provide lots of relevant content (e.g., algorithms, APIs) and teach LLMs "how to write". We apply AceCoder to three LLMs (e.g., Codex) and evaluate it on three public benchmarks using the Pass@k. Results show that AceCoder can significantly improve the performance of LLMs on code generation. (1) In terms of Pass@1, AceCoder outperforms the state-of-the-art baseline by up to 56.4% in MBPP, 70.7% in MBJP, and 88.4% in MBJSP. (2) AceCoder is effective in LLMs with different sizes (i.e., 6B to 13B) and different languages (i.e., Python, Java, and JavaScript). (3) Human evaluation shows human developers prefer programs from AceCoder.
EEEA-Net: An Early Exit Evolutionary Neural Architecture Search
The goals of this research were to search for Convolutional Neural Network (CNN) architectures, suitable for an on-device processor with limited computing resources, performing at substantially lower Network Architecture Search (NAS) costs. A new algorithm entitled an Early Exit Population Initialisation (EE-PI) for Evolutionary Algorithm (EA) was developed to achieve both goals. The EE-PI reduces the total number of parameters in the search process by filtering the models with fewer parameters than the maximum threshold. It will look for a new model to replace those models with parameters more than the threshold. Thereby, reducing the number of parameters, memory usage for model storage and processing time while maintaining the same performance or accuracy. The search time was reduced to 0.52 GPU day. This is a huge and significant achievement compared to the NAS of 4 GPU days achieved using NSGA-Net, 3,150 GPU days by the AmoebaNet model, and the 2,000 GPU days by the NASNet model. As well, Early Exit Evolutionary Algorithm networks (EEEA-Nets) yield network architectures with minimal error and computational cost suitable for a given dataset as a class of network algorithms. Using EEEA-Net on CIFAR-10, CIFAR-100, and ImageNet datasets, our experiments showed that EEEA-Net achieved the lowest error rate among state-of-the-art NAS models, with 2.46% for CIFAR-10, 15.02% for CIFAR-100, and 23.8% for ImageNet dataset. Further, we implemented this image recognition architecture for other tasks, such as object detection, semantic segmentation, and keypoint detection tasks, and, in our experiments, EEEA-Net-C2 outperformed MobileNet-V3 on all of these various tasks. (The algorithm code is available at https://github.com/chakkritte/EEEA-Net).
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods
We present AI-SARAH, a practical variant of SARAH. As a variant of SARAH, this algorithm employs the stochastic recursive gradient yet adjusts step-size based on local geometry. AI-SARAH implicitly computes step-size and efficiently estimates local Lipschitz smoothness of stochastic functions. It is fully adaptive, tune-free, straightforward to implement, and computationally efficient. We provide technical insight and intuitive illustrations on its design and convergence. We conduct extensive empirical analysis and demonstrate its strong performance compared with its classical counterparts and other state-of-the-art first-order methods in solving convex machine learning problems.
Automated Dynamic Algorithm Configuration
The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution, e.g., to adapt to the current part of the optimization landscape. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior-art to tackle this problem; (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning.
ALE-Bench: A Benchmark for Long-Horizon Objective-Driven Algorithm Engineering
How well do AI systems perform in algorithm engineering for hard optimization problems in domains such as package-delivery routing, crew scheduling, factory production planning, and power-grid balancing? We introduce ALE-Bench, a new benchmark for evaluating AI systems on score-based algorithmic programming contests. Drawing on real tasks from the AtCoder Heuristic Contests, ALE-Bench presents optimization problems that are computationally hard and admit no known exact solution. Unlike short-duration, pass/fail coding benchmarks, ALE-Bench encourages iterative solution refinement over long time horizons. Our software framework supports interactive agent architectures that leverage test-run feedback and visualizations. Our evaluation of frontier LLMs revealed that while they demonstrate high performance on specific problems, a notable gap remains compared to humans in terms of consistency across problems and long-horizon problem-solving capabilities. This highlights the need for this benchmark to foster future AI advancements.
A Survey of Methods for Automated Algorithm Configuration
Algorithm configuration (AC) is concerned with the automated search of the most suitable parameter configuration of a parametrized algorithm. There is currently a wide variety of AC problem variants and methods proposed in the literature. Existing reviews do not take into account all derivatives of the AC problem, nor do they offer a complete classification scheme. To this end, we introduce taxonomies to describe the AC problem and features of configuration methods, respectively. We review existing AC literature within the lens of our taxonomies, outline relevant design choices of configuration approaches, contrast methods and problem variants against each other, and describe the state of AC in industry. Finally, our review provides researchers and practitioners with a look at future research directions in the field of AC.
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian networks) is a challenging problem since the search space of DAGs is combinatorial and scales superexponentially with the number of nodes. Existing approaches rely on various local heuristics for enforcing the acyclicity constraint. In this paper, we introduce a fundamentally different strategy: We formulate the structure learning problem as a purely continuous optimization problem over real matrices that avoids this combinatorial constraint entirely. This is achieved by a novel characterization of acyclicity that is not only smooth but also exact. The resulting problem can be efficiently solved by standard numerical algorithms, which also makes implementation effortless. The proposed method outperforms existing ones, without imposing any structural assumptions on the graph such as bounded treewidth or in-degree. Code implementing the proposed algorithm is open-source and publicly available at https://github.com/xunzheng/notears.
Chain-of-Experts: Unlocking the Communication Power of Mixture-of-Experts Models
We propose Chain-of-Experts (CoE), a new Mixture-of-Experts (MoE) architecture that introduces sequential expert communication within each layer. Unlike traditional MoE models, where experts operate independently in parallel, CoE processes tokens iteratively across a chain of experts inside a layer. To support dynamic expert selection across iterations, CoE employs a dedicated router at each iteration step within a layer. This design allows tokens to re-evaluate and select different experts during each iteration, rather than being statically assigned. As a result, CoE introduces a flexible routing mechanism that increases the diversity of expert combinations and enriches the model's representational capacity. CoE demonstrates improved performance under fixed compute: on math reasoning tasks, it reduces validation loss from 1.20 to 1.12 compared to a standard MoE. Beyond performance, CoE offers a new scaling axis: depth through expert iteration, which complements conventional width/depth scaling. For example, using 2x iterations matches the performance of 3x expert selections (in width), while reducing memory usage by 17.6-42% relative to other scaling strategies. Our analysis reveals that CoE's benefits stem from its iterative residual structure and enhanced expert specialization empowered by iterative routing, which together unlock more expressive representations. Code is available at https://github.com/ZihanWang314/coe.
Optimizing NOTEARS Objectives via Topological Swaps
Recently, an intriguing class of non-convex optimization problems has emerged in the context of learning directed acyclic graphs (DAGs). These problems involve minimizing a given loss or score function, subject to a non-convex continuous constraint that penalizes the presence of cycles in a graph. In this work, we delve into the optimization challenges associated with this class of non-convex programs. To address these challenges, we propose a bi-level algorithm that leverages the non-convex constraint in a novel way. The outer level of the algorithm optimizes over topological orders by iteratively swapping pairs of nodes within the topological order of a DAG. A key innovation of our approach is the development of an effective method for generating a set of candidate swapping pairs for each iteration. At the inner level, given a topological order, we utilize off-the-shelf solvers that can handle linear constraints. The key advantage of our proposed algorithm is that it is guaranteed to find a local minimum or a KKT point under weaker conditions compared to previous work and finds solutions with lower scores. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of achieving a better score. Additionally, our method can also be used as a post-processing algorithm to significantly improve the score of other algorithms. Code implementing the proposed method is available at https://github.com/duntrain/topo.
AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights
Normalization techniques are a boon for modern deep learning. They let weights converge more quickly with often better generalization performances. It has been argued that the normalization-induced scale invariance among the weights provides an advantageous ground for gradient descent (GD) optimizers: the effective step sizes are automatically reduced over time, stabilizing the overall training procedure. It is often overlooked, however, that the additional introduction of momentum in GD optimizers results in a far more rapid reduction in effective step sizes for scale-invariant weights, a phenomenon that has not yet been studied and may have caused unwanted side effects in the current practice. This is a crucial issue because arguably the vast majority of modern deep neural networks consist of (1) momentum-based GD (e.g. SGD or Adam) and (2) scale-invariant parameters. In this paper, we verify that the widely-adopted combination of the two ingredients lead to the premature decay of effective step sizes and sub-optimal model performances. We propose a simple and effective remedy, SGDP and AdamP: get rid of the radial component, or the norm-increasing direction, at each optimizer step. Because of the scale invariance, this modification only alters the effective step sizes without changing the effective update directions, thus enjoying the original convergence properties of GD optimizers. Given the ubiquity of momentum GD and scale invariance in machine learning, we have evaluated our methods against the baselines on 13 benchmarks. They range from vision tasks like classification (e.g. ImageNet), retrieval (e.g. CUB and SOP), and detection (e.g. COCO) to language modelling (e.g. WikiText) and audio classification (e.g. DCASE) tasks. We verify that our solution brings about uniform gains in those benchmarks. Source code is available at https://github.com/clovaai/AdamP.
ACE-RL: Adaptive Constraint-Enhanced Reward for Long-form Generation Reinforcement Learning
Large Language Models (LLMs) have demonstrated remarkable progress in long-context understanding, yet they face significant challenges in high-quality long-form generation. Existing studies primarily suffer from two limitations: (1) A heavy reliance on scarce, high-quality long-form response data for supervised fine-tuning (SFT) or for pairwise preference reward in reinforcement learning (RL). (2) Focus on coarse-grained quality optimization dimensions, such as relevance, coherence, and helpfulness, overlooking the fine-grained specifics inherent to diverse long-form generation scenarios. To address this issue, we propose a framework using Adaptive Constraint-Enhanced reward for long-form generation Reinforcement Learning (ACE-RL). ACE-RL first automatically deconstructs each instruction into a set of fine-grained, adaptive constraint criteria by identifying its underlying intents and demands. Subsequently, we design a reward mechanism that quantifies the quality of long-form responses based on their satisfaction over corresponding constraints, converting subjective quality evaluation into constraint verification. Finally, we utilize reinforcement learning to guide models toward superior long-form generation capabilities. Experimental results demonstrate that our ACE-RL framework significantly outperforms existing SFT and RL baselines by 20.70% and 7.32% on WritingBench, and our top-performing model even surpasses proprietary systems like GPT-4o by 7.10%, providing a more effective training paradigm for LLMs to generate high-quality content across diverse long-form generation scenarios.
AdaMoE: Token-Adaptive Routing with Null Experts for Mixture-of-Experts Language Models
Mixture of experts (MoE) has become the standard for constructing production-level large language models (LLMs) due to its promise to boost model capacity without causing significant overheads. Nevertheless, existing MoE methods usually enforce a constant top-k routing for all tokens, which is arguably restrictive because various tokens (e.g., "<EOS>" vs. "apple") may require various numbers of experts for feature abstraction. Lifting such a constraint can help make the most of limited resources and unleash the potential of the model for downstream tasks. In this sense, we introduce AdaMoE to realize token-adaptive routing for MoE, where different tokens are permitted to select a various number of experts. AdaMoE makes minimal modifications to the vanilla MoE with top-k routing -- it simply introduces a fixed number of null experts, which do not consume any FLOPs, to the expert set and increases the value of k. AdaMoE does not force each token to occupy a fixed number of null experts but ensures the average usage of the null experts with a load-balancing loss, leading to an adaptive number of null/true experts used by each token. AdaMoE exhibits a strong resemblance to MoEs with expert choice routing while allowing for trivial auto-regressive modeling. AdaMoE is easy to implement and can be effectively applied to pre-trained (MoE-)LLMs. Extensive studies show that AdaMoE can reduce average expert load (FLOPs) while achieving superior performance. For example, on the ARC-C dataset, applying our method to fine-tuning Mixtral-8x7B can reduce FLOPs by 14.5% while increasing accuracy by 1.69%.
Machine Learning for Online Algorithm Selection under Censored Feedback
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms. For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime. As the latter is known to exhibit a heavy-tail distribution, an algorithm is normally stopped when exceeding a predefined upper time limit. As a consequence, machine learning methods used to optimize an algorithm selection strategy in a data-driven manner need to deal with right-censored samples, a problem that has received little attention in the literature so far. In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem. Moreover, we adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon. In an extensive experimental evaluation on an adapted version of the ASlib benchmark, we demonstrate that theoretically well-founded methods based on Thompson sampling perform specifically strong and improve in comparison to existing methods.
Applying the ACE2 Emulator to SST Green's Functions for the E3SMv3 Climate Model
Green's functions are a useful technique for interpreting atmospheric state responses to changes in the spatial pattern of sea surface temperature (SST). Here we train version 2 of the Ai2 Climate Emulator (ACE2) on reference historical SST simulations of the US Department of Energy's EAMv3 global atmosphere model. We compare how well the SST Green's functions generated by ACE2 match those of EAMv3, following the protocol of the Green's Function Model Intercomparison Project (GFMIP). The spatial patterns of top-of-atmosphere (TOA) radiative response from the individual GFMIP SST patch simulations are similar for ACE and the EAMv3 reference. The derived sensitivity of global net TOA radiation sensitivity to SST patch location is qualitatively similar in ACE as in EAMv3, but there are statistically significant discrepancies for some SST patches, especially over the subtropical northeast Pacific. These discrepancies may reflect insufficient diversity in the SST patterns sampled over the course of the EAMv3 AMIP simulation used for training ACE. Both ACE and EAMv3 Green's functions reconstruct the historical record of the global annual-mean TOA radiative flux from a reference EAMv3 AMIP simulation reasonably well. Notably, under our configuration and compute resources, ACE achieves these results approximately 100 times faster in wall-clock time compared to EAMv3, highlighting its potential as a powerful and efficient tool for tackling other computationally intensive problems in climate science.
