Upload 6 files
Browse files- configuration_omchat.py +198 -0
- generation_config.json +6 -0
- image_processing_omchat.py +733 -0
- merges.txt +0 -0
- model-00003-of-00006.safetensors +3 -0
- processing_omchat.py +285 -0
configuration_omchat.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from transformers import LlamaConfig, PretrainedConfig
|
| 3 |
+
from transformers.utils import logging
|
| 4 |
+
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, AutoConfig, AutoModelForCausalLM
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
logger = logging.get_logger(__name__)
|
| 8 |
+
|
| 9 |
+
class InternVisionConfig(PretrainedConfig):
|
| 10 |
+
r"""
|
| 11 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
| 12 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
| 13 |
+
|
| 14 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 15 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 19 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
| 20 |
+
patch_size (`int`, *optional*, defaults to 14):
|
| 21 |
+
The size (resolution) of each patch.
|
| 22 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 23 |
+
The size (resolution) of each image.
|
| 24 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
| 25 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
| 26 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
| 27 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 28 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
| 29 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 30 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
| 31 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 32 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
| 33 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
| 34 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
| 35 |
+
Number of hidden layers in the Transformer encoder.
|
| 36 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
| 37 |
+
Whether to use flash attention mechanism.
|
| 38 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
| 39 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 40 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
| 41 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
| 42 |
+
The epsilon used by the layer normalization layers.
|
| 43 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
| 44 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 45 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
| 46 |
+
Dropout rate for stochastic depth.
|
| 47 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 48 |
+
The dropout ratio for the attention probabilities.
|
| 49 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 50 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 51 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
| 52 |
+
A factor for layer scale.
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
model_type = 'intern_vit_6b'
|
| 56 |
+
|
| 57 |
+
def __init__(
|
| 58 |
+
self,
|
| 59 |
+
num_channels=3,
|
| 60 |
+
patch_size=14,
|
| 61 |
+
image_size=448,
|
| 62 |
+
qkv_bias=False,
|
| 63 |
+
hidden_size=3200,
|
| 64 |
+
num_attention_heads=25,
|
| 65 |
+
intermediate_size=12800,
|
| 66 |
+
qk_normalization=True,
|
| 67 |
+
num_hidden_layers=45,
|
| 68 |
+
use_flash_attn=True,
|
| 69 |
+
hidden_act='gelu',
|
| 70 |
+
layer_norm_eps=1e-6,
|
| 71 |
+
dropout=0.0,
|
| 72 |
+
drop_path_rate=0.0,
|
| 73 |
+
attention_dropout=0.0,
|
| 74 |
+
initializer_range=1e-10,
|
| 75 |
+
initializer_factor=0.1,
|
| 76 |
+
**kwargs,
|
| 77 |
+
):
|
| 78 |
+
super().__init__(**kwargs)
|
| 79 |
+
|
| 80 |
+
self.hidden_size = hidden_size
|
| 81 |
+
self.intermediate_size = intermediate_size
|
| 82 |
+
self.dropout = dropout
|
| 83 |
+
self.drop_path_rate = drop_path_rate
|
| 84 |
+
self.num_hidden_layers = num_hidden_layers
|
| 85 |
+
self.num_attention_heads = num_attention_heads
|
| 86 |
+
self.num_channels = num_channels
|
| 87 |
+
self.patch_size = patch_size
|
| 88 |
+
self.image_size = image_size
|
| 89 |
+
self.initializer_range = initializer_range
|
| 90 |
+
self.initializer_factor = initializer_factor
|
| 91 |
+
self.attention_dropout = attention_dropout
|
| 92 |
+
self.layer_norm_eps = layer_norm_eps
|
| 93 |
+
self.hidden_act = hidden_act
|
| 94 |
+
self.qkv_bias = qkv_bias
|
| 95 |
+
self.qk_normalization = qk_normalization
|
| 96 |
+
self.use_flash_attn = use_flash_attn
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class OmChatConfig(PretrainedConfig):
|
| 100 |
+
r"""
|
| 101 |
+
This is the configuration class to store the configuration of a [`OmChatForConditionalGeneration`]. It is used to instantiate an
|
| 102 |
+
Llava-NeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 103 |
+
with the defaults will yield a similar configuration to that of the [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf)
|
| 104 |
+
model.
|
| 105 |
+
|
| 106 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 107 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 108 |
+
|
| 109 |
+
Args:
|
| 110 |
+
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
|
| 111 |
+
The config object or dictionary of the vision backbone.
|
| 112 |
+
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
|
| 113 |
+
The config object or dictionary of the text backbone.
|
| 114 |
+
ignore_index (`int`, *optional*, defaults to -100):
|
| 115 |
+
The ignore index for the loss function.
|
| 116 |
+
image_token_index (`int`, *optional*, defaults to 32000):
|
| 117 |
+
The image token index to encode the image prompt.
|
| 118 |
+
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
| 119 |
+
The activation function used by the multimodal projector.
|
| 120 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
| 121 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
| 122 |
+
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
|
| 123 |
+
If `"full"`, the full vision features are used.
|
| 124 |
+
vision_feature_layer (`int`, *optional*, defaults to -2):
|
| 125 |
+
The index of the layer to select the vision feature.
|
| 126 |
+
image_grid_pinpoints (`List`, *optional*, defaults to `[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]`):
|
| 127 |
+
A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list
|
| 128 |
+
of the form `(height, width)`.
|
| 129 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 130 |
+
Whether the model's input and output word embeddings should be tied.
