# /// script # dependencies = [ # "trl>=0.12.0", # "peft>=0.7.0", # "transformers>=4.36.0", # "accelerate>=0.24.0", # "datasets", # "torch", # ] # /// from datasets import load_dataset from peft import LoraConfig from trl import SFTTrainer, SFTConfig # Load known-working TRL dataset print("Loading dataset...") dataset = load_dataset("trl-lib/Capybara", split="train") print(f"Dataset loaded: {len(dataset)} examples") # Small subset for quick test dataset = dataset.shuffle(seed=42).select(range(1000)) print(f"Using {len(dataset)} examples") # Split dataset_split = dataset.train_test_split(test_size=0.1, seed=42) train_dataset = dataset_split["train"] eval_dataset = dataset_split["test"] # Training configuration config = SFTConfig( output_dir="qwen3-0.6b-test", push_to_hub=True, hub_model_id="luiscosio/qwen3-0.6b-test", num_train_epochs=1, per_device_train_batch_size=2, gradient_accumulation_steps=4, gradient_checkpointing=True, learning_rate=2e-4, logging_steps=10, save_strategy="steps", save_steps=50, eval_strategy="steps", eval_steps=50, warmup_ratio=0.1, bf16=True, max_length=1024, report_to="none", ) # LoRA configuration peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=["q_proj", "k_proj", "v_proj", "o_proj"], ) # Initialize and train print("Initializing trainer...") trainer = SFTTrainer( model="Qwen/Qwen3-0.6B", train_dataset=train_dataset, eval_dataset=eval_dataset, args=config, peft_config=peft_config, ) print("Starting training...") trainer.train() print("Pushing to Hub...") trainer.push_to_hub() print("Done!")