Teacher algorithms for curriculum learning of Deep RL in continuously parameterized environments
We consider the problem of how a teacher algorithm can enable an unknown Deep Reinforcement Learning (DRL) student to become good at a skill over a wide range of diverse environments. To do so, we study how a teacher algorithm can learn to generate a learning curriculum, whereby it sequentially samples parameters controlling a stochastic procedural generation of environments. Because it does not initially know the capacities of its student, a key challenge for the teacher is to discover which environments are easy, difficult or unlearnable, and in what order to propose them to maximize the efficiency of learning over the learnable ones. To achieve this, this problem is transformed into a surrogate continuous bandit problem where the teacher samples environments in order to maximize absolute learning progress of its student. We present a new algorithm modeling absolute learning progress with Gaussian mixture models (ALP-GMM). We also adapt existing algorithms and provide a complete study in the context of DRL. Using parameterized variants of the BipedalWalker environment, we study their efficiency to personalize a learning curriculum for different learners (embodiments), their robustness to the ratio of learnable/unlearnable environments, and their scalability to non-linear and high-dimensional parameter spaces. Videos and code are available at https://github.com/flowersteam/teachDeepRL.
ACE2: Accurately learning subseasonal to decadal atmospheric variability and forced responses
Existing machine learning models of weather variability are not formulated to enable assessment of their response to varying external boundary conditions such as sea surface temperature and greenhouse gases. Here we present ACE2 (Ai2 Climate Emulator version 2) and its application to reproducing atmospheric variability over the past 80 years on timescales from days to decades. ACE2 is a 450M-parameter autoregressive machine learning emulator, operating with 6-hour temporal resolution, 1{\deg} horizontal resolution and eight vertical layers. It exactly conserves global dry air mass and moisture and can be stepped forward stably for arbitrarily many steps with a throughput of about 1500 simulated years per wall clock day. ACE2 generates emergent phenomena such as tropical cyclones, the Madden Julian Oscillation, and sudden stratospheric warmings. Furthermore, it accurately reproduces the atmospheric response to El Ni\~no variability and global trends of temperature over the past 80 years. However, its sensitivities to separately changing sea surface temperature and carbon dioxide are not entirely realistic.
AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset
This paper presents our winning submission to the AI Mathematical Olympiad - Progress Prize 2 (AIMO-2) competition. Our recipe for building state-of-the-art mathematical reasoning models relies on three key pillars. First, we create a large-scale dataset comprising 540K unique high-quality math problems, including olympiad-level problems, and their 3.2M long-reasoning solutions. Second, we develop a novel method to integrate code execution with long reasoning models through iterative training, generation, and quality filtering, resulting in 1.7M high-quality Tool-Integrated Reasoning solutions. Third, we create a pipeline to train models to select the most promising solution from many candidates. We show that such generative solution selection (GenSelect) can significantly improve upon majority voting baseline. Combining these ideas, we train a series of models that achieve state-of-the-art results on mathematical reasoning benchmarks. To facilitate further research, we release our code, models, and the complete OpenMathReasoning dataset under a commercially permissive license.
A Massively Parallel Dynamic Programming for Approximate Rectangle Escape Problem
Sublinear time complexity is required by the massively parallel computation (MPC) model. Breaking dynamic programs into a set of sparse dynamic programs that can be divided, solved, and merged in sublinear time. The rectangle escape problem (REP) is defined as follows: For n axis-aligned rectangles inside an axis-aligned bounding box B, extend each rectangle in only one of the four directions: up, down, left, or right until it reaches B and the density k is minimized, where k is the maximum number of extensions of rectangles to the boundary that pass through a point inside bounding box B. REP is NP-hard for k>1. If the rectangles are points of a grid (or unit squares of a grid), the problem is called the square escape problem (SEP) and it is still NP-hard. We give a 2-approximation algorithm for SEP with kgeq2 with time complexity O(n^{3/2}k^2). This improves the time complexity of existing algorithms which are at least quadratic. Also, the approximation ratio of our algorithm for kgeq 3 is 3/2 which is tight. We also give a 8-approximation algorithm for REP with time complexity O(nlog n+nk) and give a MPC version of this algorithm for k=O(1) which is the first parallel algorithm for this problem.
SAQ: Pushing the Limits of Vector Quantization through Code Adjustment and Dimension Segmentation
Approximate Nearest Neighbor Search (ANNS) plays a critical role in applications such as search engines, recommender systems, and RAG for LLMs. Vector quantization (VQ), a crucial technique for ANNS, is commonly used to reduce space overhead and accelerate distance computations. However, despite significant research advances, state-of-the-art VQ methods still face challenges in balancing encoding efficiency and quantization accuracy. To address these limitations, we propose a novel VQ method called SAQ. To improve accuracy, SAQ employs a new dimension segmentation technique to strategically partition PCA-projected vectors into segments along their dimensions. By prioritizing leading dimension segments with larger magnitudes, SAQ allocates more bits to high-impact segments, optimizing the use of the available space quota. An efficient dynamic programming algorithm is developed to optimize dimension segmentation and bit allocation, ensuring minimal quantization error. To speed up vector encoding, SAQ devises a code adjustment technique to first quantize each dimension independently and then progressively refine quantized vectors using a coordinate-descent-like approach to avoid exhaustive enumeration. Extensive experiments demonstrate SAQ's superiority over classical methods (e.g., PQ, PCA) and recent state-of-the-art approaches (e.g., LVQ, Extended RabitQ). SAQ achieves up to 80% reduction in quantization error and accelerates encoding speed by over 80x compared to Extended RabitQ.
Parallel Heuristic Exploration for Additive Complexity Reduction in Fast Matrix Multiplication
This paper presents a parallel random-search method for reducing additive complexity in fast matrix multiplication. The approach replaces expensive exact evaluation with fast heuristic scoring, including the new Greedy-Intersections strategy. The method runs many independent common subexpression elimination processes in parallel, exploring the search space through random pair substitutions and diverse selection strategies while sharing promising partial solutions. Tested on 164 ternary-coefficient schemes, the method achieves lower addition counts than the state-of-the-art Greedy-Potential on 103 schemes, matches it on 59, and is outperformed on 2. For most schemes, it gives equal or better results while being much faster, making it practical for algorithm exploration. All software and results are open source.
Adam assisted Fully informed Particle Swarm Optimzation ( Adam-FIPSO ) based Parameter Prediction for the Quantum Approximate Optimization Algorithm (QAOA)
The Quantum Approximate Optimization Algorithm (QAOA) is a prominent variational algorithm used for solving combinatorial optimization problems such as the Max-Cut problem. A key challenge in QAOA lies in efficiently identifying suitable parameters (gamma, beta) that lead to high-quality solutions. In this paper, we propose a framework that combines Fully Informed Particle Swarm Optimization (FIPSO) with adaptive gradient correction using the Adam Optimizer to navigate the QAOA parameter space. This approach aims to avoid issues such as barren plateaus and convergence to local minima. The proposed algorithm is evaluated against two classes of graph instances, Erdos Renyi and Watts-Strogatz. Experimental results across multiple QAOA depths consistently demonstrate superior performance compared to random initialization, underscoring the effectiveness and robustness of the proposed optimization framework.
Gold-Medal-Level Olympiad Geometry Solving with Efficient Heuristic Auxiliary Constructions
Automated theorem proving in Euclidean geometry, particularly for International Mathematical Olympiad (IMO) level problems, remains a major challenge and an important research focus in Artificial Intelligence. In this paper, we present a highly efficient method for geometry theorem proving that runs entirely on CPUs without relying on neural network-based inference. Our initial study shows that a simple random strategy for adding auxiliary points can achieve silver-medal level human performance on IMO. Building on this, we propose HAGeo, a Heuristic-based method for adding Auxiliary constructions in Geometric deduction that solves 28 of 30 problems on the IMO-30 benchmark, achieving gold-medal level performance and surpassing AlphaGeometry, a competitive neural network-based approach, by a notable margin. To evaluate our method and existing approaches more comprehensively, we further construct HAGeo-409, a benchmark consisting of 409 geometry problems with human-assessed difficulty levels. Compared with the widely used IMO-30, our benchmark poses greater challenges and provides a more precise evaluation, setting a higher bar for geometry theorem proving.
Towards Optimal Regret in Adversarial Linear MDPs with Bandit Feedback
We study online reinforcement learning in linear Markov decision processes with adversarial losses and bandit feedback, without prior knowledge on transitions or access to simulators. We introduce two algorithms that achieve improved regret performance compared to existing approaches. The first algorithm, although computationally inefficient, ensures a regret of mathcal{O}left(Kright), where K is the number of episodes. This is the first result with the optimal K dependence in the considered setting. The second algorithm, which is based on the policy optimization framework, guarantees a regret of mathcal{O}left(K^{3{4}} right) and is computationally efficient. Both our results significantly improve over the state-of-the-art: a computationally inefficient algorithm by Kong et al. [2023] with mathcal{O}left(K^{4{5}}+polyleft(1{lambda_{min}}right) right) regret, for some problem-dependent constant lambda_{min} that can be arbitrarily close to zero, and a computationally efficient algorithm by Sherman et al. [2023b] with mathcal{O}left(K^{6{7}} right) regret.
A Simple and Provable Scaling Law for the Test-Time Compute of Large Language Models
We propose a general two-stage algorithm that enjoys a provable scaling law for the test-time compute of large language models (LLMs). Given an input problem, the proposed algorithm first generates N candidate solutions, and then chooses the best one via a multiple-round knockout tournament where each pair of candidates are compared for K times and only the winners move on to the next round. In a minimalistic implementation, both stages can be executed with a black-box LLM alone and nothing else (e.g., no external verifier or reward model), and a total of N times (K + 1) highly parallelizable LLM calls are needed for solving an input problem. Assuming that a generated candidate solution is correct with probability p_{gen} > 0 and a comparison between a pair of correct and incorrect solutions identifies the right winner with probability p_{comp} > 0.5 (i.e., better than a random guess), we prove theoretically that the failure probability of the proposed algorithm decays to zero exponentially with respect to N and K: $P(final output is incorrect) le (1 - p_{gen})^N + lceil log_2 N rceil e^{-2 K (p_{comp} - 0.5)^2}.$ Our empirical results with the challenging MMLU-Pro benchmark validate the technical assumptions, as well as the efficacy of the proposed algorithm and the gains from scaling up its test-time compute.
Adam: A Method for Stochastic Optimization
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.
Adaptive Gradient Methods with Dynamic Bound of Learning Rate
Adaptive optimization methods such as AdaGrad, RMSprop and Adam have been proposed to achieve a rapid training process with an element-wise scaling term on learning rates. Though prevailing, they are observed to generalize poorly compared with SGD or even fail to converge due to unstable and extreme learning rates. Recent work has put forward some algorithms such as AMSGrad to tackle this issue but they failed to achieve considerable improvement over existing methods. In our paper, we demonstrate that extreme learning rates can lead to poor performance. We provide new variants of Adam and AMSGrad, called AdaBound and AMSBound respectively, which employ dynamic bounds on learning rates to achieve a gradual and smooth transition from adaptive methods to SGD and give a theoretical proof of convergence. We further conduct experiments on various popular tasks and models, which is often insufficient in previous work. Experimental results show that new variants can eliminate the generalization gap between adaptive methods and SGD and maintain higher learning speed early in training at the same time. Moreover, they can bring significant improvement over their prototypes, especially on complex deep networks. The implementation of the algorithm can be found at https://github.com/Luolc/AdaBound .
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search
Neural architecture search (NAS) has shown encouraging results in automating the architecture design. Recently, DARTS relaxes the search process with a differentiable formulation that leverages weight-sharing and SGD where all candidate operations are trained simultaneously. Our empirical results show that such procedure results in the co-adaption problem and Matthew Effect: operations with fewer parameters would be trained maturely earlier. This causes two problems: firstly, the operations with more parameters may never have the chance to express the desired function since those with less have already done the job; secondly, the system will punish those underperforming operations by lowering their architecture parameter, and they will get smaller loss gradients, which causes the Matthew Effect. In this paper, we systematically study these problems and propose a novel grouped operation dropout algorithm named DropNAS to fix the problems with DARTS. Extensive experiments demonstrate that DropNAS solves the above issues and achieves promising performance. Specifically, DropNAS achieves 2.26% test error on CIFAR-10, 16.39% on CIFAR-100 and 23.4% on ImageNet (with the same training hyperparameters as DARTS for a fair comparison). It is also observed that DropNAS is robust across variants of the DARTS search space. Code is available at https://github.com/wiljohnhong/DropNAS.
On the Convergence of Adam and Beyond
Several recently proposed stochastic optimization methods that have been successfully used in training deep networks such as RMSProp, Adam, Adadelta, Nadam are based on using gradient updates scaled by square roots of exponential moving averages of squared past gradients. In many applications, e.g. learning with large output spaces, it has been empirically observed that these algorithms fail to converge to an optimal solution (or a critical point in nonconvex settings). We show that one cause for such failures is the exponential moving average used in the algorithms. We provide an explicit example of a simple convex optimization setting where Adam does not converge to the optimal solution, and describe the precise problems with the previous analysis of Adam algorithm. Our analysis suggests that the convergence issues can be fixed by endowing such algorithms with `long-term memory' of past gradients, and propose new variants of the Adam algorithm which not only fix the convergence issues but often also lead to improved empirical performance.
Mixing predictions for online metric algorithms
A major technique in learning-augmented online algorithms is combining multiple algorithms or predictors. Since the performance of each predictor may vary over time, it is desirable to use not the single best predictor as a benchmark, but rather a dynamic combination which follows different predictors at different times. We design algorithms that combine predictions and are competitive against such dynamic combinations for a wide class of online problems, namely, metrical task systems. Against the best (in hindsight) unconstrained combination of ell predictors, we obtain a competitive ratio of O(ell^2), and show that this is best possible. However, for a benchmark with slightly constrained number of switches between different predictors, we can get a (1+epsilon)-competitive algorithm. Moreover, our algorithms can be adapted to access predictors in a bandit-like fashion, querying only one predictor at a time. An unexpected implication of one of our lower bounds is a new structural insight about covering formulations for the k-server problem.
