Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,291 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: transformers
|
| 3 |
-
tags:
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
|
| 78 |
### Training Data
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
|
| 160 |
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
-
|
| 164 |
|
| 165 |
-
|
| 166 |
|
| 167 |
-
|
| 168 |
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
-
|
|
|
|
| 172 |
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
**
|
|
|
|
| 176 |
|
| 177 |
-
|
| 178 |
|
| 179 |
-
|
| 180 |
|
| 181 |
-
|
|
|
|
| 182 |
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
-
[More Information Needed]
|
| 192 |
|
| 193 |
-
##
|
| 194 |
|
| 195 |
-
[
|
| 196 |
|
| 197 |
-
##
|
| 198 |
|
| 199 |
-
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- automatic-speech-recognition
|
| 5 |
+
- audio-visual-speech-recognition
|
| 6 |
+
- multimodal
|
| 7 |
+
- speech-recognition
|
| 8 |
+
- lip-reading
|
| 9 |
+
- cocktail-party
|
| 10 |
+
- noise-robust
|
| 11 |
+
- av-hubert
|
| 12 |
+
- transformer
|
| 13 |
+
- pytorch
|
| 14 |
+
- audio
|
| 15 |
+
- video
|
| 16 |
+
- english
|
| 17 |
+
- lrs2
|
| 18 |
+
- voxceleb2
|
| 19 |
+
- ctc
|
| 20 |
+
- attention
|
| 21 |
+
- beam-search
|
| 22 |
+
- multi-speaker
|
| 23 |
+
- noisy-speech
|
| 24 |
+
datasets:
|
| 25 |
+
- nguyenvulebinh/AVYT
|
| 26 |
+
language:
|
| 27 |
+
- en
|
| 28 |
+
metrics:
|
| 29 |
+
- wer
|
| 30 |
+
pipeline_tag: automatic-speech-recognition
|
| 31 |
+
---
|
| 32 |
+
|
| 33 |
+
# AVSRCocktail: Audio-Visual Speech Recognition for Cocktail Party Scenarios
|
| 34 |
+
|
| 35 |
+
**Official implementation** of "[Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178)" (Interspeech 2025).
|
| 36 |
+
|
| 37 |
+
A robust audio-visual speech recognition system designed for multi-speaker environments and noisy cocktail party scenarios. The model combines lip reading and audio processing to achieve superior performance in challenging acoustic conditions with background noise and speaker interference.
|
| 38 |
+
|
| 39 |
+
## Getting Started
|
| 40 |
+
|
| 41 |
+
### Sections
|
| 42 |
+
1. <a href="#install">Installation</a>
|
| 43 |
+
2. <a href="#evaluation">Evaluation</a>
|
| 44 |
+
3. <a href="#training">Training</a>
|
| 45 |
+
|
| 46 |
+
## <a id="install">1. Installation </a>
|
| 47 |
+
|
| 48 |
+
Following this steps:
|
| 49 |
+
|
| 50 |
+
```sh
|
| 51 |
+
# Clone the baseline code repo
|
| 52 |
+
git clone https://github.com/nguyenvulebinh/AVSRCocktail.git
|
| 53 |
+
cd AVSRCocktail
|
| 54 |
+
|
| 55 |
+
# Create Conda environment
|
| 56 |
+
conda create --name AVSRCocktail python=3.11
|
| 57 |
+
conda activate AVSRCocktail
|
| 58 |
+
|
| 59 |
+
# Install FFmpeg, if it's not already installed.
|
| 60 |
+
conda install ffmpeg
|
| 61 |
+
|
| 62 |
+
# Install dependencies
|
| 63 |
+
pip install -r requirements.txt
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
## <a id="evaluation">2. Evaluation</a>
|
| 67 |
+
|
| 68 |
+
The evaluation script `script/evaluation.py` provides comprehensive evaluation capabilities for the AVSR Cocktail model on multiple datasets with various noise conditions and interference scenarios.