|
| 131 |
+
|
| 132 |
+
Example:
|
| 133 |
+
|
| 134 |
+
```python
|
| 135 |
+
>>> from transformers import OmChatForConditionalGeneration, OmChatConfig, CLIPVisionConfig, LlamaConfig
|
| 136 |
+
|
| 137 |
+
>>> # Initializing a CLIP-vision config
|
| 138 |
+
>>> vision_config = CLIPVisionConfig()
|
| 139 |
+
|
| 140 |
+
>>> # Initializing a Llama config
|
| 141 |
+
>>> text_config = LlamaConfig()
|
| 142 |
+
|
| 143 |
+
>>> # Initializing a Llava-Next llava-hf/llava-v1.6-mistral-7b-hf style configuration
|
| 144 |
+
>>> configuration = OmChatConfig(vision_config, text_config)
|
| 145 |
+
|
| 146 |
+
>>> # Initializing a model from the llava-hf/llava-v1.6-mistral-7b-hf style configuration
|
| 147 |
+
>>> model = OmChatForConditionalGeneration(configuration)
|
| 148 |
+
|
| 149 |
+
>>> # Accessing the model configuration
|
| 150 |
+
>>> configuration = model.config
|
| 151 |
+
```"""
|
| 152 |
+
|
| 153 |
+
model_type = "omchat"
|
| 154 |
+
is_composition = False
|
| 155 |
+
|
| 156 |
+
def __init__(
|
| 157 |
+
self,
|
| 158 |
+
vision_config=None,
|
| 159 |
+
text_config=None,
|
| 160 |
+
ignore_index=-100,
|
| 161 |
+
image_token_index=32000,
|
| 162 |
+
projector_hidden_act="gelu",
|
| 163 |
+
vision_feature_select_strategy="default",
|
| 164 |
+
vision_feature_layer=-1,
|
| 165 |
+
image_grid_pinpoints=None,
|
| 166 |
+
tie_word_embeddings=False,
|
| 167 |
+
**kwargs,
|
| 168 |
+
):
|
| 169 |
+
self.ignore_index = ignore_index
|
| 170 |
+
self.image_token_index = image_token_index
|
| 171 |
+
self.projector_hidden_act = projector_hidden_act
|
| 172 |
+
|
| 173 |
+
if vision_feature_select_strategy not in ["default", "full"]:
|
| 174 |
+
raise ValueError(
|
| 175 |
+
"vision_feature_select_strategy should be one of 'default', 'full'."
|
| 176 |
+
f"Got: {vision_feature_select_strategy}"
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
self.vision_feature_select_strategy = vision_feature_select_strategy
|
| 180 |
+
self.vision_feature_layer = vision_feature_layer
|
| 181 |
+
image_grid_pinpoints = (
|
| 182 |
+
image_grid_pinpoints
|
| 183 |
+
if image_grid_pinpoints is not None
|
| 184 |
+
else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
|
| 185 |
+
)
|
| 186 |
+
self.image_grid_pinpoints = image_grid_pinpoints
|
| 187 |
+
|
| 188 |
+
if isinstance(vision_config, dict):
|
| 189 |
+
|
| 190 |
+
vision_config = InternVisionConfig(**vision_config)
|
| 191 |
+
self.vision_config = vision_config
|
| 192 |
+
|
| 193 |
+
if isinstance(text_config, dict):
|
| 194 |
+
text_config = Qwen2Config(**text_config)
|
| 195 |
+
|
| 196 |
+
self.text_config = text_config
|
| 197 |
+
|
| 198 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 151643,
|
| 4 |
+
"eos_token_id": 151645,
|
| 5 |
+
"transformers_version": "4.41.2"
|
| 6 |
+
}
|
image_processing_omchat.py
ADDED
|
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import math
|
| 3 |
+
from typing import Dict, Iterable, List, Optional, Tuple, Union
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict, select_best_resolution
|
| 8 |
+
from transformers.image_transforms import (
|
| 9 |
+
PaddingMode,
|
| 10 |
+
convert_to_rgb,
|
| 11 |
+
get_resize_output_image_size,
|
| 12 |
+
pad,
|
| 13 |
+
resize,
|
| 14 |
+
to_channel_dimension_format,
|
| 15 |
+
)
|
| 16 |
+
from transformers.image_utils import (
|
| 17 |
+
OPENAI_CLIP_MEAN,
|
| 18 |
+
OPENAI_CLIP_STD,
|
| 19 |
+
ChannelDimension,
|
| 20 |
+
ImageInput,
|
| 21 |
+
PILImageResampling,
|
| 22 |
+
get_image_size,
|
| 23 |
+
infer_channel_dimension_format,
|
| 24 |
+
is_scaled_image,
|
| 25 |
+
is_valid_image,
|
| 26 |
+
make_list_of_images,
|
| 27 |
+
to_numpy_array,
|
| 28 |
+
valid_images,
|
| 29 |
+
validate_preprocess_arguments,
|
| 30 |
+
)
|
| 31 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
logger = logging.get_logger(__name__)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
if is_vision_available():
|
| 38 |
+
from PIL import Image
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
| 42 |
+
"""
|
| 43 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
| 47 |
+
The input image.
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
list: A list of images.
|
| 51 |
+
"""
|
| 52 |
+
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
| 53 |
+
return [img for img_list in images for img in img_list]
|
| 54 |
+
|
| 55 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
| 56 |
+
return images
|
| 57 |
+
|
| 58 |
+
elif is_valid_image(images):
|
| 59 |
+
return [images]
|
| 60 |
+
|
| 61 |
+
raise ValueError(f"Could not make batched video from {images}")
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def divide_to_patches(image: np.array, patch_size: int, input_data_format) -> List[np.array]:
|
| 65 |
+
"""
|
| 66 |
+
Divides an image into patches of a specified size.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
image (`np.array`):
|
| 70 |
+
The input image.
|
| 71 |
+
patch_size (`int`):
|
| 72 |
+
The size of each patch.
|
| 73 |
+
input_data_format (`ChannelDimension` or `str`):
|
| 74 |
+
The channel dimension format of the input image.
|
| 75 |
+
|
| 76 |
+
Returns:
|
| 77 |
+
list: A list of np.array representing the patches.
|
| 78 |
+
"""
|
| 79 |
+
patches = []
|
| 80 |
+
height, width = get_image_size(image, channel_dim=input_data_format)
|
| 81 |
+
for i in range(0, height, patch_size):
|
| 82 |
+
for j in range(0, width, patch_size):
|
| 83 |
+
if input_data_format == ChannelDimension.LAST:
|
| 84 |
+
patch = image[i : i + patch_size, j : j + patch_size]
|
| 85 |
+
else:
|
| 86 |
+
patch = image[:, i : i + patch_size, j : j + patch_size]
|
| 87 |
+
patches.append(patch)
|
| 88 |
+
|
| 89 |
+
return patches
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def expand_to_square(image: np.array, background_color, input_data_format) -> np.array:
|
| 93 |
+
"""
|
| 94 |
+
Expands an image to a square by adding a background color.