Riemannian Adaptive Optimization Methods
Several first order stochastic optimization methods commonly used in the Euclidean domain such as stochastic gradient descent (SGD), accelerated gradient descent or variance reduced methods have already been adapted to certain Riemannian settings. However, some of the most popular of these optimization tools - namely Adam , Adagrad and the more recent Amsgrad - remain to be generalized to Riemannian manifolds. We discuss the difficulty of generalizing such adaptive schemes to the most agnostic Riemannian setting, and then provide algorithms and convergence proofs for geodesically convex objectives in the particular case of a product of Riemannian manifolds, in which adaptivity is implemented across manifolds in the cartesian product. Our generalization is tight in the sense that choosing the Euclidean space as Riemannian manifold yields the same algorithms and regret bounds as those that were already known for the standard algorithms. Experimentally, we show faster convergence and to a lower train loss value for Riemannian adaptive methods over their corresponding baselines on the realistic task of embedding the WordNet taxonomy in the Poincare ball.
NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search
Neural architecture search (NAS) has achieved breakthrough success in a great number of applications in the past few years. It could be time to take a step back and analyze the good and bad aspects in the field of NAS. A variety of algorithms search architectures under different search space. These searched architectures are trained using different setups, e.g., hyper-parameters, data augmentation, regularization. This raises a comparability problem when comparing the performance of various NAS algorithms. NAS-Bench-101 has shown success to alleviate this problem. In this work, we propose an extension to NAS-Bench-101: NAS-Bench-201 with a different search space, results on multiple datasets, and more diagnostic information. NAS-Bench-201 has a fixed search space and provides a unified benchmark for almost any up-to-date NAS algorithms. The design of our search space is inspired from the one used in the most popular cell-based searching algorithms, where a cell is represented as a DAG. Each edge here is associated with an operation selected from a predefined operation set. For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-201 includes all possible architectures generated by 4 nodes and 5 associated operation options, which results in 15,625 candidates in total. The training log and the performance for each architecture candidate are provided for three datasets. This allows researchers to avoid unnecessary repetitive training for selected candidate and focus solely on the search algorithm itself. The training time saved for every candidate also largely improves the efficiency of many methods. We provide additional diagnostic information such as fine-grained loss and accuracy, which can give inspirations to new designs of NAS algorithms. In further support, we have analyzed it from many aspects and benchmarked 10 recent NAS algorithms.
Improving Generalization Performance by Switching from Adam to SGD
Despite superior training outcomes, adaptive optimization methods such as Adam, Adagrad or RMSprop have been found to generalize poorly compared to Stochastic gradient descent (SGD). These methods tend to perform well in the initial portion of training but are outperformed by SGD at later stages of training. We investigate a hybrid strategy that begins training with an adaptive method and switches to SGD when appropriate. Concretely, we propose SWATS, a simple strategy which switches from Adam to SGD when a triggering condition is satisfied. The condition we propose relates to the projection of Adam steps on the gradient subspace. By design, the monitoring process for this condition adds very little overhead and does not increase the number of hyperparameters in the optimizer. We report experiments on several standard benchmarks such as: ResNet, SENet, DenseNet and PyramidNet for the CIFAR-10 and CIFAR-100 data sets, ResNet on the tiny-ImageNet data set and language modeling with recurrent networks on the PTB and WT2 data sets. The results show that our strategy is capable of closing the generalization gap between SGD and Adam on a majority of the tasks.
ETS: Efficient Tree Search for Inference-Time Scaling
Test-time compute scaling has emerged as a new axis along which to improve model accuracy, where additional computation is used at inference time to allow the model to think longer for more challenging problems. One promising approach for test-time compute scaling is search against a process reward model, where a model generates multiple potential candidates at each step of the search, and these partial trajectories are then scored by a separate reward model in order to guide the search process. The diversity of trajectories in the tree search process affects the accuracy of the search, since increasing diversity promotes more exploration. However, this diversity comes at a cost, as divergent trajectories have less KV sharing, which means they consume more memory and slow down the search process. Previous search methods either do not perform sufficient exploration, or else explore diverse trajectories but have high latency. We address this challenge by proposing Efficient Tree Search (ETS), which promotes KV sharing by pruning redundant trajectories while maintaining necessary diverse trajectories. ETS incorporates a linear programming cost model to promote KV cache sharing by penalizing the number of nodes retained, while incorporating a semantic coverage term into the cost model to ensure that we retain trajectories which are semantically different. We demonstrate how ETS can achieve 1.8times reduction in average KV cache size during the search process, leading to 1.4times increased throughput relative to prior state-of-the-art methods, with minimal accuracy degradation and without requiring any custom kernel implementation. Code is available at: https://github.com/SqueezeAILab/ETS.
AlphaResearch: Accelerating New Algorithm Discovery with Language Models
Large language models have made significant progress in complex but easy-to-verify problems, yet they still struggle with discovering the unknown. In this paper, we present AlphaResearch, an autonomous research agent designed to discover new algorithms on open-ended problems. To synergize the feasibility and innovation of the discovery process, we construct a novel dual research environment by combining the execution-based verify and simulated real-world peer review environment. AlphaResearch discovers new algorithm by iteratively running the following steps: (1) propose new ideas (2) verify the ideas in the dual research environment (3) optimize the research proposals for better performance. To promote a transparent evaluation process, we construct AlphaResearchComp, a new evaluation benchmark that includes an eight open-ended algorithmic problems competition, with each problem carefully curated and verified through executable pipelines, objective metrics, and reproducibility checks. AlphaResearch gets a 2/8 win rate in head-to-head comparison with human researchers, demonstrate the possibility of accelerating algorithm discovery with LLMs. Notably, the algorithm discovered by AlphaResearch on the ``packing circles'' problem achieves the best-of-known performance, surpassing the results of human researchers and strong baselines from recent work (e.g., AlphaEvolve). Additionally, we conduct a comprehensive analysis of the remaining challenges of the 6/8 failure cases, providing valuable insights for future research.
Mathematical exploration and discovery at scale
AlphaEvolve is a generic evolutionary coding agent that combines the generative capabilities of LLMs with automated evaluation in an iterative evolutionary framework that proposes, tests, and refines algorithmic solutions to challenging scientific and practical problems. In this paper we showcase AlphaEvolve as a tool for autonomously discovering novel mathematical constructions and advancing our understanding of long-standing open problems. To demonstrate its breadth, we considered a list of 67 problems spanning mathematical analysis, combinatorics, geometry, and number theory. The system rediscovered the best known solutions in most of the cases and discovered improved solutions in several. In some instances, AlphaEvolve is also able to generalize results for a finite number of input values into a formula valid for all input values. Furthermore, we are able to combine this methodology with Deep Think and AlphaProof in a broader framework where the additional proof-assistants and reasoning systems provide automated proof generation and further mathematical insights. These results demonstrate that large language model-guided evolutionary search can autonomously discover mathematical constructions that complement human intuition, at times matching or even improving the best known results, highlighting the potential for significant new ways of interaction between mathematicians and AI systems. We present AlphaEvolve as a powerful new tool for mathematical discovery, capable of exploring vast search spaces to solve complex optimization problems at scale, often with significantly reduced requirements on preparation and computation time.
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
The game of chess is the most widely-studied domain in the history of artificial intelligence. The strongest programs are based on a combination of sophisticated search techniques, domain-specific adaptations, and handcrafted evaluation functions that have been refined by human experts over several decades. In contrast, the AlphaGo Zero program recently achieved superhuman performance in the game of Go, by tabula rasa reinforcement learning from games of self-play. In this paper, we generalise this approach into a single AlphaZero algorithm that can achieve, tabula rasa, superhuman performance in many challenging domains. Starting from random play, and given no domain knowledge except the game rules, AlphaZero achieved within 24 hours a superhuman level of play in the games of chess and shogi (Japanese chess) as well as Go, and convincingly defeated a world-champion program in each case.
The simple essence of automatic differentiation
Automatic differentiation (AD) in reverse mode (RAD) is a central component of deep learning and other uses of large-scale optimization. Commonly used RAD algorithms such as backpropagation, however, are complex and stateful, hindering deep understanding, improvement, and parallel execution. This paper develops a simple, generalized AD algorithm calculated from a simple, natural specification. The general algorithm is then specialized by varying the representation of derivatives. In particular, applying well-known constructions to a naive representation yields two RAD algorithms that are far simpler than previously known. In contrast to commonly used RAD implementations, the algorithms defined here involve no graphs, tapes, variables, partial derivatives, or mutation. They are inherently parallel-friendly, correct by construction, and usable directly from an existing programming language with no need for new data types or programming style, thanks to use of an AD-agnostic compiler plugin.
Goedel-Prover-V2: Scaling Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction
We introduce Goedel-Prover-V2, a series of open-source language models that set a new state-of-the-art in automated theorem proving. Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) Scaffolded data synthesis: We generate synthetic tasks of increasing difficulty to train the model to master increasingly complex theorems; (2) Verifier-guided self-correction: We enable the model to iteratively revise its proofs by leveraging feedback from the Lean compiler; (3) Model averaging: We merge model checkpoints to mitigate the decrease in model output diversity in later stages of training. Our small model, Goedel-Prover-V2-8B, reaches 84.6% pass@32 on MiniF2F and outperforms DeepSeek-Prover-V2-671B under the same metric, despite being 80X smaller. Our flagship model, Goedel-Prover-V2-32B, achieves 88.1% on MiniF2F at pass@32 in standard mode and 90.4% in self-correction mode, outperforming prior SOTA by a large margin. Additionally, our flagship model solves 86 problems on PutnamBench at pass@184, securing the first place among open-source models on the leaderboard, surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by pass@1024 with a significantly smaller model size and compute budget. At the time of its release (July-August 2025), Goedel-Prover-V2 achieves the strongest overall performance among all open-source theorem provers. It also ranks among the top-performing models--including closed-source systems with publicly reported performance--under a constrained test-time compute budget. Our models, code, and data are released at https://github.com/Goedel-LM/Goedel-Prover-V2.
SOAP: Improving and Stabilizing Shampoo using Adam
There is growing evidence of the effectiveness of Shampoo, a higher-order preconditioning method, over Adam in deep learning optimization tasks. However, Shampoo's drawbacks include additional hyperparameters and computational overhead when compared to Adam, which only updates running averages of first- and second-moment quantities. This work establishes a formal connection between Shampoo (implemented with the 1/2 power) and Adafactor -- a memory-efficient approximation of Adam -- showing that Shampoo is equivalent to running Adafactor in the eigenbasis of Shampoo's preconditioner. This insight leads to the design of a simpler and computationally efficient algorithm: ShampoO with Adam in the Preconditioner's eigenbasis (SOAP). With regards to improving Shampoo's computational efficiency, the most straightforward approach would be to simply compute Shampoo's eigendecomposition less frequently. Unfortunately, as our empirical results show, this leads to performance degradation that worsens with this frequency. SOAP mitigates this degradation by continually updating the running average of the second moment, just as Adam does, but in the current (slowly changing) coordinate basis. Furthermore, since SOAP is equivalent to running Adam in a rotated space, it introduces only one additional hyperparameter (the preconditioning frequency) compared to Adam. We empirically evaluate SOAP on language model pre-training with 360m and 660m sized models. In the large batch regime, SOAP reduces the number of iterations by over 40% and wall clock time by over 35% compared to AdamW, with approximately 20% improvements in both metrics compared to Shampoo. An implementation of SOAP is available at https://github.com/nikhilvyas/SOAP.
Differential Evolution for Neural Architecture Search
Neural architecture search (NAS) methods rely on a search strategy for deciding which architectures to evaluate next and a performance estimation strategy for assessing their performance (e.g., using full evaluations, multi-fidelity evaluations, or the one-shot model). In this paper, we focus on the search strategy. We introduce the simple yet powerful evolutionary algorithm of differential evolution to the NAS community. Using the simplest performance evaluation strategy of full evaluations, we comprehensively compare this search strategy to regularized evolution and Bayesian optimization and demonstrate that it yields improved and more robust results for 13 tabular NAS benchmarks based on NAS-Bench-101, NAS-Bench-1Shot1, NAS-Bench-201 and NAS-HPO bench.
Improved Sleeping Bandits with Stochastic Actions Sets and Adversarial Rewards
In this paper, we consider the problem of sleeping bandits with stochastic action sets and adversarial rewards. In this setting, in contrast to most work in bandits, the actions may not be available at all times. For instance, some products might be out of stock in item recommendation. The best existing efficient (i.e., polynomial-time) algorithms for this problem only guarantee an O(T^{2/3}) upper-bound on the regret. Yet, inefficient algorithms based on EXP4 can achieve O(T). In this paper, we provide a new computationally efficient algorithm inspired by EXP3 satisfying a regret of order O(T) when the availabilities of each action i in cA are independent. We then study the most general version of the problem where at each round available sets are generated from some unknown arbitrary distribution (i.e., without the independence assumption) and propose an efficient algorithm with O(2^K T) regret guarantee. Our theoretical results are corroborated with experimental evaluations.
The Optimiser Hidden in Plain Sight: Training with the Loss Landscape's Induced Metric
We present a class of novel optimisers for training neural networks that makes use of the Riemannian metric naturally induced when the loss landscape is embedded in higher-dimensional space. This is the same metric that underlies common visualisations of loss landscapes. By taking this geometric perspective literally and using the induced metric, we develop a new optimiser and compare it to existing methods, namely: SGD, Adam, AdamW, and Muon, across a range of tasks and architectures. Empirically, we conclude that this new class of optimisers is highly effective in low dimensional examples, and provides slight improvement over state-of-the-art methods for training neural networks. These new optimisers have theoretically desirable properties. In particular, the effective learning rate is automatically decreased in regions of high curvature acting as a smoothed out form of gradient clipping. Similarly, one variant of these optimisers can also be viewed as inducing an effective scheduled learning rate and decoupled weight decay is the natural choice from our geometric perspective. The basic method can be used to modify any existing preconditioning method. The new optimiser has a computational complexity comparable to that of Adam.