|
| 69 |
+
|
| 70 |
+
### Quick Start
|
| 71 |
+
|
| 72 |
+
**Basic evaluation on LRS2 test set:**
|
| 73 |
+
```sh
|
| 74 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
**Evaluation on AVCocktail dataset:**
|
| 78 |
+
```sh
|
| 79 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
### Supported Datasets
|
| 83 |
+
|
| 84 |
+
#### 1. LRS2 Dataset
|
| 85 |
+
Evaluate on the LRS2 dataset with various noise conditions:
|
| 86 |
+
|
| 87 |
+
**Available test sets:**
|
| 88 |
+
- `test`: Clean test set
|
| 89 |
+
- `test_snr_n5_interferer_1`: SNR -5dB with 1 interferer
|
| 90 |
+
- `test_snr_n5_interferer_2`: SNR -5dB with 2 interferers
|
| 91 |
+
- `test_snr_0_interferer_1`: SNR 0dB with 1 interferer
|
| 92 |
+
- `test_snr_0_interferer_2`: SNR 0dB with 2 interferers
|
| 93 |
+
- `test_snr_5_interferer_1`: SNR 5dB with 1 interferer
|
| 94 |
+
- `test_snr_5_interferer_2`: SNR 5dB with 2 interferers
|
| 95 |
+
- `test_snr_10_interferer_1`: SNR 10dB with 1 interferer
|
| 96 |
+
- `test_snr_10_interferer_2`: SNR 10dB with 2 interferers
|
| 97 |
+
- `*`: Evaluate on all test sets and report average WER
|
| 98 |
+
|
| 99 |
+
**Example:**
|
| 100 |
+
```sh
|
| 101 |
+
# Evaluate on clean test set
|
| 102 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test
|
| 103 |
+
|
| 104 |
+
# Evaluate on noisy conditions
|
| 105 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test_snr_0_interferer_1
|
| 106 |
+
|
| 107 |
+
# Evaluate on all conditions
|
| 108 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id "*"
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
#### 2. AVCocktail Dataset
|
| 112 |
+
Evaluate on the AVCocktail cocktail party dataset:
|
| 113 |
+
|
| 114 |
+
**Available video sets:**
|
| 115 |
+
- `video_0` to `video_50`: Individual video sessions
|
| 116 |
+
- `*`: Evaluate on all video sessions and report average WER
|
| 117 |
+
|
| 118 |
+
The evaluation reports WER for three different chunking strategies:
|
| 119 |
+
- `asd_chunk`: Chunks based on Active Speaker Detection
|
| 120 |
+
- `fixed_chunk`: Fixed-duration chunks
|
| 121 |
+
- `gold_chunk`: Ground truth optimal chunks
|
| 122 |
|
| 123 |
+
**Example:**
|
| 124 |
+
```sh
|
| 125 |
+
# Evaluate on specific video
|
| 126 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0
|
| 127 |
|
| 128 |
+
# Evaluate on all videos
|
| 129 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id "*"
|
| 130 |
+
```
|
| 131 |
|
| 132 |
+
### Configuration Options
|
| 133 |
|
| 134 |
+
#### Model Configuration
|
| 135 |
+
- `--model_type`: Model architecture to use (use `avsr_cocktail` for the AVSR Cocktail model)
|
| 136 |
+
- `--checkpoint_path`: Path to custom model checkpoint (default: uses pretrained `nguyenvulebinh/AVSRCocktail`)
|
| 137 |
+
- `--cache_dir`: Directory to cache downloaded models (default: `./model-bin`)
|
| 138 |
|
| 139 |
+
#### Processing Parameters
|
| 140 |
+
- `--max_length`: Maximum length of video segments in seconds (default: 15)
|
| 141 |
+
- `--beam_size`: Beam size for beam search decoding (default: 3)
|
| 142 |
|
| 143 |
+
#### Dataset Parameters
|
| 144 |
+
- `--dataset_name`: Dataset to evaluate on (`lrs2` or `AVCocktail`)
|
| 145 |
+
- `--set_id`: Specific subset to evaluate (see dataset-specific options above)
|
| 146 |
|
| 147 |
+
#### Output Options
|
| 148 |
+
- `--verbose`: Enable verbose output during processing
|
| 149 |
+
- `--output_dir_name`: Name of output directory for session processing (default: `output`)