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
height, width = get_image_size(image, channel_dim=input_data_format)
|
| 98 |
+
if width == height:
|
| 99 |
+
return image
|
| 100 |
+
elif width > height:
|
| 101 |
+
result = np.ones((width, width, image.shape[2]), dtype=image.dtype) * background_color
|
| 102 |
+
result[(width - height) // 2 : (width - height) // 2 + height, :] = image
|
| 103 |
+
return result
|
| 104 |
+
else:
|
| 105 |
+
result = np.ones((height, height, image.shape[2]), dtype=image.dtype) * background_color
|
| 106 |
+
result[:, (height - width) // 2 : (height - width) // 2 + width] = image
|
| 107 |
+
return result
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def _get_patch_output_size(image, target_resolution, input_data_format):
|
| 111 |
+
original_height, original_width = get_image_size(image, channel_dim=input_data_format)
|
| 112 |
+
target_height, target_width = target_resolution
|
| 113 |
+
|
| 114 |
+
scale_w = target_width / original_width
|
| 115 |
+
scale_h = target_height / original_height
|
| 116 |
+
|
| 117 |
+
if scale_w < scale_h:
|
| 118 |
+
new_width = target_width
|
| 119 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
| 120 |
+
else:
|
| 121 |
+
new_height = target_height
|
| 122 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
| 123 |
+
|
| 124 |
+
return new_height, new_width
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class OmChatImageProcessor(BaseImageProcessor):
|
| 128 |
+
r"""
|
| 129 |
+
Constructs a LLaVa-NeXT image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
|
| 130 |
+
for processing high resolution images as explained in the [LLaVa paper](https://arxiv.org/abs/2310.03744).
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
| 134 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
| 135 |
+
`do_resize` in the `preprocess` method.
|
| 136 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
|
| 137 |
+
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
|
| 138 |
+
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
|
| 139 |
+
method.
|
| 140 |
+
image_grid_pinpoints (`List` *optional*, defaults to `[[896, 448], [448, 896], [896, 896], [448, 1344], [1344, 448]]`):
|
| 141 |
+
A list of possible resolutions to use for processing high resolution images. The best resolution is selected
|
| 142 |
+
based on the original size of the image. Can be overridden by `image_grid_pinpoints` in the `preprocess`
|
| 143 |
+
method.
|
| 144 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
| 145 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
| 146 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
| 147 |
+
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
|
| 148 |
+
`preprocess` method.
|
| 149 |
+
crop_size (`Dict[str, int]` *optional*, defaults to 224):
|
| 150 |
+
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
|
| 151 |
+
method.
|
| 152 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
| 153 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
| 154 |
+
the `preprocess` method.
|
| 155 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
| 156 |
+
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
| 157 |
+
method.
|
| 158 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 159 |
+
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
|
| 160 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
| 161 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
| 162 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
| 163 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
| 164 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
| 165 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
| 166 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
| 167 |
+
do_pad (`bool`, *optional*, defaults to `True`):
|
| 168 |
+
Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
|
| 169 |
+
number of patches in the batch. Padding will be applied to the bottom and right with zeros.
|
| 170 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
| 171 |
+
Whether to convert the image to RGB.
|
| 172 |
+
"""
|
| 173 |
+
|
| 174 |
+
model_input_names = ["pixel_values"]
|
| 175 |
+
|
| 176 |
+
def __init__(
|
| 177 |
+
self,
|
| 178 |
+
do_resize: bool = True,
|
| 179 |
+
size: Dict[str, int] = None,
|
| 180 |
+
image_grid_pinpoints: List = None,
|
| 181 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 182 |
+
do_center_crop: bool = True,
|
| 183 |
+
crop_size: Dict[str, int] = None,
|
| 184 |
+
do_rescale: bool = True,
|
| 185 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
| 186 |
+
do_normalize: bool = True,
|
| 187 |
+
image_mean: Optional[Union[float, List[float]]] = [0.485, 0.456, 0.406],
|
| 188 |
+
image_std: Optional[Union[float, List[float]]] = [0.229, 0.224, 0.225],
|
| 189 |
+
do_convert_rgb: bool = True,
|
| 190 |
+
**kwargs,
|
| 191 |
+
) -> None:
|
| 192 |
+
super().__init__(**kwargs)
|
| 193 |
+
size = size if size is not None else {"shortest_edge": 448}
|
| 194 |
+
size = get_size_dict(size, default_to_square=False)
|
| 195 |
+
image_grid_pinpoints = (
|
| 196 |
+
image_grid_pinpoints
|
| 197 |
+
if image_grid_pinpoints is not None
|
| 198 |
+
else [[448, 896], [896, 448], [896, 896], [1344, 448], [448, 1344],[1344, 1344]]
|
| 199 |
+
)
|
| 200 |
+
crop_size = crop_size if crop_size is not None else {"height": 448, "width": 448}
|
| 201 |
+
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
| 202 |
+
|
| 203 |
+
self.do_resize = do_resize
|
| 204 |
+
self.size = size
|
| 205 |
+
self.image_grid_pinpoints = image_grid_pinpoints
|
| 206 |
+
self.resample = resample
|
| 207 |
+
self.do_center_crop = do_center_crop
|
| 208 |
+
self.crop_size = crop_size
|
| 209 |
+
self.do_rescale = do_rescale
|
| 210 |
+
self.rescale_factor = rescale_factor
|
| 211 |
+
self.do_normalize = do_normalize
|
| 212 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
| 213 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
| 214 |
+
self.do_convert_rgb = do_convert_rgb
|
| 215 |
+
|
| 216 |
+
# Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize with CLIP->LLaVa
|
| 217 |
+
def resize(
|
| 218 |
+
self,
|
| 219 |
+
image: np.ndarray,
|
| 220 |
+
size: Dict[str, int],
|
| 221 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 222 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 223 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 224 |
+
**kwargs,
|
| 225 |
+
) -> np.ndarray:
|
| 226 |
+
"""
|
| 227 |
+
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
|
| 228 |
+
resized to keep the input aspect ratio.
|
| 229 |
+
|
| 230 |
+
Args:
|
| 231 |
+
image (`np.ndarray`):
|
| 232 |
+
Image to resize.
|
| 233 |
+
size (`Dict[str, int]`):
|
| 234 |
+
Size of the output image.
|
| 235 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
| 236 |
+
Resampling filter to use when resiizing the image.