AlphaEvolve: A coding agent for scientific and algorithmic discovery
In this white paper, we present AlphaEvolve, an evolutionary coding agent that substantially enhances capabilities of state-of-the-art LLMs on highly challenging tasks such as tackling open scientific problems or optimizing critical pieces of computational infrastructure. AlphaEvolve orchestrates an autonomous pipeline of LLMs, whose task is to improve an algorithm by making direct changes to the code. Using an evolutionary approach, continuously receiving feedback from one or more evaluators, AlphaEvolve iteratively improves the algorithm, potentially leading to new scientific and practical discoveries. We demonstrate the broad applicability of this approach by applying it to a number of important computational problems. When applied to optimizing critical components of large-scale computational stacks at Google, AlphaEvolve developed a more efficient scheduling algorithm for data centers, found a functionally equivalent simplification in the circuit design of hardware accelerators, and accelerated the training of the LLM underpinning AlphaEvolve itself. Furthermore, AlphaEvolve discovered novel, provably correct algorithms that surpass state-of-the-art solutions on a spectrum of problems in mathematics and computer science, significantly expanding the scope of prior automated discovery methods (Romera-Paredes et al., 2023). Notably, AlphaEvolve developed a search algorithm that found a procedure to multiply two 4 times 4 complex-valued matrices using 48 scalar multiplications; offering the first improvement, after 56 years, over Strassen's algorithm in this setting. We believe AlphaEvolve and coding agents like it can have a significant impact in improving solutions of problems across many areas of science and computation.
Accelerated Gradient Methods for Sparse Statistical Learning with Nonconvex Penalties
Nesterov's accelerated gradient (AG) is a popular technique to optimize objective functions comprising two components: a convex loss and a penalty function. While AG methods perform well for convex penalties, such as the LASSO, convergence issues may arise when it is applied to nonconvex penalties, such as SCAD. A recent proposal generalizes Nesterov's AG method to the nonconvex setting. The proposed algorithm requires specification of several hyperparameters for its practical application. Aside from some general conditions, there is no explicit rule for selecting the hyperparameters, and how different selection can affect convergence of the algorithm. In this article, we propose a hyperparameter setting based on the complexity upper bound to accelerate convergence, and consider the application of this nonconvex AG algorithm to high-dimensional linear and logistic sparse learning problems. We further establish the rate of convergence and present a simple and useful bound to characterize our proposed optimal damping sequence. Simulation studies show that convergence can be made, on average, considerably faster than that of the conventional proximal gradient algorithm. Our experiments also show that the proposed method generally outperforms the current state-of-the-art methods in terms of signal recovery.
EXAdam: The Power of Adaptive Cross-Moments
This paper introduces EXAdam (EXtended Adam), a novel optimization algorithm that builds upon the widely-used Adam optimizer. EXAdam incorporates three key enhancements: (1) new debiasing terms for improved moment estimation, (2) a gradient-based acceleration mechanism for increased responsiveness to the current loss landscape, and (3) a dynamic step size formula that allows for continuous growth of the learning rate throughout training. These innovations work synergistically to address limitations of the original Adam algorithm, potentially offering improved convergence properties, enhanced ability to escape saddle points, and greater robustness to hyperparameter choices. I provide a theoretical analysis of EXAdam's components and their interactions, highlighting the algorithm's potential advantages in navigating complex optimization landscapes. Empirical evaluations demonstrate EXAdam's superiority over Adam, achieving 48.07% faster convergence and yielding improvements of 4.6%, 4.13%, and 2.39% in training, validation, and testing accuracies, respectively, when applied to a CNN trained on the CIFAR-10 dataset. While these results are promising, further empirical validation across diverse tasks is essential to fully gauge EXAdam's efficacy. Nevertheless, EXAdam represents a significant advancement in adaptive optimization techniques, with promising implications for a wide range of machine learning applications. This work aims to contribute to the ongoing development of more efficient, adaptive, and universally applicable optimization methods in the field of machine learning and artificial intelligence.
Efficient computation of rankings from pairwise comparisons
We study the ranking of individuals, teams, or objects, based on pairwise comparisons between them, using the Bradley-Terry model. Estimates of rankings within this model are commonly made using a simple iterative algorithm first introduced by Zermelo almost a century ago. Here we describe an alternative and similarly simple iteration that provably returns identical results but does so much faster -- over a hundred times faster in some cases. We demonstrate this algorithm with applications to a range of example data sets and derive a number of results regarding its convergence.
Efficient Global Optimization of Two-layer ReLU Networks: Quadratic-time Algorithms and Adversarial Training
The non-convexity of the artificial neural network (ANN) training landscape brings inherent optimization difficulties. While the traditional back-propagation stochastic gradient descent (SGD) algorithm and its variants are effective in certain cases, they can become stuck at spurious local minima and are sensitive to initializations and hyperparameters. Recent work has shown that the training of an ANN with ReLU activations can be reformulated as a convex program, bringing hope to globally optimizing interpretable ANNs. However, naively solving the convex training formulation has an exponential complexity, and even an approximation heuristic requires cubic time. In this work, we characterize the quality of this approximation and develop two efficient algorithms that train ANNs with global convergence guarantees. The first algorithm is based on the alternating direction method of multiplier (ADMM). It solves both the exact convex formulation and the approximate counterpart. Linear global convergence is achieved, and the initial several iterations often yield a solution with high prediction accuracy. When solving the approximate formulation, the per-iteration time complexity is quadratic. The second algorithm, based on the "sampled convex programs" theory, is simpler to implement. It solves unconstrained convex formulations and converges to an approximately globally optimal classifier. The non-convexity of the ANN training landscape exacerbates when adversarial training is considered. We apply the robust convex optimization theory to convex training and develop convex formulations that train ANNs robust to adversarial inputs. Our analysis explicitly focuses on one-hidden-layer fully connected ANNs, but can extend to more sophisticated architectures.
MicroAdam: Accurate Adaptive Optimization with Low Space Overhead and Provable Convergence
We propose a new variant of the Adam optimizer [Kingma and Ba, 2014] called MICROADAM that specifically minimizes memory overheads, while maintaining theoretical convergence guarantees. We achieve this by compressing the gradient information before it is fed into the optimizer state, thereby reducing its memory footprint significantly. We control the resulting compression error via a novel instance of the classical error feedback mechanism from distributed optimization [Seide et al., 2014, Alistarh et al., 2018, Karimireddy et al., 2019] in which the error correction information is itself compressed to allow for practical memory gains. We prove that the resulting approach maintains theoretical convergence guarantees competitive to those of AMSGrad, while providing good practical performance. Specifically, we show that MICROADAM can be implemented efficiently on GPUs: on both million-scale (BERT) and billion-scale (LLaMA) models, MicroAdam provides practical convergence competitive to that of the uncompressed Adam baseline, with lower memory usage and similar running time. Our code is available at https://github.com/IST-DASLab/MicroAdam.
STARC: A General Framework For Quantifying Differences Between Reward Functions
In order to solve a task using reinforcement learning, it is necessary to first formalise the goal of that task as a reward function. However, for many real-world tasks, it is very difficult to manually specify a reward function that never incentivises undesirable behaviour. As a result, it is increasingly popular to use reward learning algorithms, which attempt to learn a reward function from data. However, the theoretical foundations of reward learning are not yet well-developed. In particular, it is typically not known when a given reward learning algorithm with high probability will learn a reward function that is safe to optimise. This means that reward learning algorithms generally must be evaluated empirically, which is expensive, and that their failure modes are difficult to anticipate in advance. One of the roadblocks to deriving better theoretical guarantees is the lack of good methods for quantifying the difference between reward functions. In this paper we provide a solution to this problem, in the form of a class of pseudometrics on the space of all reward functions that we call STARC (STAndardised Reward Comparison) metrics. We show that STARC metrics induce both an upper and a lower bound on worst-case regret, which implies that our metrics are tight, and that any metric with the same properties must be bilipschitz equivalent to ours. Moreover, we also identify a number of issues with reward metrics proposed by earlier works. Finally, we evaluate our metrics empirically, to demonstrate their practical efficacy. STARC metrics can be used to make both theoretical and empirical analysis of reward learning algorithms both easier and more principled.
Efficient Automatic CASH via Rising Bandits
The Combined Algorithm Selection and Hyperparameter optimization (CASH) is one of the most fundamental problems in Automatic Machine Learning (AutoML). The existing Bayesian optimization (BO) based solutions turn the CASH problem into a Hyperparameter Optimization (HPO) problem by combining the hyperparameters of all machine learning (ML) algorithms, and use BO methods to solve it. As a result, these methods suffer from the low-efficiency problem due to the huge hyperparameter space in CASH. To alleviate this issue, we propose the alternating optimization framework, where the HPO problem for each ML algorithm and the algorithm selection problem are optimized alternately. In this framework, the BO methods are used to solve the HPO problem for each ML algorithm separately, incorporating a much smaller hyperparameter space for BO methods. Furthermore, we introduce Rising Bandits, a CASH-oriented Multi-Armed Bandits (MAB) variant, to model the algorithm selection in CASH. This framework can take the advantages of both BO in solving the HPO problem with a relatively small hyperparameter space and the MABs in accelerating the algorithm selection. Moreover, we further develop an efficient online algorithm to solve the Rising Bandits with provably theoretical guarantees. The extensive experiments on 30 OpenML datasets demonstrate the superiority of the proposed approach over the competitive baselines.
FAdam: Adam is a natural gradient optimizer using diagonal empirical Fisher information
This paper establishes a mathematical foundation for the Adam optimizer, elucidating its connection to natural gradient descent through Riemannian and information geometry. We rigorously analyze the diagonal empirical Fisher information matrix (FIM) in Adam, clarifying all detailed approximations and advocating for the use of log probability functions as loss, which should be based on discrete distributions, due to the limitations of empirical FIM. Our analysis uncovers flaws in the original Adam algorithm, leading to proposed corrections such as enhanced momentum calculations, adjusted bias corrections, and gradient clipping. We refine the weight decay term based on our theoretical framework. Our modified algorithm, Fisher Adam (FAdam), demonstrates superior performance across diverse domains including LLM, ASR, and VQ-VAE, achieving state-of-the-art results in ASR.
Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching
We consider solving equality-constrained nonlinear, nonconvex optimization problems. This class of problems appears widely in a variety of applications in machine learning and engineering, ranging from constrained deep neural networks, to optimal control, to PDE-constrained optimization. We develop an adaptive inexact Newton method for this problem class. In each iteration, we solve the Lagrangian Newton system inexactly via a randomized iterative sketching solver, and select a suitable stepsize by performing line search on an exact augmented Lagrangian merit function. The randomized solvers have advantages over deterministic linear system solvers by significantly reducing per-iteration flops complexity and storage cost, when equipped with suitable sketching matrices. Our method adaptively controls the accuracy of the randomized solver and the penalty parameters of the exact augmented Lagrangian, to ensure that the inexact Newton direction is a descent direction of the exact augmented Lagrangian. This allows us to establish a global almost sure convergence. We also show that a unit stepsize is admissible locally, so that our method exhibits a local linear convergence. Furthermore, we prove that the linear convergence can be strengthened to superlinear convergence if we gradually sharpen the adaptive accuracy condition on the randomized solver. We demonstrate the superior performance of our method on benchmark nonlinear problems in CUTEst test set, constrained logistic regression with data from LIBSVM, and a PDE-constrained problem.
Proving Olympiad Algebraic Inequalities without Human Demonstrations
Solving Olympiad-level mathematical problems represents a significant advancement in machine intelligence and automated reasoning. Current machine learning methods, however, struggle to solve Olympiad-level problems beyond Euclidean plane geometry due to a lack of large-scale, high-quality datasets. The challenge is even greater in algebraic systems, which involve infinite reasoning spaces within finite conditions. To address these issues, we propose AIPS, an Algebraic Inequality Proving System capable of autonomously generating complex inequality theorems and effectively solving Olympiad-level inequality problems without requiring human demonstrations. During proof search in a mixed reasoning manner, a value curriculum learning strategy on generated datasets is implemented to improve proving performance, demonstrating strong mathematical intuitions. On a test set of 20 International Mathematical Olympiad-level inequality problems, AIPS successfully solved 10, outperforming state-of-the-art methods. Furthermore, AIPS automatically generated a vast array of non-trivial theorems without human intervention, some of which have been evaluated by professional contestants and deemed to reach the level of the International Mathematical Olympiad. Notably, one theorem was selected as a competition problem in a major city 2024 Mathematical Olympiad.
Automatically Auditing Large Language Models via Discrete Optimization
Auditing large language models for unexpected behaviors is critical to preempt catastrophic deployments, yet remains challenging. In this work, we cast auditing as an optimization problem, where we automatically search for input-output pairs that match a desired target behavior. For example, we might aim to find a non-toxic input that starts with "Barack Obama" that a model maps to a toxic output. This optimization problem is difficult to solve as the set of feasible points is sparse, the space is discrete, and the language models we audit are non-linear and high-dimensional. To combat these challenges, we introduce a discrete optimization algorithm, ARCA, that jointly and efficiently optimizes over inputs and outputs. Our approach automatically uncovers derogatory completions about celebrities (e.g. "Barack Obama is a legalized unborn" -> "child murderer"), produces French inputs that complete to English outputs, and finds inputs that generate a specific name. Our work offers a promising new tool to uncover models' failure-modes before deployment.
Convergence Guarantees for RMSProp and Adam in Generalized-smooth Non-convex Optimization with Affine Noise Variance
This paper provides the first tight convergence analyses for RMSProp and Adam in non-convex optimization under the most relaxed assumptions of coordinate-wise generalized smoothness and affine noise variance. We first analyze RMSProp, which is a special case of Adam with adaptive learning rates but without first-order momentum. Specifically, to solve the challenges due to dependence among adaptive update, unbounded gradient estimate and Lipschitz constant, we demonstrate that the first-order term in the descent lemma converges and its denominator is upper bounded by a function of gradient norm. Based on this result, we show that RMSProp with proper hyperparameters converges to an epsilon-stationary point with an iteration complexity of mathcal O(epsilon^{-4}). We then generalize our analysis to Adam, where the additional challenge is due to a mismatch between the gradient and first-order momentum. We develop a new upper bound on the first-order term in the descent lemma, which is also a function of the gradient norm. We show that Adam with proper hyperparameters converges to an epsilon-stationary point with an iteration complexity of mathcal O(epsilon^{-4}). Our complexity results for both RMSProp and Adam match with the complexity lower bound established in arjevani2023lower.
Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation
We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation. Specifically, we propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP), which incorporates both model-based and value-based incarnations. In particular, LOOP features a novel construction of confidence sets and a low-switching policy updating scheme, which are tailored to the average-reward and function approximation setting. Moreover, for AMDPs, we propose a novel complexity measure -- average-reward generalized eluder coefficient (AGEC) -- which captures the challenge of exploration in AMDPs with general function approximation. Such a complexity measure encompasses almost all previously known tractable AMDP models, such as linear AMDPs and linear mixture AMDPs, and also includes newly identified cases such as kernel AMDPs and AMDPs with Bellman eluder dimensions. Using AGEC, we prove that LOOP achieves a sublinear mathcal{O}(poly(d, sp(V^*)) Tbeta ) regret, where d and beta correspond to AGEC and log-covering number of the hypothesis class respectively, sp(V^*) is the span of the optimal state bias function, T denotes the number of steps, and mathcal{O} (cdot) omits logarithmic factors. When specialized to concrete AMDP models, our regret bounds are comparable to those established by the existing algorithms designed specifically for these special cases. To the best of our knowledge, this paper presents the first comprehensive theoretical framework capable of handling nearly all AMDPs.
TreeRPO: Tree Relative Policy Optimization
Large Language Models (LLMs) have shown remarkable reasoning capabilities through Reinforcement Learning with Verifiable Rewards (RLVR) methods. However, a key limitation of existing approaches is that rewards defined at the full trajectory level provide insufficient guidance for optimizing the intermediate steps of a reasoning process. To address this, we introduce \name, a novel method that estimates the mathematical expectations of rewards at various reasoning steps using tree sampling. Unlike prior methods that rely on a separate step reward model, \name directly estimates these rewards through this sampling process. Building on the group-relative reward training mechanism of GRPO, \name innovatively computes rewards based on step-level groups generated during tree sampling. This advancement allows \name to produce fine-grained and dense reward signals, significantly enhancing the learning process and overall performance of LLMs. Experimental results demonstrate that our \name algorithm substantially improves the average Pass@1 accuracy of Qwen-2.5-Math on test benchmarks, increasing it from 19.0\% to 35.5\%. Furthermore, \name significantly outperforms GRPO by 2.9\% in performance while simultaneously reducing the average response length by 18.1\%, showcasing its effectiveness and efficiency. Our code will be available at https://github.com/yangzhch6/TreeRPO{https://github.com/yangzhch6/TreeRPO}.
Shortest Edit Path Crossover: A Theory-driven Solution to the Permutation Problem in Evolutionary Neural Architecture Search
Population-based search has recently emerged as a possible alternative to Reinforcement Learning (RL) for black-box neural architecture search (NAS). It performs well in practice even though it is not theoretically well understood. In particular, whereas traditional population-based search methods such as evolutionary algorithms (EAs) draw much power from crossover operations, it is difficult to take advantage of them in NAS. The main obstacle is believed to be the permutation problem: The mapping between genotype and phenotype in traditional graph representations is many-to-one, leading to a disruptive effect of standard crossover. This paper presents the first theoretical analysis of the behaviors of mutation, crossover and RL in black-box NAS, and proposes a new crossover operator based on the shortest edit path (SEP) in graph space. The SEP crossover is shown theoretically to overcome the permutation problem, and as a result, have a better expected improvement compared to mutation, standard crossover and RL. Further, it empirically outperform these other methods on state-of-the-art NAS benchmarks. The SEP crossover therefore allows taking full advantage of population-based search in NAS, and the underlying theory can serve as a foundation for deeper understanding of black-box NAS methods in general.
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
We introduce ADAHESSIAN, a second order stochastic optimization algorithm which dynamically incorporates the curvature of the loss function via ADAptive estimates of the HESSIAN. Second order algorithms are among the most powerful optimization algorithms with superior convergence properties as compared to first order methods such as SGD and Adam. The main disadvantage of traditional second order methods is their heavier per iteration computation and poor accuracy as compared to first order methods. To address these, we incorporate several novel approaches in ADAHESSIAN, including: (i) a fast Hutchinson based method to approximate the curvature matrix with low computational overhead; (ii) a root-mean-square exponential moving average to smooth out variations of the Hessian diagonal across different iterations; and (iii) a block diagonal averaging to reduce the variance of Hessian diagonal elements. We show that ADAHESSIAN achieves new state-of-the-art results by a large margin as compared to other adaptive optimization methods, including variants of Adam. In particular, we perform extensive tests on CV, NLP, and recommendation system tasks and find that ADAHESSIAN: (i) achieves 1.80%/1.45% higher accuracy on ResNets20/32 on Cifar10, and 5.55% higher accuracy on ImageNet as compared to Adam; (ii) outperforms AdamW for transformers by 0.13/0.33 BLEU score on IWSLT14/WMT14 and 2.7/1.0 PPL on PTB/Wikitext-103; (iii) outperforms AdamW for SqueezeBert by 0.41 points on GLUE; and (iv) achieves 0.032% better score than Adagrad for DLRM on the Criteo Ad Kaggle dataset. Importantly, we show that the cost per iteration of ADAHESSIAN is comparable to first order methods, and that it exhibits robustness towards its hyperparameters.
Algorithm Evolution Using Large Language Model
Optimization can be found in many real-life applications. Designing an effective algorithm for a specific optimization problem typically requires a tedious amount of effort from human experts with domain knowledge and algorithm design skills. In this paper, we propose a novel approach called Algorithm Evolution using Large Language Model (AEL). It utilizes a large language model (LLM) to automatically generate optimization algorithms via an evolutionary framework. AEL does algorithm-level evolution without model training. Human effort and requirements for domain knowledge can be significantly reduced. We take constructive methods for the salesman traveling problem as a test example, we show that the constructive algorithm obtained by AEL outperforms simple hand-crafted and LLM-generated heuristics. Compared with other domain deep learning model-based algorithms, these methods exhibit excellent scalability across different problem sizes. AEL is also very different from previous attempts that utilize LLMs as search operators in algorithms.
MARS: Unleashing the Power of Variance Reduction for Training Large Models
Training deep neural networks--and more recently, large models--demands efficient and scalable optimizers. Adaptive gradient algorithms like Adam, AdamW, and their variants have been central to this task. Despite the development of numerous variance reduction algorithms in the past decade aimed at accelerating stochastic optimization in both convex and nonconvex settings, variance reduction has not found widespread success in training deep neural networks or large language models. Consequently, it has remained a less favored approach in modern AI. In this paper, to unleash the power of variance reduction for efficient training of large models, we propose a unified optimization framework, MARS (Make vAriance Reduction Shine), which reconciles preconditioned gradient methods with variance reduction via a scaled stochastic recursive momentum technique. Within our framework, we introduce three instances of MARS that leverage preconditioned gradient updates based on AdamW, Lion, and Shampoo, respectively. We also draw a connection between our algorithms and existing optimizers. Experimental results on training GPT-2 models indicate that MARS consistently outperforms AdamW by a large margin.
Modified LAB Algorithm with Clustering-based Search Space Reduction Method for solving Engineering Design Problems
A modified LAB algorithm is introduced in this paper. It builds upon the original LAB algorithm (Reddy et al. 2023), which is a socio-inspired algorithm that models competitive and learning behaviours within a group, establishing hierarchical roles. The proposed algorithm incorporates the roulette wheel approach and a reduction factor introducing inter-group competition and iteratively narrowing down the sample space. The algorithm is validated by solving the benchmark test problems from CEC 2005 and CEC 2017. The solutions are validated using standard statistical tests such as two-sided and pairwise signed rank Wilcoxon test and Friedman rank test. The algorithm exhibited improved and superior robustness as well as search space exploration capabilities. Furthermore, a Clustering-Based Search Space Reduction (C-SSR) method is proposed, making the algorithm capable to solve constrained problems. The C-SSR method enables the algorithm to identify clusters of feasible regions, satisfying the constraints and contributing to achieve the optimal solution. This method demonstrates its effectiveness as a potential alternative to traditional constraint handling techniques. The results obtained using the Modified LAB algorithm are then compared with those achieved by other recent metaheuristic algorithms.
Regularized Langevin Dynamics for Combinatorial Optimization
This work proposes a simple yet effective sampling framework for combinatorial optimization (CO). Our method builds on discrete Langevin dynamics (LD), an efficient gradient-guided generative paradigm. However, we observe that directly applying LD often leads to limited exploration. To overcome this limitation, we propose the Regularized Langevin Dynamics (RLD), which enforces an expected distance between the sampled and current solutions, effectively avoiding local minima. We develop two CO solvers on top of RLD, one based on simulated annealing (SA), and the other one based on neural network (NN). Empirical results on three classic CO problems demonstrate that both of our methods can achieve comparable or better performance against the previous state-of-the-art (SOTA) SA- and NN-based solvers. In particular, our SA algorithm reduces the runtime of the previous SOTA SA method by up to 80\%, while achieving equal or superior performance. In summary, RLD offers a promising framework for enhancing both traditional heuristics and NN models to solve CO problems. Our code is available at https://github.com/Shengyu-Feng/RLD4CO.
AlphaSnake: Policy Iteration on a Nondeterministic NP-hard Markov Decision Process
Reinforcement learning has recently been used to approach well-known NP-hard combinatorial problems in graph theory. Among these problems, Hamiltonian cycle problems are exceptionally difficult to analyze, even when restricted to individual instances of structurally complex graphs. In this paper, we use Monte Carlo Tree Search (MCTS), the search algorithm behind many state-of-the-art reinforcement learning algorithms such as AlphaZero, to create autonomous agents that learn to play the game of Snake, a game centered on properties of Hamiltonian cycles on grid graphs. The game of Snake can be formulated as a single-player discounted Markov Decision Process (MDP) where the agent must behave optimally in a stochastic environment. Determining the optimal policy for Snake, defined as the policy that maximizes the probability of winning - or win rate - with higher priority and minimizes the expected number of time steps to win with lower priority, is conjectured to be NP-hard. Performance-wise, compared to prior work in the Snake game, our algorithm is the first to achieve a win rate over 0.5 (a uniform random policy achieves a win rate < 2.57 times 10^{-15}), demonstrating the versatility of AlphaZero in approaching NP-hard environments.
UDC: A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems
Single-stage neural combinatorial optimization solvers have achieved near-optimal results on various small-scale combinatorial optimization (CO) problems without requiring expert knowledge. However, these solvers exhibit significant performance degradation when applied to large-scale CO problems. Recently, two-stage neural methods motivated by divide-and-conquer strategies have shown efficiency in addressing large-scale CO problems. Nevertheless, the performance of these methods highly relies on problem-specific heuristics in either the dividing or the conquering procedure, which limits their applicability to general CO problems. Moreover, these methods employ separate training schemes and ignore the interdependencies between the dividing and conquering strategies, often leading to sub-optimal solutions. To tackle these drawbacks, this article develops a unified neural divide-and-conquer framework (i.e., UDC) for solving general large-scale CO problems. UDC offers a Divide-Conquer-Reunion (DCR) training method to eliminate the negative impact of a sub-optimal dividing policy. Employing a high-efficiency Graph Neural Network (GNN) for global instance dividing and a fixed-length sub-path solver for conquering divided sub-problems, the proposed UDC framework demonstrates extensive applicability, achieving superior performance in 10 representative large-scale CO problems. The code is available at https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/UDC-Large-scale-CO-master.
A Theoretical Framework for Auxiliary-Loss-Free Load Balancing of Sparse Mixture-of-Experts in Large-Scale AI Models
In large-scale AI training, Sparse Mixture-of-Experts (s-MoE) layers enable scaling by activating only a small subset of experts per token. An operational challenge in this design is load balancing: routing tokens to minimize the number of idle experts, which is important for the efficient utilization of (costly) GPUs. We provide a theoretical framework for analyzing the Auxiliary-Loss-Free Load Balancing (ALF-LB) procedure -- proposed by DeepSeek's Wang et al. (2024) -- by casting it as a one-step-per-iteration primal-dual method for an assignment problem. First, in a stylized deterministic setting, our framework yields several insightful structural properties: (i) a monotonic improvement of a Lagrangian objective, (ii) a preference rule that moves tokens from overloaded to underloaded experts, and (iii) an approximate-balancing guarantee. Then, we incorporate the stochastic and dynamic nature of AI training using a generalized online optimization formulation. In the online setting, we derive a strong convexity property of the objective that leads to a logarithmic expected regret bound under certain step-size choices. Additionally, we present real experiments on 1B-parameter DeepSeekMoE models to complement our theoretical findings. Together, these results build a principled framework for analyzing the Auxiliary-Loss-Free Load Balancing of s-MoE in AI models.
CoLiDE: Concomitant Linear DAG Estimation
We deal with the combinatorial problem of learning directed acyclic graph (DAG) structure from observational data adhering to a linear structural equation model (SEM). Leveraging advances in differentiable, nonconvex characterizations of acyclicity, recent efforts have advocated a continuous constrained optimization paradigm to efficiently explore the space of DAGs. Most existing methods employ lasso-type score functions to guide this search, which (i) require expensive penalty parameter retuning when the unknown SEM noise variances change across problem instances; and (ii) implicitly rely on limiting homoscedasticity assumptions. In this work, we propose a new convex score function for sparsity-aware learning of linear DAGs, which incorporates concomitant estimation of scale and thus effectively decouples the sparsity parameter from the exogenous noise levels. Regularization via a smooth, nonconvex acyclicity penalty term yields CoLiDE (Concomitant Linear DAG Estimation), a regression-based criterion amenable to efficient gradient computation and closed-form estimation of noise variances in heteroscedastic scenarios. Our algorithm outperforms state-of-the-art methods without incurring added complexity, especially when the DAGs are larger and the noise level profile is heterogeneous. We also find CoLiDE exhibits enhanced stability manifested via reduced standard deviations in several domain-specific metrics, underscoring the robustness of our novel linear DAG estimator.
Bridging Evolutionary Algorithms and Reinforcement Learning: A Comprehensive Survey on Hybrid Algorithms
Evolutionary Reinforcement Learning (ERL), which integrates Evolutionary Algorithms (EAs) and Reinforcement Learning (RL) for optimization, has demonstrated remarkable performance advancements. By fusing both approaches, ERL has emerged as a promising research direction. This survey offers a comprehensive overview of the diverse research branches in ERL. Specifically, we systematically summarize recent advancements in related algorithms and identify three primary research directions: EA-assisted Optimization of RL, RL-assisted Optimization of EA, and synergistic optimization of EA and RL. Following that, we conduct an in-depth analysis of each research direction, organizing multiple research branches. We elucidate the problems that each branch aims to tackle and how the integration of EAs and RL addresses these challenges. In conclusion, we discuss potential challenges and prospective future research directions across various research directions. To facilitate researchers in delving into ERL, we organize the algorithms and codes involved on https://github.com/yeshenpy/Awesome-Evolutionary-Reinforcement-Learning.
