Upload train_qwen3_codeforces_v2.py with huggingface_hub
Browse files- train_qwen3_codeforces_v2.py +96 -0
train_qwen3_codeforces_v2.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "trl>=0.12.0",
|
| 5 |
+
# "peft>=0.7.0",
|
| 6 |
+
# "transformers>=4.45.0",
|
| 7 |
+
# "datasets>=2.18.0",
|
| 8 |
+
# "accelerate>=0.30.0",
|
| 9 |
+
# "torch>=2.0.0",
|
| 10 |
+
# ]
|
| 11 |
+
# ///
|
| 12 |
+
|
| 13 |
+
import os
|
| 14 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 15 |
+
|
| 16 |
+
from datasets import load_dataset
|
| 17 |
+
from peft import LoraConfig
|
| 18 |
+
from trl import SFTTrainer, SFTConfig
|
| 19 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 20 |
+
|
| 21 |
+
print("Loading tokenizer...")
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-0.6B", trust_remote_code=True)
|
| 23 |
+
if tokenizer.pad_token is None:
|
| 24 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 25 |
+
|
| 26 |
+
print("Loading model...")
|
| 27 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
+
"Qwen/Qwen3-0.6B",
|
| 29 |
+
torch_dtype="auto",
|
| 30 |
+
trust_remote_code=True,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
print("Loading dataset...")
|
| 34 |
+
dataset = load_dataset("open-r1/codeforces-cots", "solutions_py_decontaminated", split="train")
|
| 35 |
+
print(f"Dataset size: {len(dataset)}")
|
| 36 |
+
|
| 37 |
+
# Take a subset for faster training (full dataset is large)
|
| 38 |
+
dataset = dataset.shuffle(seed=42).select(range(min(10000, len(dataset))))
|
| 39 |
+
print(f"Using {len(dataset)} examples")
|
| 40 |
+
|
| 41 |
+
# Split
|
| 42 |
+
split = dataset.train_test_split(test_size=0.05, seed=42)
|
| 43 |
+
train_dataset = split["train"]
|
| 44 |
+
eval_dataset = split["test"]
|
| 45 |
+
|
| 46 |
+
print("Setting up LoRA...")
|
| 47 |
+
peft_config = LoraConfig(
|
| 48 |
+
r=16,
|
| 49 |
+
lora_alpha=32,
|
| 50 |
+
lora_dropout=0.05,
|
| 51 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
| 52 |
+
bias="none",
|
| 53 |
+
task_type="CAUSAL_LM",
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
print("Setting up training...")
|
| 57 |
+
training_args = SFTConfig(
|
| 58 |
+
output_dir="qwen3-0.6b-codeforces-sft",
|
| 59 |
+
push_to_hub=True,
|
| 60 |
+
hub_model_id="luiscosio/qwen3-0.6b-codeforces-sft",
|
| 61 |
+
num_train_epochs=3,
|
| 62 |
+
per_device_train_batch_size=2,
|
| 63 |
+
gradient_accumulation_steps=8,
|
| 64 |
+
gradient_checkpointing=True,
|
| 65 |
+
learning_rate=2e-4,
|
| 66 |
+
lr_scheduler_type="cosine",
|
| 67 |
+
warmup_ratio=0.1,
|
| 68 |
+
eval_strategy="steps",
|
| 69 |
+
eval_steps=100,
|
| 70 |
+
save_strategy="steps",
|
| 71 |
+
save_steps=100,
|
| 72 |
+
save_total_limit=3,
|
| 73 |
+
logging_steps=10,
|
| 74 |
+
bf16=True,
|
| 75 |
+
max_length=2048,
|
| 76 |
+
report_to="none",
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
print("Creating trainer...")
|
| 80 |
+
trainer = SFTTrainer(
|
| 81 |
+
model=model,
|
| 82 |
+
tokenizer=tokenizer,
|
| 83 |
+
train_dataset=train_dataset,
|
| 84 |
+
eval_dataset=eval_dataset,
|
| 85 |
+
peft_config=peft_config,
|
| 86 |
+
args=training_args,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
print("Starting training...")
|
| 90 |
+
trainer.train()
|
| 91 |
+
|
| 92 |
+
print("Saving and pushing to Hub...")
|
| 93 |
+
trainer.save_model()
|
| 94 |
+
trainer.push_to_hub()
|
| 95 |
+
|
| 96 |
+
print("Done!")
|