|
| 237 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
| 238 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
| 239 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 240 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
| 241 |
+
"""
|
| 242 |
+
default_to_square = True
|
| 243 |
+
if "shortest_edge" in size:
|
| 244 |
+
size = size["shortest_edge"]
|
| 245 |
+
default_to_square = False
|
| 246 |
+
elif "height" in size and "width" in size:
|
| 247 |
+
size = (size["height"], size["width"])
|
| 248 |
+
else:
|
| 249 |
+
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
|
| 250 |
+
|
| 251 |
+
output_size = get_resize_output_image_size(
|
| 252 |
+
image,
|
| 253 |
+
size=size,
|
| 254 |
+
default_to_square=default_to_square,
|
| 255 |
+
input_data_format=input_data_format,
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
return resize(
|
| 259 |
+
image,
|
| 260 |
+
size=output_size,
|
| 261 |
+
resample=resample,
|
| 262 |
+
data_format=data_format,
|
| 263 |
+
input_data_format=input_data_format,
|
| 264 |
+
**kwargs,
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
def pad(
|
| 268 |
+
self,
|
| 269 |
+
image: np.ndarray,
|
| 270 |
+
padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
|
| 271 |
+
mode: PaddingMode = PaddingMode.CONSTANT,
|
| 272 |
+
constant_values: Union[float, Iterable[float]] = 0.0,
|
| 273 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 274 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 275 |
+
) -> np.ndarray:
|
| 276 |
+
"""
|
| 277 |
+
Pads the `image` with the specified `padding` and `mode`. Padding can be in the (`height`, `width`)
|
| 278 |
+
dimension of in the (`num_patches`) dimension. In the second case an iterable if tuples is expected
|
| 279 |
+
as input.
|
| 280 |
+
|
| 281 |
+
Args:
|
| 282 |
+
image (`np.ndarray`):
|
| 283 |
+
The image to pad.
|
| 284 |
+
padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
|
| 285 |
+
Padding to apply to the edges of the height, width axes. Can be one of three formats:
|
| 286 |
+
- `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
|
| 287 |
+
- `((before, after),)` yields same before and after pad for height and width.
|
| 288 |
+
- `(pad,)` or int is a shortcut for before = after = pad width for all axes.
|
| 289 |
+
mode (`PaddingMode`):
|
| 290 |
+
The padding mode to use. Can be one of:
|
| 291 |
+
- `"constant"`: pads with a constant value.
|
| 292 |
+
- `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
|
| 293 |
+
vector along each axis.
|
| 294 |
+
- `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
|
| 295 |
+
- `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
|
| 296 |
+
constant_values (`float` or `Iterable[float]`, *optional*):
|
| 297 |
+
The value to use for the padding if `mode` is `"constant"`.
|
| 298 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
| 299 |
+
The channel dimension format for the output image. Can be one of:
|
| 300 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 301 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 302 |
+
If unset, will use same as the input image.
|
| 303 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
| 304 |
+
The channel dimension format for the input image. Can be one of:
|
| 305 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 306 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 307 |
+
If unset, will use the inferred format of the input image.
|
| 308 |
+
|
| 309 |
+
Returns:
|
| 310 |
+
`np.ndarray`: The padded image.
|
| 311 |
+
|
| 312 |
+
"""
|
| 313 |
+
|
| 314 |
+
# call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim
|
| 315 |
+
if isinstance(padding, int) or len(padding) != 4:
|
| 316 |
+
return pad(image, padding, mode, constant_values, data_format, input_data_format)
|
| 317 |
+
|
| 318 |
+
if input_data_format is None:
|
| 319 |
+
input_data_format = infer_channel_dimension_format(image)
|
| 320 |
+
if mode == PaddingMode.CONSTANT:
|
| 321 |
+
image = np.pad(image, padding, mode="constant", constant_values=constant_values)
|
| 322 |
+
elif mode == PaddingMode.REFLECT:
|
| 323 |
+
image = np.pad(image, padding, mode="reflect")
|
| 324 |
+
elif mode == PaddingMode.REPLICATE:
|
| 325 |
+
image = np.pad(image, padding, mode="edge")
|
| 326 |
+
elif mode == PaddingMode.SYMMETRIC:
|
| 327 |
+
image = np.pad(image, padding, mode="symmetric")
|
| 328 |
+
else:
|
| 329 |
+
raise ValueError(f"Invalid padding mode: {mode}")
|
| 330 |
+
image = (
|
| 331 |
+
to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
|
| 332 |
+
)
|
| 333 |
+
return image
|
| 334 |
+
|
| 335 |
+
def _preprocess(
|
| 336 |
+
self,
|
| 337 |
+
images: ImageInput,
|
| 338 |
+
do_resize: bool = None,
|
| 339 |
+
size: Dict[str, int] = None,
|
| 340 |
+
resample: PILImageResampling = None,
|
| 341 |
+
do_center_crop: bool = None,
|
| 342 |
+
crop_size: int = None,
|
| 343 |
+
do_rescale: bool = None,
|
| 344 |
+
rescale_factor: float = None,
|
| 345 |
+
do_normalize: bool = None,
|
| 346 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 347 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 348 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 349 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 350 |
+
) -> Image.Image:
|
| 351 |
+
"""
|
| 352 |
+
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
| 353 |
+
|
| 354 |
+
Args:
|
| 355 |
+
images (`ImageInput`):
|
| 356 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 357 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 358 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 359 |
+
Whether to resize the image.
|
| 360 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
| 361 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
| 362 |
+
the longest edge resized to keep the input aspect ratio.
|
| 363 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
| 364 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
| 365 |
+
has an effect if `do_resize` is set to `True`.
|
| 366 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
| 367 |
+
Whether to center crop the image.
|
| 368 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
| 369 |
+
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
| 370 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 371 |
+
Whether to rescale the image.
|
| 372 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 373 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 374 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 375 |
+
Whether to normalize the image.
|
| 376 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 377 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 378 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 379 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 380 |
+
`True`.
|
| 381 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 382 |
+
The channel dimension format for the output image. Can be one of:
|
| 383 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 384 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 385 |
+
- Unset: Use the channel dimension format of the input image.
|
| 386 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 387 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 388 |
+
from the input image. Can be one of:
|
| 389 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 390 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 391 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 392 |
+
"""
|
| 393 |
+
images = make_list_of_images(images)
|
| 394 |
+
|
| 395 |
+
if do_resize:
|
| 396 |
+
images = [
|
| 397 |
+
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
| 398 |
+
for image in images
|
| 399 |
+
]
|
| 400 |
+
|
| 401 |
+
if do_center_crop:
|
| 402 |
+
images = [
|
| 403 |
+
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
|
| 404 |
+
]
|
| 405 |
+
|
| 406 |
+
if do_rescale:
|
| 407 |
+
images = [
|
| 408 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
| 409 |
+
for image in images
|
| 410 |
+
]
|
| 411 |
+
|
| 412 |
+
if do_normalize:
|
| 413 |
+
images = [
|
| 414 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
| 415 |
+
for image in images
|
| 416 |
+
]
|
| 417 |
+
|
| 418 |
+
images = [
|
| 419 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
| 420 |
+
]
|
| 421 |
+
|
| 422 |
+
return images
|
| 423 |
+
|
| 424 |
+
def _resize_for_patching(
|
| 425 |
+
self, image: np.array, target_resolution: tuple, resample, input_data_format: ChannelDimension
|
| 426 |
+
) -> np.array:
|
| 427 |
+
"""
|
| 428 |
+
Resizes an image to a target resolution while maintaining aspect ratio.