Diverse Inference and Verification for Advanced Reasoning
Reasoning LLMs such as OpenAI o1, o3 and DeepSeek R1 have made significant progress in mathematics and coding, yet find challenging advanced tasks such as International Mathematical Olympiad (IMO) combinatorics problems, Abstraction and Reasoning Corpus (ARC) puzzles, and Humanity's Last Exam (HLE) questions. We use a diverse inference approach that combines multiple models and methods at test time. We find that verifying mathematics and code problems, and rejection sampling on other problems is simple and effective. We automatically verify correctness of solutions to IMO problems by Lean, and ARC puzzles by code, and find that best-of-N effectively answers HLE questions. Our approach increases answer accuracy on IMO combinatorics problems from 33.3% to 77.8%, accuracy on HLE questions from 8% to 37%, and solves 80% of ARC puzzles that 948 humans could not and 26.5% of ARC puzzles that o3 high compute does not. Test-time simulations, reinforcement learning, and meta-learning with inference feedback improve generalization by adapting agent graph representations and varying prompts, code, and datasets. Our approach is reliable, robust, and scalable, and in the spirit of reproducible research, we will make it publicly available upon publication.
Learning to Actively Learn: A Robust Approach
This work proposes a procedure for designing algorithms for specific adaptive data collection tasks like active learning and pure-exploration multi-armed bandits. Unlike the design of traditional adaptive algorithms that rely on concentration of measure and careful analysis to justify the correctness and sample complexity of the procedure, our adaptive algorithm is learned via adversarial training over equivalence classes of problems derived from information theoretic lower bounds. In particular, a single adaptive learning algorithm is learned that competes with the best adaptive algorithm learned for each equivalence class. Our procedure takes as input just the available queries, set of hypotheses, loss function, and total query budget. This is in contrast to existing meta-learning work that learns an adaptive algorithm relative to an explicit, user-defined subset or prior distribution over problems which can be challenging to define and be mismatched to the instance encountered at test time. This work is particularly focused on the regime when the total query budget is very small, such as a few dozen, which is much smaller than those budgets typically considered by theoretically derived algorithms. We perform synthetic experiments to justify the stability and effectiveness of the training procedure, and then evaluate the method on tasks derived from real data including a noisy 20 Questions game and a joke recommendation task.
Sharp Noisy Binary Search with Monotonic Probabilities
We revisit the noisy binary search model of Karp and Kleinberg, in which we have n coins with unknown probabilities p_i that we can flip. The coins are sorted by increasing p_i, and we would like to find where the probability crosses (to within varepsilon) of a target value tau. This generalized the fixed-noise model of Burnashev and Zigangirov , in which p_i = 1{2} pm varepsilon, to a setting where coins near the target may be indistinguishable from it. Karp and Kleinberg showed that Theta(1{varepsilon^2} log n) samples are necessary and sufficient for this task. We produce a practical algorithm by solving two theoretical challenges: high-probability behavior and sharp constants. We give an algorithm that succeeds with probability 1-delta from \[ 1{C_{\tau, \varepsilon}} \cdot \left(\lg n + O(\log^{2/3} n \log^{1/3} 1{\delta} + \log 1{\delta})\right) \] samples, where C_{tau, varepsilon} is the optimal such constant achievable. For delta > n^{-o(1)} this is within 1 + o(1) of optimal, and for delta ll 1 it is the first bound within constant factors of optimal.
Adaptive Computation Time for Recurrent Neural Networks
This paper introduces Adaptive Computation Time (ACT), an algorithm that allows recurrent neural networks to learn how many computational steps to take between receiving an input and emitting an output. ACT requires minimal changes to the network architecture, is deterministic and differentiable, and does not add any noise to the parameter gradients. Experimental results are provided for four synthetic problems: determining the parity of binary vectors, applying binary logic operations, adding integers, and sorting real numbers. Overall, performance is dramatically improved by the use of ACT, which successfully adapts the number of computational steps to the requirements of the problem. We also present character-level language modelling results on the Hutter prize Wikipedia dataset. In this case ACT does not yield large gains in performance; however it does provide intriguing insight into the structure of the data, with more computation allocated to harder-to-predict transitions, such as spaces between words and ends of sentences. This suggests that ACT or other adaptive computation methods could provide a generic method for inferring segment boundaries in sequence data.
CHECK-MAT: Checking Hand-Written Mathematical Answers for the Russian Unified State Exam
This paper introduces a novel benchmark, EGE-Math Solutions Assessment Benchmark, for evaluating Vision-Language Models (VLMs) on their ability to assess hand-written mathematical solutions. Unlike existing benchmarks that focus on problem solving, our approach centres on understanding student solutions, identifying mistakes, and assigning grades according to fixed criteria. We compile 122 scanned solutions from the Russian Unified State Exam (EGE) together with official expert grades, and evaluate seven modern VLMs from Google, OpenAI, Arcee AI, and Alibaba Cloud in three inference modes. The results reveal current limitations in mathematical reasoning and human-rubric alignment, opening new research avenues in AI-assisted assessment. You can find code in https://github.com/Karifannaa/Auto-check-EGE-math
Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis
In this paper, we present improved learning-augmented algorithms for the multi-option ski rental problem. Learning-augmented algorithms take ML predictions as an added part of the input and incorporates these predictions in solving the given problem. Due to their unique strength that combines the power of ML predictions with rigorous performance guarantees, they have been extensively studied in the context of online optimization problems. Even though ski rental problems are one of the canonical problems in the field of online optimization, only deterministic algorithms were previously known for multi-option ski rental, with or without learning augmentation. We present the first randomized learning-augmented algorithm for this problem, surpassing previous performance guarantees given by deterministic algorithms. Our learning-augmented algorithm is based on a new, provably best-possible randomized competitive algorithm for the problem. Our results are further complemented by lower bounds for deterministic and randomized algorithms, and computational experiments evaluating our algorithms' performance improvements.
Generalized Polyak Step Size for First Order Optimization with Momentum
In machine learning applications, it is well known that carefully designed learning rate (step size) schedules can significantly improve the convergence of commonly used first-order optimization algorithms. Therefore how to set step size adaptively becomes an important research question. A popular and effective method is the Polyak step size, which sets step size adaptively for gradient descent or stochastic gradient descent without the need to estimate the smoothness parameter of the objective function. However, there has not been a principled way to generalize the Polyak step size for algorithms with momentum accelerations. This paper presents a general framework to set the learning rate adaptively for first-order optimization methods with momentum, motivated by the derivation of Polyak step size. It is shown that the resulting methods are much less sensitive to the choice of momentum parameter and may avoid the oscillation of the heavy-ball method on ill-conditioned problems. These adaptive step sizes are further extended to the stochastic settings, which are attractive choices for stochastic gradient descent with momentum. Our methods are demonstrated to be more effective for stochastic gradient methods than prior adaptive step size algorithms in large-scale machine learning tasks.
Low Rank Matrix Completion via Robust Alternating Minimization in Nearly Linear Time
Given a matrix Min R^{mtimes n}, the low rank matrix completion problem asks us to find a rank-k approximation of M as UV^top for Uin R^{mtimes k} and Vin R^{ntimes k} by only observing a few entries specified by a set of entries Omegasubseteq [m]times [n]. In particular, we examine an approach that is widely used in practice -- the alternating minimization framework. Jain, Netrapalli and Sanghavi~jns13 showed that if M has incoherent rows and columns, then alternating minimization provably recovers the matrix M by observing a nearly linear in n number of entries. While the sample complexity has been subsequently improved~glz17, alternating minimization steps are required to be computed exactly. This hinders the development of more efficient algorithms and fails to depict the practical implementation of alternating minimization, where the updates are usually performed approximately in favor of efficiency. In this paper, we take a major step towards a more efficient and error-robust alternating minimization framework. To this end, we develop an analytical framework for alternating minimization that can tolerate moderate amount of errors caused by approximate updates. Moreover, our algorithm runs in time widetilde O(|Omega| k), which is nearly linear in the time to verify the solution while preserving the sample complexity. This improves upon all prior known alternating minimization approaches which require widetilde O(|Omega| k^2) time.
Divide and Conquer for Large Language Models Reasoning
Large language models (LLMs) have shown impressive performance in various reasoning benchmarks with the emergence of Chain-of-Thought (CoT) and its derivative methods, particularly in tasks involving multi-choice questions (MCQs). However, current works all process data uniformly without considering the problem-solving difficulty, which means an excessive focus on simple questions while insufficient to intricate ones. To address this challenge, we inspired by humans using heuristic strategies to categorize tasks and handle them individually, propose to apply the Divide and Conquer to LLMs reasoning. First, we divide questions into different subsets based on the statistical confidence score (CS), then fix nearly resolved sets and conquer demanding nuanced process ones with elaborately designed methods, including Prior Knowledge based Reasoning (PKR) and Filter Choices based Reasoning (FCR), as well as their integration variants. Our experiments demonstrate that this proposed strategy significantly boosts the models' reasoning abilities across nine datasets involving arithmetic, commonsense, and logic tasks. For instance, compared to baseline, we make a striking improvement on low confidence subsets of 8.72\% for AQuA, 15.07\% for ARC Challenge and 7.71\% for RiddleSense. In addition, through extensive analysis on length of rationale and number of options, we verify that longer reasoning paths in PKR could prevent models from referring infer-harmful shortcuts, and also find that removing irrelevant choices in FCR would substantially avoid models' confusion. The code is at https://github.com/AiMijie/Divide-and-Conquer
Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences
Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research.
GenesisGeo: Technical Report
We present GenesisGeo, an automated theorem prover in Euclidean geometry. We have open-sourced a large-scale geometry dataset of 21.8 million geometric problems, over 3 million of which contain auxiliary constructions. Specially, we significantly accelerate the symbolic deduction engine DDARN by 120x through theorem matching, combined with a C++ implementation of its core components. Furthermore, we build our neuro-symbolic prover, GenesisGeo, upon Qwen3-0.6B-Base, which solves 24 of 30 problems (IMO silver medal level) in the IMO-AG-30 benchmark using a single model, and achieves 26 problems (IMO gold medal level) with a dual-model ensemble.
A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Artificial intelligence (AI) has achieved astonishing successes in many domains, especially with the recent breakthroughs in the development of foundational large models. These large models, leveraging their extensive training data, provide versatile solutions for a wide range of downstream tasks. However, as modern datasets become increasingly diverse and complex, the development of large AI models faces two major challenges: (1) the enormous consumption of computational resources and deployment difficulties, and (2) the difficulty in fitting heterogeneous and complex data, which limits the usability of the models. Mixture of Experts (MoE) models has recently attracted much attention in addressing these challenges, by dynamically selecting and activating the most relevant sub-models to process input data. It has been shown that MoEs can significantly improve model performance and efficiency with fewer resources, particularly excelling in handling large-scale, multimodal data. Given the tremendous potential MoE has demonstrated across various domains, it is urgent to provide a comprehensive summary of recent advancements of MoEs in many important fields. Existing surveys on MoE have their limitations, e.g., being outdated or lacking discussion on certain key areas, and we aim to address these gaps. In this paper, we first introduce the basic design of MoE, including gating functions, expert networks, routing mechanisms, training strategies, and system design. We then explore the algorithm design of MoE in important machine learning paradigms such as continual learning, meta-learning, multi-task learning, and reinforcement learning. Additionally, we summarize theoretical studies aimed at understanding MoE and review its applications in computer vision and natural language processing. Finally, we discuss promising future research directions.
DARTS+: Improved Differentiable Architecture Search with Early Stopping
Recently, there has been a growing interest in automating the process of neural architecture design, and the Differentiable Architecture Search (DARTS) method makes the process available within a few GPU days. However, the performance of DARTS is often observed to collapse when the number of search epochs becomes large. Meanwhile, lots of "{\em skip-connect}s" are found in the selected architectures. In this paper, we claim that the cause of the collapse is that there exists overfitting in the optimization of DARTS. Therefore, we propose a simple and effective algorithm, named "DARTS+", to avoid the collapse and improve the original DARTS, by "early stopping" the search procedure when meeting a certain criterion. We also conduct comprehensive experiments on benchmark datasets and different search spaces and show the effectiveness of our DARTS+ algorithm, and DARTS+ achieves 2.32% test error on CIFAR10, 14.87% on CIFAR100, and 23.7% on ImageNet. We further remark that the idea of "early stopping" is implicitly included in some existing DARTS variants by manually setting a small number of search epochs, while we give an {\em explicit} criterion for "early stopping".
Achieving Olympia-Level Geometry Large Language Model Agent via Complexity Boosting Reinforcement Learning
Large language model (LLM) agents exhibit strong mathematical problem-solving abilities and can even solve International Mathematical Olympiad (IMO) level problems with the assistance of formal proof systems. However, due to weak heuristics for auxiliary constructions, AI for geometry problem solving remains dominated by expert models such as AlphaGeometry 2, which rely heavily on large-scale data synthesis and search for both training and evaluation. In this work, we make the first attempt to build a medalist-level LLM agent for geometry and present InternGeometry. InternGeometry overcomes the heuristic limitations in geometry by iteratively proposing propositions and auxiliary constructions, verifying them with a symbolic engine, and reflecting on the engine's feedback to guide subsequent proposals. A dynamic memory mechanism enables InternGeometry to conduct more than two hundred interactions with the symbolic engine per problem. To further accelerate learning, we introduce Complexity-Boosting Reinforcement Learning (CBRL), which gradually increases the complexity of synthesized problems across training stages. Built on InternThinker-32B, InternGeometry solves 44 of 50 IMO geometry problems (2000-2024), exceeding the average gold medalist score (40.9), using only 13K training examples, just 0.004% of the data used by AlphaGeometry 2, demonstrating the potential of LLM agents on expert-level geometry tasks. InternGeometry can also propose novel auxiliary constructions for IMO problems that do not appear in human solutions. We will release the model, data, and symbolic engine to support future research.
Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR
In this paper, we study risk-sensitive Reinforcement Learning (RL), focusing on the objective of Conditional Value at Risk (CVaR) with risk tolerance tau. Starting with multi-arm bandits (MABs), we show the minimax CVaR regret rate is Omega(tau^{-1AK}), where A is the number of actions and K is the number of episodes, and that it is achieved by an Upper Confidence Bound algorithm with a novel Bernstein bonus. For online RL in tabular Markov Decision Processes (MDPs), we show a minimax regret lower bound of Omega(tau^{-1SAK}) (with normalized cumulative rewards), where S is the number of states, and we propose a novel bonus-driven Value Iteration procedure. We show that our algorithm achieves the optimal regret of widetilde O(tau^{-1SAK}) under a continuity assumption and in general attains a near-optimal regret of widetilde O(tau^{-1}SAK), which is minimax-optimal for constant tau. This improves on the best available bounds. By discretizing rewards appropriately, our algorithms are computationally efficient.
Darwin Godel Machine: Open-Ended Evolution of Self-Improving Agents
Today's AI systems have human-designed, fixed architectures and cannot autonomously and continuously improve themselves. The advance of AI could itself be automated. If done safely, that would accelerate AI development and allow us to reap its benefits much sooner. Meta-learning can automate the discovery of novel algorithms, but is limited by first-order improvements and the human design of a suitable search space. The G\"odel machine proposed a theoretical alternative: a self-improving AI that repeatedly modifies itself in a provably beneficial manner. Unfortunately, proving that most changes are net beneficial is impossible in practice. We introduce the Darwin G\"odel Machine (DGM), a self-improving system that iteratively modifies its own code (thereby also improving its ability to modify its own codebase) and empirically validates each change using coding benchmarks. Inspired by Darwinian evolution and open-endedness research, the DGM maintains an archive of generated coding agents. It grows the archive by sampling an agent from it and using a foundation model to create a new, interesting, version of the sampled agent. This open-ended exploration forms a growing tree of diverse, high-quality agents and allows the parallel exploration of many different paths through the search space. Empirically, the DGM automatically improves its coding capabilities (e.g., better code editing tools, long-context window management, peer-review mechanisms), increasing performance on SWE-bench from 20.0% to 50.0%, and on Polyglot from 14.2% to 30.7%. Furthermore, the DGM significantly outperforms baselines without self-improvement or open-ended exploration. All experiments were done with safety precautions (e.g., sandboxing, human oversight). The DGM is a significant step toward self-improving AI, capable of gathering its own stepping stones along paths that unfold into endless innovation.
Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Capturing Research-level Conjecturing Ability in Pure Mathematics
With recent dramatic increases in AI system capabilities, there has been growing interest in utilizing machine learning for reasoning-heavy, quantitative tasks, particularly mathematics. While there are many resources capturing mathematics at the high-school, undergraduate, and graduate level, there are far fewer resources available that align with the level of difficulty and open endedness encountered by professional mathematicians working on open problems. To address this, we introduce a new collection of datasets, the Algebraic Combinatorics Dataset Repository (ACD Repo), representing either foundational results or open problems in algebraic combinatorics, a subfield of mathematics that studies discrete structures arising from abstract algebra. Further differentiating our dataset collection is the fact that it aims at the conjecturing process. Each dataset includes an open-ended research-level question and a large collection of examples (up to 10M in some cases) from which conjectures should be generated. We describe all nine datasets, the different ways machine learning models can be applied to them (e.g., training with narrow models followed by interpretability analysis or program synthesis with LLMs), and discuss some of the challenges involved in designing datasets like these.
Autonomy-of-Experts Models
Mixture-of-Experts (MoE) models mostly use a router to assign tokens to specific expert modules, activating only partial parameters and often outperforming dense models. We argue that the separation between the router's decision-making and the experts' execution is a critical yet overlooked issue, leading to suboptimal expert selection and ineffective learning. To address this, we propose Autonomy-of-Experts (AoE), a novel MoE paradigm in which experts autonomously select themselves to process inputs. AoE is based on the insight that an expert is aware of its own capacity to effectively process a token, an awareness reflected in the scale of its internal activations. In AoE, routers are removed; instead, experts pre-compute internal activations for inputs and are ranked based on their activation norms. Only the top-ranking experts proceed with the forward pass, while the others abort. The overhead of pre-computing activations is reduced through a low-rank weight factorization. This self-evaluating-then-partner-comparing approach ensures improved expert selection and effective learning. We pre-train language models having 700M up to 4B parameters, demonstrating that AoE outperforms traditional MoE models with comparable efficiency.
Rethinking the Sampling Criteria in Reinforcement Learning for LLM Reasoning: A Competence-Difficulty Alignment Perspective
Reinforcement learning exhibits potential in enhancing the reasoning abilities of large language models, yet it is hard to scale for the low sample efficiency during the rollout phase. Existing methods attempt to improve efficiency by scheduling problems based on problem difficulties. However, these approaches suffer from unstable and biased estimations of problem difficulty and fail to capture the alignment between model competence and problem difficulty in RL training, leading to suboptimal results. To tackle these limitations, this paper introduces Competence-Difficulty Alignment Sampling (CDAS), which enables accurate and stable estimation of problem difficulties by aggregating historical performance discrepancies of problems. Then the model competence is quantified to adaptively select problems whose difficulty is in alignment with the model's current competence using a fixed-point system. Experimental results across a range of challenging mathematical benchmarks show that CDAS achieves great improvements in both accuracy and efficiency. CDAS attains the highest average accuracy against baselines and exhibits significant speed advantages compared to Dynamic Sampling, a competitive strategy in DAPO, which is 2.33 times slower than CDAS.
Regularized Evolution for Image Classifier Architecture Search
The effort devoted to hand-crafting neural network image classifiers has motivated the use of architecture search to discover them automatically. Although evolutionary algorithms have been repeatedly applied to neural network topologies, the image classifiers thus discovered have remained inferior to human-crafted ones. Here, we evolve an image classifier---AmoebaNet-A---that surpasses hand-designs for the first time. To do this, we modify the tournament selection evolutionary algorithm by introducing an age property to favor the younger genotypes. Matching size, AmoebaNet-A has comparable accuracy to current state-of-the-art ImageNet models discovered with more complex architecture-search methods. Scaled to larger size, AmoebaNet-A sets a new state-of-the-art 83.9% / 96.6% top-5 ImageNet accuracy. In a controlled comparison against a well known reinforcement learning algorithm, we give evidence that evolution can obtain results faster with the same hardware, especially at the earlier stages of the search. This is relevant when fewer compute resources are available. Evolution is, thus, a simple method to effectively discover high-quality architectures.
Illuminating search spaces by mapping elites
Many fields use search algorithms, which automatically explore a search space to find high-performing solutions: chemists search through the space of molecules to discover new drugs; engineers search for stronger, cheaper, safer designs, scientists search for models that best explain data, etc. The goal of search algorithms has traditionally been to return the single highest-performing solution in a search space. Here we describe a new, fundamentally different type of algorithm that is more useful because it provides a holistic view of how high-performing solutions are distributed throughout a search space. It creates a map of high-performing solutions at each point in a space defined by dimensions of variation that a user gets to choose. This Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algorithm illuminates search spaces, allowing researchers to understand how interesting attributes of solutions combine to affect performance, either positively or, equally of interest, negatively. For example, a drug company may wish to understand how performance changes as the size of molecules and their cost-to-produce vary. MAP-Elites produces a large diversity of high-performing, yet qualitatively different solutions, which can be more helpful than a single, high-performing solution. Interestingly, because MAP-Elites explores more of the search space, it also tends to find a better overall solution than state-of-the-art search algorithms. We demonstrate the benefits of this new algorithm in three different problem domains ranging from producing modular neural networks to designing simulated and real soft robots. Because MAP- Elites (1) illuminates the relationship between performance and dimensions of interest in solutions, (2) returns a set of high-performing, yet diverse solutions, and (3) improves finding a single, best solution, it will advance science and engineering.
Neural Architecture Search via Combinatorial Multi-Armed Bandit
Neural Architecture Search (NAS) has gained significant popularity as an effective tool for designing high performance deep neural networks (DNNs). NAS can be performed via policy gradient, evolutionary algorithms, differentiable architecture search or tree-search methods. While significant progress has been made for both policy gradient and differentiable architecture search, tree-search methods have so far failed to achieve comparable accuracy or search efficiency. In this paper, we formulate NAS as a Combinatorial Multi-Armed Bandit (CMAB) problem (CMAB-NAS). This allows the decomposition of a large search space into smaller blocks where tree-search methods can be applied more effectively and efficiently. We further leverage a tree-based method called Nested Monte-Carlo Search to tackle the CMAB-NAS problem. On CIFAR-10, our approach discovers a cell structure that achieves a low error rate that is comparable to the state-of-the-art, using only 0.58 GPU days, which is 20 times faster than current tree-search methods. Moreover, the discovered structure transfers well to large-scale datasets such as ImageNet.
SANIA: Polyak-type Optimization Framework Leads to Scale Invariant Stochastic Algorithms
Adaptive optimization methods are widely recognized as among the most popular approaches for training Deep Neural Networks (DNNs). Techniques such as Adam, AdaGrad, and AdaHessian utilize a preconditioner that modifies the search direction by incorporating information about the curvature of the objective function. However, despite their adaptive characteristics, these methods still require manual fine-tuning of the step-size. This, in turn, impacts the time required to solve a particular problem. This paper presents an optimization framework named SANIA to tackle these challenges. Beyond eliminating the need for manual step-size hyperparameter settings, SANIA incorporates techniques to address poorly scaled or ill-conditioned problems. We also explore several preconditioning methods, including Hutchinson's method, which approximates the Hessian diagonal of the loss function. We conclude with an extensive empirical examination of the proposed techniques across classification tasks, covering both convex and non-convex contexts.
Symbolic Discovery of Optimization Algorithms
We present a method to formulate algorithm discovery as program search, and apply it to discover optimization algorithms for deep neural network training. We leverage efficient search techniques to explore an infinite and sparse program space. To bridge the large generalization gap between proxy and target tasks, we also introduce program selection and simplification strategies. Our method discovers a simple and effective optimization algorithm, Lion (Evo\textbf{Lved Sign Momentum}). It is more memory-efficient than Adam as it only keeps track of the momentum. Different from adaptive optimizers, its update has the same magnitude for each parameter calculated through the sign operation. We compare Lion with widely used optimizers, such as Adam and Adafactor, for training a variety of models on different tasks. On image classification, Lion boosts the accuracy of ViT by up to 2% on ImageNet and saves up to 5x the pre-training compute on JFT. On vision-language contrastive learning, we achieve 88.3% zero-shot and 91.1% fine-tuning accuracy on ImageNet, surpassing the previous best results by 2% and 0.1%, respectively. On diffusion models, Lion outperforms Adam by achieving a better FID score and reducing the training compute by up to 2.3x. For autoregressive, masked language modeling, and fine-tuning, Lion exhibits a similar or better performance compared to Adam. Our analysis of Lion reveals that its performance gain grows with the training batch size. It also requires a smaller learning rate than Adam due to the larger norm of the update produced by the sign function. Additionally, we examine the limitations of Lion and identify scenarios where its improvements are small or not statistically significant. The implementation of Lion is publicly available.
Optimal Stochastic Non-smooth Non-convex Optimization through Online-to-Non-convex Conversion
We present new algorithms for optimizing non-smooth, non-convex stochastic objectives based on a novel analysis technique. This improves the current best-known complexity for finding a (delta,epsilon)-stationary point from O(epsilon^{-4}delta^{-1}) stochastic gradient queries to O(epsilon^{-3}delta^{-1}), which we also show to be optimal. Our primary technique is a reduction from non-smooth non-convex optimization to online learning, after which our results follow from standard regret bounds in online learning. For deterministic and second-order smooth objectives, applying more advanced optimistic online learning techniques enables a new complexity of O(epsilon^{-1.5}delta^{-0.5}). Our techniques also recover all optimal or best-known results for finding epsilon stationary points of smooth or second-order smooth objectives in both stochastic and deterministic settings.
Fast Convex Pruning of Deep Neural Networks
We develop a fast, tractable technique called Net-Trim for simplifying a trained neural network. The method is a convex post-processing module, which prunes (sparsifies) a trained network layer by layer, while preserving the internal responses. We present a comprehensive analysis of Net-Trim from both the algorithmic and sample complexity standpoints, centered on a fast, scalable convex optimization program. Our analysis includes consistency results between the initial and retrained models before and after Net-Trim application and guarantees on the number of training samples needed to discover a network that can be expressed using a certain number of nonzero terms. Specifically, if there is a set of weights that uses at most s terms that can re-create the layer outputs from the layer inputs, we can find these weights from O(slog N/s) samples, where N is the input size. These theoretical results are similar to those for sparse regression using the Lasso, and our analysis uses some of the same recently-developed tools (namely recent results on the concentration of measure and convex analysis). Finally, we propose an algorithmic framework based on the alternating direction method of multipliers (ADMM), which allows a fast and simple implementation of Net-Trim for network pruning and compression.
Layered State Discovery for Incremental Autonomous Exploration
We study the autonomous exploration (AX) problem proposed by Lim & Auer (2012). In this setting, the objective is to discover a set of epsilon-optimal policies reaching a set S_L^{rightarrow} of incrementally L-controllable states. We introduce a novel layered decomposition of the set of incrementally L-controllable states that is based on the iterative application of a state-expansion operator. We leverage these results to design Layered Autonomous Exploration (LAE), a novel algorithm for AX that attains a sample complexity of mathcal{O}(LS^{rightarrow}_{L(1+epsilon)}Gamma_{L(1+epsilon)} A ln^{12}(S^{rightarrow}_{L(1+epsilon)})/epsilon^2), where S^{rightarrow}_{L(1+epsilon)} is the number of states that are incrementally L(1+epsilon)-controllable, A is the number of actions, and Gamma_{L(1+epsilon)} is the branching factor of the transitions over such states. LAE improves over the algorithm of Tarbouriech et al. (2020a) by a factor of L^2 and it is the first algorithm for AX that works in a countably-infinite state space. Moreover, we show that, under a certain identifiability assumption, LAE achieves minimax-optimal sample complexity of mathcal{O}(LS^{rightarrow}_{L}Aln^{12}(S^{rightarrow}_{L})/epsilon^2), outperforming existing algorithms and matching for the first time the lower bound proved by Cai et al. (2022) up to logarithmic factors.