|
| 150 |
+
|
| 151 |
+
### Advanced Usage
|
| 152 |
+
|
| 153 |
+
**Custom model checkpoint:**
|
| 154 |
+
```sh
|
| 155 |
+
python script/evaluation.py \
|
| 156 |
+
--model_type avsr_cocktail \
|
| 157 |
+
--dataset_name lrs2 \
|
| 158 |
+
--set_id test \
|
| 159 |
+
--checkpoint_path ./model-bin/my_custom_model \
|
| 160 |
+
--cache_dir ./custom_cache
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
**Optimized inference settings:**
|
| 164 |
+
```sh
|
| 165 |
+
python script/evaluation.py \
|
| 166 |
+
--model_type avsr_cocktail \
|
| 167 |
+
--dataset_name AVCocktail \
|
| 168 |
+
--set_id "*" \
|
| 169 |
+
--max_length 10 \
|
| 170 |
+
--beam_size 5 \
|
| 171 |
+
--verbose
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
### Output Format
|
| 175 |
+
|
| 176 |
+
The evaluation script outputs Word Error Rate (WER) scores:
|
| 177 |
+
|
| 178 |
+
**LRS2 evaluation output:**
|
| 179 |
+
```
|
| 180 |
+
WER test: 0.1234
|
| 181 |
+
```
|
| 182 |
+
|
| 183 |
+
**AVCocktail evaluation output:**
|
| 184 |
+
```
|
| 185 |
+
WER video_0 asd_chunk: 0.1234
|
| 186 |
+
WER video_0 fixed_chunk: 0.1456
|
| 187 |
+
WER video_0 gold_chunk: 0.1123
|
| 188 |
+
```
|
| 189 |
+
|
| 190 |
+
When using `--set_id "*"`, the script reports both individual and average WER scores across all test conditions.
|
| 191 |
+
|
| 192 |
+
## <a id="training">3. Training</a>
|
| 193 |
+
|
| 194 |
+
### Model Architecture
|
| 195 |
+
|
| 196 |
+
- **Encoder**: Pre-trained AV-HuBERT large model (`nguyenvulebinh/avhubert_encoder_large_noise_pt_noise_ft_433h`)
|
| 197 |
+
- **Decoder**: Transformer decoder with CTC/Attention joint training
|
| 198 |
+
- **Tokenization**: SentencePiece unigram tokenizer with 5000 vocabulary units
|
| 199 |
+
- **Input**: Video frames are cropped to the mouth region of interest using a 96 × 96 bounding box, while the audio is sampled at a 16 kHz rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
### Training Data
|
| 202 |
|
| 203 |
+
The model is trained on multiple large-scale datasets that have been preprocessed and are ready for the training pipeline. All datasets are hosted on Hugging Face at [nguyenvulebinh/AVYT](https://huggingface.co/datasets/nguyenvulebinh/AVYT) and include:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
+
| Dataset | Size |
|
| 206 |
+
|---------|------|
|
| 207 |
+
| **LRS2** | ~145k samples |
|
| 208 |
+
| **VoxCeleb2** | ~540k samples |
|
| 209 |
+
| **AVYT** | ~717k samples |
|
| 210 |
+
| **AVYT-mix** | ~483k samples |
|
| 211 |
|
| 212 |
+
The information about these datasets can be found in the [Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178) paper.
|
| 213 |
|
| 214 |
+
**Dataset Features:**
|
| 215 |
+
- **Preprocessed**: All audio-visual data is pre-processed and ready for direct input to the training pipeline
|
| 216 |
+
- **Multi-modal**: Each sample contains synchronized audio and video (mouth crop) data
|
| 217 |
+
- **Labeled**: Text transcriptions for supervised learning
|
| 218 |
|
| 219 |
+
The training pipeline automatically handles dataset loading and loads data in [streaming mode](https://huggingface.co/docs/datasets/stream). However, to make training faster and more stable, it's recommended to download all datasets before running the training pipeline. The storage needed to save all datasets is approximately 1.46 TB.
|
| 220 |
|
| 221 |
+
### Training Process
|
| 222 |
|
| 223 |
+
The training script is available at `script/train.py`.