|
| 429 |
+
|
| 430 |
+
Args:
|
| 431 |
+
image (np.array):
|
| 432 |
+
The input image.
|
| 433 |
+
target_resolution (tuple):
|
| 434 |
+
The target resolution (height, width) of the image.
|
| 435 |
+
resample (`PILImageResampling`):
|
| 436 |
+
Resampling filter to use if resizing the image.
|
| 437 |
+
input_data_format (`ChannelDimension` or `str`):
|
| 438 |
+
The channel dimension format of the input image.
|
| 439 |
+
|
| 440 |
+
Returns:
|
| 441 |
+
np.array: The resized and padded image.
|
| 442 |
+
"""
|
| 443 |
+
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format)
|
| 444 |
+
|
| 445 |
+
# Resize the image
|
| 446 |
+
resized_image = resize(image, (new_height, new_width), resample=resample, input_data_format=input_data_format)
|
| 447 |
+
|
| 448 |
+
return resized_image
|
| 449 |
+
|
| 450 |
+
def _pad_for_patching(
|
| 451 |
+
self, image: np.array, target_resolution: tuple, input_data_format: ChannelDimension
|
| 452 |
+
) -> np.array:
|
| 453 |
+
"""
|
| 454 |
+
Pad an image to a target resolution while maintaining aspect ratio.
|
| 455 |
+
"""
|
| 456 |
+
target_height, target_width = target_resolution
|
| 457 |
+
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format)
|
| 458 |
+
|
| 459 |
+
paste_x = (target_width - new_width) // 2
|
| 460 |
+
paste_y = (target_height - new_height) // 2
|
| 461 |
+
|
| 462 |
+
padded_image = self.pad(image, padding=((paste_y, paste_y), (paste_x, paste_x)))
|
| 463 |
+
|
| 464 |
+
return padded_image
|
| 465 |
+
|
| 466 |
+
def get_image_patches(
|
| 467 |
+
self,
|
| 468 |
+
image: np.array,
|
| 469 |
+
grid_pinpoints,
|
| 470 |
+
size: tuple,
|
| 471 |
+
patch_size: int,
|
| 472 |
+
resample: PILImageResampling,
|
| 473 |
+
data_format: ChannelDimension,
|
| 474 |
+
input_data_format: ChannelDimension,
|
| 475 |
+
) -> List[np.array]:
|
| 476 |
+
"""
|
| 477 |
+
Process an image with variable resolutions by dividing it into patches.
|
| 478 |
+
|
| 479 |
+
Args:
|
| 480 |
+
image (np.array):
|
| 481 |
+
The input image to be processed.
|
| 482 |
+
grid_pinpoints (List):
|
| 483 |
+
A string representation of a list of possible resolutions.
|
| 484 |
+
size (`tuple`):
|
| 485 |
+
Size to resize the original image to.
|
| 486 |
+
patch_size (`int`):
|
| 487 |
+
Size of the patches to divide the image into.
|
| 488 |
+
resample (`PILImageResampling`):
|
| 489 |
+
Resampling filter to use if resizing the image.
|
| 490 |
+
data_format (`ChannelDimension` or `str`):
|
| 491 |
+
The channel dimension format for the output image.
|
| 492 |
+
input_data_format (`ChannelDimension` or `str`):
|
| 493 |
+
The channel dimension format of the input image.
|
| 494 |
+
|
| 495 |
+
Returns:
|
| 496 |
+
List[np.array]: A list of NumPy arrays containing the processed image patches.
|
| 497 |
+
"""
|
| 498 |
+
if not isinstance(grid_pinpoints, list):
|
| 499 |
+
raise TypeError("grid_pinpoints must be a list of possible resolutions.")
|
| 500 |
+
|
| 501 |
+
possible_resolutions = grid_pinpoints
|
| 502 |
+
|
| 503 |
+
image_size = get_image_size(image, channel_dim=input_data_format)
|
| 504 |
+
best_resolution = select_best_resolution(image_size, possible_resolutions)
|
| 505 |
+
resized_image = self._resize_for_patching(
|
| 506 |
+
image, best_resolution, resample=resample, input_data_format=input_data_format
|
| 507 |
+
)
|
| 508 |
+
padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=input_data_format)
|
| 509 |
+
|
| 510 |
+
patches = divide_to_patches(padded_image, patch_size=patch_size, input_data_format=input_data_format)
|
| 511 |
+
|
| 512 |
+
# make sure that all patches are in the input data format
|
| 513 |
+
patches = [
|
| 514 |
+
to_channel_dimension_format(patch, channel_dim=data_format, input_channel_dim=input_data_format)
|
| 515 |
+
for patch in patches
|
| 516 |
+
]
|
| 517 |
+
|
| 518 |
+
resized_original_image = resize(
|
| 519 |
+
image,
|
| 520 |
+
size=size,
|
| 521 |
+
resample=resample,
|
| 522 |
+
data_format=data_format,
|
| 523 |
+
input_data_format=input_data_format,
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
image_patches = [resized_original_image] + patches
|
| 527 |
+
|
| 528 |
+
return image_patches
|
| 529 |
+
|
| 530 |
+
def _pad_for_batching(
|
| 531 |
+
self,
|
| 532 |
+
pixel_values: List[np.ndarray],
|
| 533 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 534 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 535 |
+
):
|
| 536 |
+
"""
|
| 537 |
+
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
|
| 538 |
+
|
| 539 |
+
Args:
|
| 540 |
+
pixel_values (`List[np.ndarray]`):
|
| 541 |
+
An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
|
| 542 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
| 543 |
+
The channel dimension format for the output image. Can be one of:
|
| 544 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 545 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 546 |
+
If unset, will use same as the input image.
|
| 547 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
| 548 |
+
The channel dimension format for the input image. Can be one of:
|
| 549 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 550 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 551 |
+
If unset, will use the inferred format of the input image.
|
| 552 |
+
|
| 553 |
+
Returns:
|
| 554 |
+
List[`np.ndarray`]: The padded images.
