--- base_model: cardiffnlp/twitter-roberta-base-sentiment-latest tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: sentiment_roberta_twitter_imdb_10 results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9288 --- # sentiment_roberta_twitter_imdb_10 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on the imdb dataset with only 10% of the training data. It achieves the following results on the evaluation set: - Loss: 0.2534 - Accuracy: 0.9288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 157 | 0.2284 | 0.9260 | | No log | 2.0 | 314 | 0.2534 | 0.9288 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3