|
| 224 |
|
| 225 |
+
**Multi-GPU Distributed Training:**
|
| 226 |
+
```sh
|
| 227 |
+
# Set environment variables for distributed training
|
| 228 |
+
export NCCL_DEBUG=WARN
|
| 229 |
+
export OMP_NUM_THREADS=1
|
| 230 |
+
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
| 231 |
|
| 232 |
+
# Run with torchrun for multi-GPU training (using default parameters)
|
| 233 |
+
torchrun --nproc_per_node 4 script/train.py
|
| 234 |
|
| 235 |
+
# Run with custom parameters
|
| 236 |
+
torchrun --nproc_per_node 4 script/train.py \
|
| 237 |
+
--streaming_dataset \
|
| 238 |
+
--batch_size 6 \
|
| 239 |
+
--max_steps 400000 \
|
| 240 |
+
--gradient_accumulation_steps 2 \
|
| 241 |
+
--save_steps 2000 \
|
| 242 |
+
--eval_steps 2000 \
|
| 243 |
+
--learning_rate 1e-4 \
|
| 244 |
+
--warmup_steps 4000 \
|
| 245 |
+
--checkpoint_name avsr_avhubert_ctcattn \
|
| 246 |
+
--model_name_or_path ./model-bin/avsr_cocktail \
|
| 247 |
+
--output_dir ./model-bin
|
| 248 |
+
```
|
| 249 |
|
| 250 |
+
**Model Output:**
|
| 251 |
+
The trained model will be saved by default in `model-bin/{checkpoint_name}/` (default: `model-bin/avsr_avhubert_ctcattn/`).
|
| 252 |
|
| 253 |
+
#### Configuration Options
|
| 254 |
|
| 255 |
+
You can customize training parameters using command line arguments:
|
| 256 |
|
| 257 |
+
**Dataset Options:**
|
| 258 |
+
- `--streaming_dataset`: Use streaming mode for datasets (default: False)
|
| 259 |
|
| 260 |
+
**Training Parameters:**
|
| 261 |
+
- `--batch_size`: Batch size per device (default: 6)
|
| 262 |
+
- `--max_steps`: Total training steps (default: 400000)
|
| 263 |
+
- `--learning_rate`: Initial learning rate (default: 1e-4)
|
| 264 |
+
- `--warmup_steps`: Learning rate warmup steps (default: 4000)
|
| 265 |
+
- `--gradient_accumulation_steps`: Gradient accumulation (default: 2)
|
| 266 |
|
| 267 |
+
**Checkpoint and Logging:**
|
| 268 |
+
- `--save_steps`: Checkpoint saving frequency (default: 2000)
|
| 269 |
+
- `--eval_steps`: Evaluation frequency (default: 2000)
|
| 270 |
+
- `--log_interval`: Logging frequency (default: 25)
|
| 271 |
+
- `--checkpoint_name`: Name for the checkpoint directory (default: "avsr_avhubert_ctcattn")
|
| 272 |
+
- `--resume_from_checkpoint`: Resume training from last checkpoint (default: False)
|
| 273 |
|
| 274 |
+
**Model and Output:**
|
| 275 |
+
- `--model_name_or_path`: Path to pretrained model (default: "./model-bin/avsr_cocktail")
|
| 276 |
+
- `--output_dir`: Output directory for checkpoints (default: "./model-bin")
|
| 277 |
+
- `--report_to`: Logging backend, "wandb" or "none" (default: "none")
|
| 278 |
|
| 279 |
+
**Hardware Requirements:**
|
| 280 |
+
- **GPU Memory**: The default training configuration is designed to fit within **24GB GPU memory**
|
| 281 |
+
- **Training Time**: With 2x NVIDIA Titan RTX 24GB GPUs, training takes approximately **56 hours per epoch**
|
| 282 |
+
- **Convergence**: **200,000 steps** (total batch size 24) is typically sufficient for model convergence
|
| 283 |
|
|
|
|
| 284 |
|
| 285 |
+
## Acknowledgement
|
| 286 |
|
| 287 |
+
This repository is built using the [auto_avsr](https://github.com/mpc001/auto_avsr), [espnet](https://github.com/espnet/espnet), and [avhubert](https://github.com/facebookresearch/av_hubert) repositories.
|
| 288 |
|
| 289 |
+
## Contact
|
| 290 |
|
| 291 |
+
nguyenvulebinh@gmail.com
|