|
| 555 |
+
"""
|
| 556 |
+
max_patch = max(len(x) for x in pixel_values)
|
| 557 |
+
pixel_values = [
|
| 558 |
+
self.pad(
|
| 559 |
+
image,
|
| 560 |
+
padding=((0, max_patch - image.shape[0]), (0, 0), (0, 0), (0, 0)),
|
| 561 |
+
data_format=data_format,
|
| 562 |
+
input_data_format=input_data_format,
|
| 563 |
+
)
|
| 564 |
+
for image in pixel_values
|
| 565 |
+
]
|
| 566 |
+
|
| 567 |
+
return pixel_values
|
| 568 |
+
|
| 569 |
+
def preprocess(
|
| 570 |
+
self,
|
| 571 |
+
images: ImageInput,
|
| 572 |
+
do_resize: bool = None,
|
| 573 |
+
size: Dict[str, int] = None,
|
| 574 |
+
image_grid_pinpoints: List = None,
|
| 575 |
+
resample: PILImageResampling = None,
|
| 576 |
+
do_center_crop: bool = None,
|
| 577 |
+
crop_size: int = None,
|
| 578 |
+
do_rescale: bool = None,
|
| 579 |
+
rescale_factor: float = None,
|
| 580 |
+
do_normalize: bool = None,
|
| 581 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 582 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 583 |
+
do_convert_rgb: bool = None,
|
| 584 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 585 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 586 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 587 |
+
):
|
| 588 |
+
"""
|
| 589 |
+
Args:
|
| 590 |
+
images (`ImageInput`):
|
| 591 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 592 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 593 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 594 |
+
Whether to resize the image.
|
| 595 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
| 596 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
| 597 |
+
the longest edge resized to keep the input aspect ratio.
|
| 598 |
+
image_grid_pinpoints (`List` *optional*, defaults to `self.image_grid_pinpoints`):
|
| 599 |
+
A list of possible resolutions to use for processing high resolution images. The best resolution is
|
| 600 |
+
selected based on the original size of the image.
|
| 601 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
| 602 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
| 603 |
+
has an effect if `do_resize` is set to `True`.
|
| 604 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
| 605 |
+
Whether to center crop the image.
|
| 606 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
| 607 |
+
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
| 608 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 609 |
+
Whether to rescale the image.
|
| 610 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 611 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 612 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 613 |
+
Whether to normalize the image.
|
| 614 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 615 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 616 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 617 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 618 |
+
`True`.
|
| 619 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 620 |
+
Whether to convert the image to RGB.
|
| 621 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 622 |
+
The type of tensors to return. Can be one of:
|
| 623 |
+
- Unset: Return a list of `np.ndarray`.
|
| 624 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
| 625 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 626 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 627 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
| 628 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 629 |
+
The channel dimension format for the output image. Can be one of:
|
| 630 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 631 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 632 |
+
- Unset: Use the channel dimension format of the input image.
|
| 633 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 634 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 635 |
+
from the input image. Can be one of:
|
| 636 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 637 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 638 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 639 |
+
|
| 640 |
+
"""
|
| 641 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
| 642 |
+
size = size if size is not None else self.size
|
| 643 |
+
size = get_size_dict(size, param_name="size", default_to_square=False)
|
| 644 |
+
image_grid_pinpoints = image_grid_pinpoints if image_grid_pinpoints is not None else self.image_grid_pinpoints
|
| 645 |
+
resample = resample if resample is not None else self.resample
|
| 646 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
| 647 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
| 648 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
|
| 649 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 650 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 651 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 652 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 653 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 654 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
| 655 |
+
|
| 656 |
+
images = make_batched_images(images)
|
| 657 |
+
|
| 658 |
+
if not valid_images(images):
|
| 659 |
+
raise ValueError(
|
| 660 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 661 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
| 662 |
+
)
|
| 663 |
+
|
| 664 |
+
validate_preprocess_arguments(
|
| 665 |
+
do_rescale=do_rescale,
|
| 666 |
+
rescale_factor=rescale_factor,
|
| 667 |
+
do_normalize=do_normalize,
|
| 668 |
+
image_mean=image_mean,
|
| 669 |
+
image_std=image_std,
|
| 670 |
+
do_center_crop=do_center_crop,
|
| 671 |
+
crop_size=crop_size,
|
| 672 |
+
do_resize=do_resize,
|
| 673 |
+
size=size,
|
| 674 |
+
resample=resample,
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
if do_convert_rgb:
|
| 678 |
+
images = [convert_to_rgb(image) for image in images]
|
| 679 |
+
|
| 680 |
+
# All transformations expect numpy arrays.
|
| 681 |
+
images = [to_numpy_array(image) for image in images]
|
| 682 |
+
|
| 683 |
+
if is_scaled_image(images[0]) and do_rescale:
|
| 684 |
+
logger.warning_once(
|
| 685 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
| 686 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
| 687 |
+
)
|
| 688 |
+
|
| 689 |
+
if input_data_format is None:
