Create model.py
Browse files- diff_lora/model.py +83 -0
diff_lora/model.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
class DiffLoRALinear(nn.Module):
|
| 8 |
+
"""
|
| 9 |
+
Fused DiffLoRALinear implements a differential low-rank adapter:
|
| 10 |
+
Δy = (α/r) * [A_pos @ B_pos - τ * (A_neg @ B_neg)]
|
| 11 |
+
The fused version computes:
|
| 12 |
+
update = x_dropped @ concat(A_pos, A_neg) @ concat(B_pos, -τ * B_neg)
|
| 13 |
+
This version explicitly moves τ to the same device as the input.
|
| 14 |
+
"""
|
| 15 |
+
def __init__(self, in_features: int, out_features: int, r: int = 8,
|
| 16 |
+
lora_alpha: float = 16.0, dropout: float = 0.0,
|
| 17 |
+
merge_weights: bool = False, init_method: str = "kaiming"):
|
| 18 |
+
super().__init__()
|
| 19 |
+
# Base linear layer (frozen)
|
| 20 |
+
self.linear = nn.Linear(in_features, out_features, bias=False)
|
| 21 |
+
self.linear.weight.requires_grad = False
|
| 22 |
+
self.in_features = in_features
|
| 23 |
+
self.out_features = out_features
|
| 24 |
+
self.r = r
|
| 25 |
+
self.scaling = lora_alpha / r
|
| 26 |
+
self.merge_weights = merge_weights
|
| 27 |
+
self.merged = False
|
| 28 |
+
self.lora_dropout = nn.Dropout(dropout) if dropout > 0.0 else nn.Identity()
|
| 29 |
+
# Low-rank parameters for positive and negative components
|
| 30 |
+
self.A_pos = nn.Parameter(torch.zeros(in_features, r))
|
| 31 |
+
self.B_pos = nn.Parameter(torch.zeros(r, out_features))
|
| 32 |
+
self.A_neg = nn.Parameter(torch.zeros(in_features, r))
|
| 33 |
+
self.B_neg = nn.Parameter(torch.zeros(r, out_features))
|
| 34 |
+
self.tau = nn.Parameter(torch.tensor(1.0)) # Scalar parameter
|
| 35 |
+
self.reset_parameters(init_method)
|
| 36 |
+
|
| 37 |
+
def reset_parameters(self, init_method: str = "kaiming"):
|
| 38 |
+
if init_method == "kaiming":
|
| 39 |
+
nn.init.kaiming_uniform_(self.A_pos, a=math.sqrt(5))
|
| 40 |
+
nn.init.zeros_(self.B_pos)
|
| 41 |
+
nn.init.kaiming_uniform_(self.A_neg, a=math.sqrt(5))
|
| 42 |
+
nn.init.zeros_(self.B_neg)
|
| 43 |
+
elif init_method == "xavier":
|
| 44 |
+
nn.init.xavier_uniform_(self.A_pos)
|
| 45 |
+
nn.init.zeros_(self.B_pos)
|
| 46 |
+
nn.init.xavier_uniform_(self.A_neg)
|
| 47 |
+
nn.init.zeros_(self.B_neg)
|
| 48 |
+
else:
|
| 49 |
+
raise ValueError(f"Unknown init_method: {init_method}")
|
| 50 |
+
|
| 51 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 52 |
+
if self.merge_weights and self.merged:
|
| 53 |
+
return self.linear(x)
|
| 54 |
+
base_out = self.linear(x)
|
| 55 |
+
x_dropped = self.lora_dropout(x)
|
| 56 |
+
# Ensure tau is on the same device as x
|
| 57 |
+
tau = self.tau.to(x.device)
|
| 58 |
+
# Concatenate positive and negative parameters along the rank dimension
|
| 59 |
+
combined_A = torch.cat([self.A_pos, self.A_neg], dim=1) # (in_features, 2*r)
|
| 60 |
+
combined_B = torch.cat([self.B_pos, -tau * self.B_neg], dim=0) # (2*r, out_features)
|
| 61 |
+
update = x_dropped @ combined_A @ combined_B
|
| 62 |
+
delta = self.scaling * update
|
| 63 |
+
return base_out + delta
|
| 64 |
+
|
| 65 |
+
def replace_linear_with_diff_lora(module: nn.Module, target_regex: str, r: int):
|
| 66 |
+
"""
|
| 67 |
+
Recursively replace nn.Linear modules whose names match target_regex
|
| 68 |
+
with DiffLoRALinear modules using rank r.
|
| 69 |
+
"""
|
| 70 |
+
for name, child in module.named_children():
|
| 71 |
+
if isinstance(child, nn.Linear) and re.search(target_regex, name, re.IGNORECASE):
|
| 72 |
+
new_layer = DiffLoRALinear(
|
| 73 |
+
in_features=child.in_features,
|
| 74 |
+
out_features=child.out_features,
|
| 75 |
+
r=r,
|
| 76 |
+
lora_alpha=16.0,
|
| 77 |
+
dropout=0.1,
|
| 78 |
+
merge_weights=False,
|
| 79 |
+
)
|
| 80 |
+
new_layer.linear.weight.data.copy_(child.weight.data)
|
| 81 |
+
setattr(module, name, new_layer)
|
| 82 |
+
else:
|
| 83 |
+
replace_linear_with_diff_lora(child, target_regex, r)
|