Expertise need not monopolize: Action-Specialized Mixture of Experts for Vision-Language-Action Learning
Vision-Language-Action (VLA) models are experiencing rapid development and demonstrating promising capabilities in robotic manipulation tasks. However, scaling up VLA models presents several critical challenges: (1) Training new VLA models from scratch demands substantial computational resources and extensive datasets. Given the current scarcity of robot data, it becomes particularly valuable to fully leverage well-pretrained VLA model weights during the scaling process. (2) Real-time control requires carefully balancing model capacity with computational efficiency. To address these challenges, We propose AdaMoE, a Mixture-of-Experts (MoE) architecture that inherits pretrained weights from dense VLA models, and scales up the action expert by substituting the feedforward layers into sparsely activated MoE layers. AdaMoE employs a decoupling technique that decouples expert selection from expert weighting through an independent scale adapter working alongside the traditional router. This enables experts to be selected based on task relevance while contributing with independently controlled weights, allowing collaborative expert utilization rather than winner-takes-all dynamics. Our approach demonstrates that expertise need not monopolize. Instead, through collaborative expert utilization, we can achieve superior performance while maintaining computational efficiency. AdaMoE consistently outperforms the baseline model across key benchmarks, delivering performance gains of 1.8% on LIBERO and 9.3% on RoboTwin. Most importantly, a substantial 21.5% improvement in real-world experiments validates its practical effectiveness for robotic manipulation tasks.
Lion Secretly Solves Constrained Optimization: As Lyapunov Predicts
Lion (Evolved Sign Momentum), a new optimizer discovered through program search, has shown promising results in training large AI models. It performs comparably or favorably to AdamW but with greater memory efficiency. As we can expect from the results of a random search program, Lion incorporates elements from several existing algorithms, including signed momentum, decoupled weight decay, Polak, and Nesterov momentum, but does not fit into any existing category of theoretically grounded optimizers. Thus, even though Lion appears to perform well as a general-purpose optimizer for a wide range of tasks, its theoretical basis remains uncertain. This lack of theoretical clarity limits opportunities to further enhance and expand Lion's efficacy. This work aims to demystify Lion. Based on both continuous-time and discrete-time analysis, we demonstrate that Lion is a theoretically novel and principled approach for minimizing a general loss function f(x) while enforcing a bound constraint |x|_infty leq 1/lambda. Lion achieves this through the incorporation of decoupled weight decay, where lambda represents the weight decay coefficient. Our analysis is made possible by the development of a new Lyapunov function for the Lion updates. It applies to a broader family of Lion-kappa algorithms, where the sign(cdot) operator in Lion is replaced by the subgradient of a convex function kappa, leading to the solution of a general composite optimization problem of min_x f(x) + kappa^*(x). Our findings provide valuable insights into the dynamics of Lion and pave the way for further improvements and extensions of Lion-related algorithms.
DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving
Solving mathematical problems requires advanced reasoning abilities and presents notable challenges for large language models. Previous works usually synthesize data from proprietary models to augment existing datasets, followed by instruction tuning to achieve top-tier results. However, our analysis of these datasets reveals severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries. Hypothesizing that difficult queries are crucial to learn complex reasoning, we propose Difficulty-Aware Rejection Tuning (DART), a method that allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples. Utilizing DART, we have created new datasets for mathematical problem-solving that focus more on difficult queries and are substantially smaller than previous ones. Remarkably, our synthesis process solely relies on a 7B-sized open-weight model, without reliance on the commonly used proprietary GPT-4. We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called DART-MATH. In comprehensive in-domain and out-of-domain evaluation on 6 mathematical benchmarks, DART-MATH outperforms vanilla rejection tuning significantly, being superior or comparable to previous arts, despite using much smaller datasets and no proprietary models. Furthermore, our results position our synthetic datasets as the most effective and cost-efficient publicly available resources for advancing mathematical problem-solving.
AdapMoE: Adaptive Sensitivity-based Expert Gating and Management for Efficient MoE Inference
Mixture-of-Experts (MoE) models are designed to enhance the efficiency of large language models (LLMs) without proportionally increasing the computational demands. However, their deployment on edge devices still faces significant challenges due to high on-demand loading overheads from managing sparsely activated experts. This paper introduces AdapMoE, an algorithm-system co-design framework for efficient MoE inference. AdapMoE features adaptive expert gating and management to reduce the on-demand loading overheads. We observe the heterogeneity of experts loading across layers and tokens, based on which we propose a sensitivity-based strategy to adjust the number of activated experts dynamically. Meanwhile, we also integrate advanced prefetching and cache management techniques to further reduce the loading latency. Through comprehensive evaluations on various platforms, we demonstrate AdapMoE consistently outperforms existing techniques, reducing the average number of activated experts by 25% and achieving a 1.35x speedup without accuracy degradation. Code is available at: https://github.com/PKU-SEC-Lab/AdapMoE.
Self-Attention Based Semantic Decomposition in Vector Symbolic Architectures
Vector Symbolic Architectures (VSAs) have emerged as a novel framework for enabling interpretable machine learning algorithms equipped with the ability to reason and explain their decision processes. The basic idea is to represent discrete information through high dimensional random vectors. Complex data structures can be built up with operations over vectors such as the "binding" operation involving element-wise vector multiplication, which associates data together. The reverse task of decomposing the associated elements is a combinatorially hard task, with an exponentially large search space. The main algorithm for performing this search is the resonator network, inspired by Hopfield network-based memory search operations. In this work, we introduce a new variant of the resonator network, based on self-attention based update rules in the iterative search problem. This update rule, based on the Hopfield network with log-sum-exp energy function and norm-bounded states, is shown to substantially improve the performance and rate of convergence. As a result, our algorithm enables a larger capacity for associative memory, enabling applications in many tasks like perception based pattern recognition, scene decomposition, and object reasoning. We substantiate our algorithm with a thorough evaluation and comparisons to baselines.
Versatile Black-Box Optimization
Choosing automatically the right algorithm using problem descriptors is a classical component of combinatorial optimization. It is also a good tool for making evolutionary algorithms fast, robust and versatile. We present Shiwa, an algorithm good at both discrete and continuous, noisy and noise-free, sequential and parallel, black-box optimization. Our algorithm is experimentally compared to competitors on YABBOB, a BBOB comparable testbed, and on some variants of it, and then validated on several real world testbeds.
Robust Model-Based Optimization for Challenging Fitness Landscapes
Protein design, a grand challenge of the day, involves optimization on a fitness landscape, and leading methods adopt a model-based approach where a model is trained on a training set (protein sequences and fitness) and proposes candidates to explore next. These methods are challenged by sparsity of high-fitness samples in the training set, a problem that has been in the literature. A less recognized but equally important problem stems from the distribution of training samples in the design space: leading methods are not designed for scenarios where the desired optimum is in a region that is not only poorly represented in training data, but also relatively far from the highly represented low-fitness regions. We show that this problem of "separation" in the design space is a significant bottleneck in existing model-based optimization tools and propose a new approach that uses a novel VAE as its search model to overcome the problem. We demonstrate its advantage over prior methods in robustly finding improved samples, regardless of the imbalance and separation between low- and high-fitness training samples. Our comprehensive benchmark on real and semi-synthetic protein datasets as well as solution design for physics-informed neural networks, showcases the generality of our approach in discrete and continuous design spaces. Our implementation is available at https://github.com/sabagh1994/PGVAE.
Conic10K: A Challenging Math Problem Understanding and Reasoning Dataset
Mathematical understanding and reasoning are crucial tasks for assessing the capabilities of artificial intelligence (AI). However, existing benchmarks either require just a few steps of reasoning, or only contain a small amount of data in one specific topic, making it hard to analyse AI's behaviour with reference to different problems within a specific topic in detail. In this work, we propose Conic10K, a challenging math problem dataset on conic sections in Chinese senior high school education. Our dataset contains various problems with different reasoning depths, while only the knowledge from conic sections is required. Since the dataset only involves a narrow range of knowledge, it is easy to separately analyse the knowledge a model possesses and the reasoning ability it has. For each problem, we provide a high-quality formal representation, the reasoning steps, and the final solution. Experiments show that existing large language models, including GPT-4, exhibit weak performance on complex reasoning. We hope that our findings could inspire more advanced techniques for precise natural language understanding and reasoning. Our dataset and codes are available at https://github.com/whyNLP/Conic10K.
NAS evaluation is frustratingly hard
Neural Architecture Search (NAS) is an exciting new field which promises to be as much as a game-changer as Convolutional Neural Networks were in 2012. Despite many great works leading to substantial improvements on a variety of tasks, comparison between different methods is still very much an open issue. While most algorithms are tested on the same datasets, there is no shared experimental protocol followed by all. As such, and due to the under-use of ablation studies, there is a lack of clarity regarding why certain methods are more effective than others. Our first contribution is a benchmark of 8 NAS methods on 5 datasets. To overcome the hurdle of comparing methods with different search spaces, we propose using a method's relative improvement over the randomly sampled average architecture, which effectively removes advantages arising from expertly engineered search spaces or training protocols. Surprisingly, we find that many NAS techniques struggle to significantly beat the average architecture baseline. We perform further experiments with the commonly used DARTS search space in order to understand the contribution of each component in the NAS pipeline. These experiments highlight that: (i) the use of tricks in the evaluation protocol has a predominant impact on the reported performance of architectures; (ii) the cell-based search space has a very narrow accuracy range, such that the seed has a considerable impact on architecture rankings; (iii) the hand-designed macro-structure (cells) is more important than the searched micro-structure (operations); and (iv) the depth-gap is a real phenomenon, evidenced by the change in rankings between 8 and 20 cell architectures. To conclude, we suggest best practices, that we hope will prove useful for the community and help mitigate current NAS pitfalls. The code used is available at https://github.com/antoyang/NAS-Benchmark.
Unsupervised Discovery of Formulas for Mathematical Constants
Ongoing efforts that span over decades show a rise of AI methods for accelerating scientific discovery, yet accelerating discovery in mathematics remains a persistent challenge for AI. Specifically, AI methods were not effective in creation of formulas for mathematical constants because each such formula must be correct for infinite digits of precision, with "near-true" formulas providing no insight toward the correct ones. Consequently, formula discovery lacks a clear distance metric needed to guide automated discovery in this realm. In this work, we propose a systematic methodology for categorization, characterization, and pattern identification of such formulas. The key to our methodology is introducing metrics based on the convergence dynamics of the formulas, rather than on the numerical value of the formula. These metrics enable the first automated clustering of mathematical formulas. We demonstrate this methodology on Polynomial Continued Fraction formulas, which are ubiquitous in their intrinsic connections to mathematical constants, and generalize many mathematical functions and structures. We test our methodology on a set of 1,768,900 such formulas, identifying many known formulas for mathematical constants, and discover previously unknown formulas for pi, ln(2), Gauss', and Lemniscate's constants. The uncovered patterns enable a direct generalization of individual formulas to infinite families, unveiling rich mathematical structures. This success paves the way towards a generative model that creates formulas fulfilling specified mathematical properties, accelerating the rate of discovery of useful formulas.
Fusion of ML with numerical simulation for optimized propeller design
In computer-aided engineering design, the goal of a designer is to find an optimal design on a given requirement using the numerical simulator in loop with an optimization method. In this design optimization process, a good design optimization process is one that can reduce the time from inception to design. In this work, we take a class of design problem, that is computationally cheap to evaluate but has high dimensional design space. In such cases, traditional surrogate-based optimization does not offer any benefits. In this work, we propose an alternative way to use ML model to surrogate the design process that formulates the search problem as an inverse problem and can save time by finding the optimal design or at least a good initial seed design for optimization. By using this trained surrogate model with the traditional optimization method, we can get the best of both worlds. We call this as Surrogate Assisted Optimization (SAO)- a hybrid approach by mixing ML surrogate with the traditional optimization method. Empirical evaluations of propeller design problems show that a better efficient design can be found in fewer evaluations using SAO.
SBSC: Step-By-Step Coding for Improving Mathematical Olympiad Performance
We propose Step-by-Step Coding (SBSC): a multi-turn math reasoning framework that enables Large Language Models (LLMs) to generate sequence of programs for solving Olympiad level math problems. At each step/turn, by leveraging the code execution outputs and programs of previous steps, the model generates the next sub-task and the corresponding program to solve it. This way, SBSC, sequentially navigates to reach the final answer. SBSC allows more granular, flexible and precise approach to problem-solving compared to existing methods. Extensive experiments highlight the effectiveness of SBSC in tackling competition and Olympiad-level math problems. For Claude-3.5-Sonnet, we observe SBSC (greedy decoding) surpasses existing state-of-the-art (SOTA) program generation based reasoning strategies by absolute 10.7% on AMC12, 8% on AIME and 12.6% on MathOdyssey. Given SBSC is multi-turn in nature, we also benchmark SBSC's greedy decoding against self-consistency decoding results of existing SOTA math reasoning strategies and observe performance gain by absolute 6.2% on AMC, 6.7% on AIME and 7.4% on MathOdyssey.
Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation
Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops
AutoHAS: Efficient Hyperparameter and Architecture Search
Efficient hyperparameter or architecture search methods have shown remarkable results, but each of them is only applicable to searching for either hyperparameters (HPs) or architectures. In this work, we propose a unified pipeline, AutoHAS, to efficiently search for both architectures and hyperparameters. AutoHAS learns to alternately update the shared network weights and a reinforcement learning (RL) controller, which learns the probability distribution for the architecture candidates and HP candidates. A temporary weight is introduced to store the updated weight from the selected HPs (by the controller), and a validation accuracy based on this temporary weight serves as a reward to update the controller. In experiments, we show AutoHAS is efficient and generalizable to different search spaces, baselines and datasets. In particular, AutoHAS can improve the accuracy over popular network architectures, such as ResNet and EfficientNet, on CIFAR-10/100, ImageNet, and four more other datasets.