|
| 690 |
+
# We assume that all images have the same channel dimension format.
|
| 691 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
| 692 |
+
|
| 693 |
+
new_images = []
|
| 694 |
+
image_sizes = [get_image_size(image, channel_dim=input_data_format) for image in images]
|
| 695 |
+
num_patches = []
|
| 696 |
+
for image in images:
|
| 697 |
+
# convert image into a list of patches
|
| 698 |
+
# we intentially use the same data format as the input data format
|
| 699 |
+
image_patches = self.get_image_patches(
|
| 700 |
+
image,
|
| 701 |
+
image_grid_pinpoints,
|
| 702 |
+
size=(size["shortest_edge"], size["shortest_edge"]),
|
| 703 |
+
patch_size=crop_size["height"],
|
| 704 |
+
resample=resample,
|
| 705 |
+
data_format=input_data_format,
|
| 706 |
+
input_data_format=input_data_format,
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
# preprocess patches
|
| 710 |
+
pixel_values = self._preprocess(
|
| 711 |
+
image_patches,
|
| 712 |
+
do_resize=do_resize,
|
| 713 |
+
size=size,
|
| 714 |
+
resample=resample,
|
| 715 |
+
do_center_crop=do_center_crop,
|
| 716 |
+
crop_size=crop_size,
|
| 717 |
+
do_rescale=do_rescale,
|
| 718 |
+
rescale_factor=rescale_factor,
|
| 719 |
+
do_normalize=do_normalize,
|
| 720 |
+
image_mean=image_mean,
|
| 721 |
+
image_std=image_std,
|
| 722 |
+
data_format=data_format,
|
| 723 |
+
input_data_format=input_data_format,
|
| 724 |
+
)
|
| 725 |
+
num_patches.append(len(pixel_values))
|
| 726 |
+
pixel_values = np.array(pixel_values)
|
| 727 |
+
new_images.append(pixel_values)
|
| 728 |
+
processed_images = self._pad_for_batching(new_images)
|
| 729 |
+
|
| 730 |
+
return BatchFeature(
|
| 731 |
+
#data={"pixel_values": new_images}, tensor_type=return_tensors
|
| 732 |
+
data={"pixel_values": processed_images, "num_patches":num_patches}, tensor_type=return_tensors
|
| 733 |
+
)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00003-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:faaf2890af5673988fe2ea5507af18d7d7c3d9402ffb74e142f81c96af2c82b7
|
| 3 |
+
size 4946773672
|
processing_omchat.py
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional, Union
|
| 2 |
+
|
| 3 |
+
from transformers import PreTrainedTokenizer
|
| 4 |
+
from typing import List, Tuple
|
| 5 |
+
|
| 6 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 7 |
+
from transformers.image_utils import ImageInput
|
| 8 |
+
from transformers.processing_utils import ProcessorMixin
|
| 9 |
+
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
| 10 |
+
from transformers.utils import TensorType
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=-200, return_tensors=None):
|
| 14 |
+
if "<image_0>" in prompt:
|
| 15 |
+
image_token_pattern = re.compile(r"<image_(\d+)>")
|
| 16 |
+
prompt_chunks = re.split(r'<image_[0-9]+>',prompt)
|
| 17 |
+
# Identify all the image tags
|
| 18 |
+
image_tags = image_token_pattern.findall(prompt)
|
| 19 |
+
|
| 20 |
+
input_ids = []
|
| 21 |
+
for i, chunk in enumerate(prompt_chunks):
|
| 22 |
+
input_ids.extend(tokenizer(chunk).input_ids)
|
| 23 |
+
if i < len(image_tags):
|
| 24 |
+
#input_ids.append(-100 * (int(image_tags[i]) + 3))
|
| 25 |
+
input_ids.append(-200)
|
| 26 |
+
else:
|
| 27 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
| 28 |
+
def insert_separator(X, sep):
|
| 29 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
| 30 |
+
|
| 31 |
+
input_ids = []
|
| 32 |
+
offset = 0
|
| 33 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
| 34 |
+
offset = 1
|
| 35 |
+
input_ids.append(prompt_chunks[0][0])
|
| 36 |
+
|
| 37 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
| 38 |
+
input_ids.extend(x[offset:])
|
| 39 |
+
# Convert to tensor if required
|
| 40 |
+
if return_tensors is not None:
|
| 41 |
+
if return_tensors == 'pt':
|
| 42 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
| 43 |
+
else:
|
| 44 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
| 45 |
+
|
| 46 |
+
return input_ids
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def make_context(
|
| 50 |
+
tokenizer: PreTrainedTokenizer,
|
| 51 |
+
query: str,
|
| 52 |
+
history: List[Tuple[str, str]] = None,
|
| 53 |
+
system: str = "",
|
| 54 |
+
max_window_size: int = 6144,
|
| 55 |
+
chat_format: str = "chatml",
|
| 56 |
+
):
|
| 57 |
+
if history is None:
|
| 58 |
+
history = []
|
| 59 |
+
|
| 60 |
+
if chat_format == "chatml":
|
| 61 |
+
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
| 62 |
+
im_start_tokens = [151644]
|
| 63 |
+
im_end_tokens = [151645]
|
| 64 |
+
nl_tokens = tokenizer.encode("\n")
|
| 65 |
+
|
| 66 |
+
def _tokenize_str(role, content):
|
| 67 |
+
if "<image>" in content:
|
| 68 |
+
return f"{role}\n{content}", tokenizer.encode(
|
| 69 |
+
role
|
| 70 |
+
) + nl_tokens + tokenizer_image_token(
|
| 71 |
+
content, tokenizer, -200
|
| 72 |
+
)
|
| 73 |
+
else:
|
| 74 |
+
return f"{role}\n{content}", tokenizer.encode(
|
| 75 |
+
role
|
| 76 |
+
) + nl_tokens + tokenizer.encode(content)
|
| 77 |
+
|
| 78 |
+
def _tokenize_str2(role, content):
|
| 79 |
+
return f"{role}\n{content}", tokenizer.encode(
|
| 80 |
+
role,
|
| 81 |
+
) + nl_tokens + tokenizer.encode(content)
|
| 82 |
+
|
| 83 |
+
system_text, system_tokens_part = _tokenize_str("system", system)
|
| 84 |
+
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
| 85 |
+
|
| 86 |
+
raw_text = ""
|
| 87 |
+
context_tokens = []
|
| 88 |
+
|
| 89 |
+
for turn_query, turn_response in reversed(history):
|
| 90 |
+
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
| 91 |
+
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
| 92 |
+
response_text, response_tokens_part = _tokenize_str(
|
| 93 |
+
"assistant", turn_response
|
| 94 |
+
)
|
| 95 |
+
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
| 96 |
+
|
| 97 |
+
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
| 98 |
+
prev_chat = (
|
| 99 |
+
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
current_context_size = (
|
| 103 |
+
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
| 104 |
+
)
|
| 105 |
+
if current_context_size < max_window_size:
|
| 106 |
+
context_tokens = next_context_tokens + context_tokens
|
| 107 |
+
raw_text = prev_chat + raw_text
|
| 108 |
+
else:
|
| 109 |
+
break
|
| 110 |
+
|
| 111 |
+
context_tokens = system_tokens + context_tokens
|
| 112 |
+
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
| 113 |
+
context_tokens += (
|
| 114 |
+
nl_tokens
|
| 115 |
+
+ im_start_tokens
|
| 116 |
+
+ _tokenize_str("user", query)[1]
|
| 117 |
+
+ im_end_tokens
|
| 118 |
+
+ nl_tokens
|
| 119 |
+
+ im_start_tokens
|
| 120 |
+
+ tokenizer.encode("assistant")
|
| 121 |
+
+ nl_tokens
|
| 122 |
+
)
|
| 123 |
+
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
| 124 |
+
|
| 125 |
+
elif chat_format == "raw":
|
| 126 |
+
raw_text = query
|
| 127 |
+
context_tokens = tokenizer.encode(raw_text)
|
| 128 |
+
else:
|
| 129 |
+
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
| 130 |
+
|
| 131 |
+
return raw_text, context_tokens
|
| 132 |
+
|
| 133 |
+
def split_tensor(A, B):
|
| 134 |
+
split_tensors = []
|
| 135 |
+
start_idx = 0
|
| 136 |
+
|
| 137 |
+
for i, size in enumerate(B.tolist()):
|
| 138 |
+
split_tensor = A[i, :size, :, :, :]
|
| 139 |
+
split_tensors.append(split_tensor) # Take the first element from the batch dimension
|
| 140 |
+
|
| 141 |
+
return split_tensors
|
| 142 |
+
|
| 143 |
+
class OmChatProcessor(ProcessorMixin):
|
| 144 |
+
r"""
|
| 145 |
+
Constructs a OmChat processor which wraps a OmChat image processor and a LLaMa tokenizer into a single processor.
|
| 146 |
+
|
| 147 |
+
[`OmChatProcessor`] offers all the functionalities of [`OmChatImageProcessor`] and [`LlamaTokenizerFast`]. See the
|
| 148 |
+
[`~OmChatProcessor.__call__`] and [`~OmChatProcessor.decode`] for more information.
|
| 149 |
+
|
| 150 |
+
Args:
|
| 151 |
+
image_processor ([`OmChatImageProcessor`], *optional*):
|
| 152 |
+
The image processor is a required input.
|
| 153 |
+
tokenizer ([`LlamaTokenizerFast`], *optional*):
|
| 154 |
+
The tokenizer is a required input.
|
| 155 |
+
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
| 156 |
+
in a chat into a tokenizable string.
|
| 157 |
+
"""
|
| 158 |
+
|
| 159 |
+
attributes = ["image_processor", "tokenizer"]
|
| 160 |
+
valid_kwargs = ["chat_template"]
|
| 161 |
+
image_processor_class = "AutoImageProcessor"
|
| 162 |
+
tokenizer_class = "AutoTokenizer"
|
| 163 |
+
|
| 164 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
| 165 |
+
super().__init__(image_processor, tokenizer)
|
| 166 |
+
|
| 167 |
+
def __call__(
|
| 168 |
+
self,
|
| 169 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
| 170 |
+
system_prompt: str = "You are a helpful assistant.",
|
| 171 |
+
images: ImageInput = None,
|
| 172 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
| 173 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
| 174 |
+
max_length: Optional[int] = None,
|
| 175 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
| 176 |
+
) -> BatchFeature:
|
| 177 |
+
"""
|
| 178 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
| 179 |
+
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
| 180 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
| 181 |
+
OmChatImageProcessor's [`~OmChatImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
| 182 |
+
of the above two methods for more information.
|
| 183 |
+
|
| 184 |
+
Args:
|
| 185 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 186 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 187 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 188 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 189 |
+
system_prompt ('str'):
|
| 190 |
+
the initial system prompt (i.e., You are a helpful assistant.)
|
| 191 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 192 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 193 |
+
tensor. Both channels-first and channels-last formats are supported.
|
| 194 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
| 195 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
| 196 |
+
index) among:
|
| 197 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
| 198 |
+
sequence if provided).
|
| 199 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
| 200 |
+
acceptable input length for the model if that argument is not provided.
|
| 201 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
| 202 |
+
lengths).
|
| 203 |
+
max_length (`int`, *optional*):
|
| 204 |
+
Maximum length of the returned list and optionally padding length (see above).
|
| 205 |
+
truncation (`bool`, *optional*):
|
| 206 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
| 207 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 208 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 209 |
+
|
| 210 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 211 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 212 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 213 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 214 |
+
|
| 215 |
+
Returns:
|
| 216 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
| 217 |
+
|
| 218 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 219 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 220 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 221 |
+
`None`).
|
| 222 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
| 223 |
+
"""
|
| 224 |
+
#system_prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."
|
| 225 |
+
if images is not None:
|
| 226 |
+
image_inputs = self.image_processor(images, return_tensors=return_tensors)
|
| 227 |
+
new_images = []
|
| 228 |
+
new_texts = []
|
| 229 |
+
img = image_inputs["pixel_values"]
|
| 230 |
+
num_patches = image_inputs["num_patches"]
|
| 231 |
+
img = split_tensor(img, num_patches)
|
| 232 |
+
if len(img) == 1:
|
| 233 |
+
n = num_patches.tolist()[0]
|
| 234 |
+
inp, context_tokens = make_context(
|
| 235 |
+
self.tokenizer,
|
| 236 |
+
"<image>\n"+"\n".join(["patch:<image>"]*(n-1)) +"\n"+ text.replace("<image>", ""),
|
| 237 |
+
None,
|
| 238 |
+
system_prompt,
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
else:
|
| 242 |
+
texts = text.split("<image>")
|
| 243 |
+
final =texts[0]
|
| 244 |
+
for i, n in enumerate(num_patches.tolist()):
|
| 245 |
+
final+= "\n<image>\n"+"\n".join(["patch:<image>"]*(n-1))+"\n"
|
| 246 |
+
if i+1 < len(texts):
|
| 247 |
+
final += texts[i+1]
|
| 248 |
+
inp, context_tokens = make_context(self.tokenizer, final, None, system_prompt)
|
| 249 |
+
text_inputs = {"input_ids": torch.tensor([context_tokens])}
|
| 250 |
+
image_inputs = {"images":torch.cat(img, dim=0)}
|
| 251 |
+
return BatchFeature(data={**text_inputs, **image_inputs})
|
| 252 |
+
else:
|
| 253 |
+
image_inputs = {"images":None}
|
| 254 |
+
inp, context_tokens = make_context(
|
| 255 |
+
self.tokenizer,
|
| 256 |
+
text.replace("<image>", "").strip(),
|
| 257 |
+
None,
|
| 258 |
+
"You are a helpful assistant.",
|
| 259 |
+
)
|
| 260 |
+
text_inputs = {"input_ids": torch.tensor([context_tokens])}
|
| 261 |
+
|
| 262 |
+
return BatchFeature(data={**text_inputs})
|
| 263 |
+
|
| 264 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
| 265 |
+
def batch_decode(self, *args, **kwargs):
|
| 266 |
+
"""
|
| 267 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 268 |
+
refer to the docstring of this method for more information.
|
| 269 |
+
"""
|
| 270 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 271 |
+
|
| 272 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
| 273 |
+
def decode(self, *args, **kwargs):
|
| 274 |
+
"""
|
| 275 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 276 |
+
the docstring of this method for more information.
|
| 277 |
+
"""
|
| 278 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 279 |
+
|
| 280 |
+
@property
|
| 281 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
| 282 |
+
def model_input_names(self):
|
| 283 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 284 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 285 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|