speed commited on
Commit
eb5cb54
·
verified ·
1 Parent(s): a636989

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +197 -195
README.md CHANGED
@@ -1,199 +1,201 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: llama3.1
4
+ language:
5
+ - en
6
+ base_model:
7
+ - meta-llama/Llama-3.1-8B
8
+ pipeline_tag: audio-to-audio
9
  ---
10
 
11
+ # Llama-Mimi-8B
12
+
13
+ [📃Paper](https://arxiv.org/abs/2509.14882) | [🧑‍💻Code](https://github.com/llm-jp/llama-mimi) | [🗣️Demo](https://speed1313.github.io/llama-mimi/)
14
+
15
+ <img src="https://speed1313.github.io/llama-mimi/data/llama-mimi.svg" width="50%"/>
16
+
17
+ ## Introduction
18
+ Llama-Mimi is a speech language model that uses a unified tokenizer (Mimi) and a single Transformer decoder (Llama) to jointly model sequences of interleaved semantic and acoustic tokens.
19
+ Trained on ~240k hours of English audio, Llama-Mimi achieves state-of-the-art performance in acoustic consistency on [SALMon](https://arxiv.org/abs/2409.07437) and effectively preserves speaker identity.
20
+ Visit our [demo site](https://speed1313.github.io/llama-mimi/) to hear generated speech samples.
21
+
22
+
23
+ ## Models
24
+ - Llama-Mimi-1.3B, https://huggingface.co/llm-jp/Llama-Mimi-1.3b
25
+ - Llama-Mimi-8B, https://huggingface.co/llm-jp/Llama-Mimi-8b
26
+
27
+
28
+ ## How to Use
29
+
30
+ Generate audio continuations from a given audio prompt.
31
+
32
+ ```python
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer
34
+ import torch
35
+ from transformers import MimiModel, AutoFeatureExtractor
36
+ from transformers import StoppingCriteria
37
+ import random
38
+ import numpy as np
39
+ import torchaudio
40
+ import soundfile as sf
41
+ import re
42
+
43
+
44
+ def text_to_audio_values(
45
+ text: str,
46
+ num_quantizers: int,
47
+ output_file: str,
48
+ audio_tokenizer,
49
+ feature_extractor,
50
+ ):
51
+ # Extract (val, idx) pairs from the <val_idx> format in the text
52
+ matches = re.findall(r"<(\d+)_(\d+)>", text)
53
+ vals = []
54
+
55
+ for i in range(0, len(matches), num_quantizers):
56
+ chunk = matches[i : i + num_quantizers]
57
+ if len(chunk) < num_quantizers:
58
+ break
59
+ indices = [int(idx) for _, idx in chunk]
60
+ if indices == list(range(num_quantizers)):
61
+ vals.extend(int(val) for val, _ in chunk)
62
+ else:
63
+ break
64
+
65
+ vals = vals[: len(vals) - len(vals) % num_quantizers]
66
+ tensor_bt4 = torch.tensor(vals).reshape(1, -1, num_quantizers) # (B, T, 4)
67
+ tensor_b4t = tensor_bt4.transpose(1, 2) # (B, 4, T)
68
+
69
+ audio_values = audio_tokenizer.decode(tensor_b4t)[0]
70
+
71
+ sf.write(
72
+ output_file,
73
+ audio_values[0][0].detach().cpu().numpy(),
74
+ feature_extractor.sampling_rate,
75
+ )
76
+
77
+
78
+ def audio_array_to_text(
79
+ audio_array: torch.tensor,
80
+ audio_tokenizer,
81
+ feature_extractor,
82
+ num_quantizers: int,
83
+ max_seconds: int = 20,
84
+ ) -> str:
85
+ # truncate the audio array to the expected length
86
+ if audio_array.shape[-1] > max_seconds * feature_extractor.sampling_rate:
87
+ audio_array = audio_array[: max_seconds * feature_extractor.sampling_rate]
88
+ #
89
+ inputs = feature_extractor(
90
+ raw_audio=audio_array,
91
+ sampling_rate=feature_extractor.sampling_rate,
92
+ return_tensors="pt",
93
+ ).to(audio_tokenizer.device)
94
+ with torch.no_grad():
95
+ encoder_outputs = audio_tokenizer.encode(
96
+ inputs["input_values"],
97
+ inputs["padding_mask"],
98
+ num_quantizers=num_quantizers,
99
+ )
100
+ flatten_audio_codes = encoder_outputs.audio_codes.transpose(1, 2).reshape(-1)
101
+ assert flatten_audio_codes.numel() % num_quantizers == 0
102
+
103
+ steps = []
104
+ for i in range(0, flatten_audio_codes.numel(), num_quantizers):
105
+ group = [
106
+ f"<{flatten_audio_codes[i + j].item()}_{j}>"
107
+ for j in range(num_quantizers)
108
+ ]
109
+ steps.append(group)
110
+
111
+ parts = [tok for step in steps for tok in step]
112
+
113
+ text = "".join(parts)
114
+
115
+ del inputs, encoder_outputs, flatten_audio_codes
116
+ torch.cuda.empty_cache()
117
+ return f"<audio>{text}</audio>"
118
+
119
+
120
+ def set_determinism(seed: int = 42) -> None:
121
+ random.seed(seed)
122
+ np.random.seed(seed)
123
+ torch.manual_seed(seed)
124
+
125
+ class StopOnAudioEnd(StoppingCriteria):
126
+ def __init__(self, tokenizer):
127
+ self.tokenizer = tokenizer
128
+ self.target_text = "</audio>"
129
+ self.target_ids = tokenizer(
130
+ self.target_text, add_special_tokens=False
131
+ ).input_ids
132
+
133
+ def __call__(self, input_ids, scores, **kwargs):
134
+ if len(input_ids[0]) < len(self.target_ids):
135
+ return False
136
+ return input_ids[0][-len(self.target_ids) :].tolist() == self.target_ids
137
+
138
+ set_determinism()
139
+
140
+ temperature = 0.8
141
+ top_k = 30
142
+ do_sample = True
143
+ max_length = 1024
144
+ device = "cuda" if torch.cuda.is_available() else "cpu"
145
+ model_id = "llm-jp/Llama-Mimi-8B"
146
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16).eval().to(device)
147
+ num_quantizers = model.config.num_quantizers
148
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
149
+ audio_tokenizer = MimiModel.from_pretrained("kyutai/mimi")
150
+ feature_extractor = AutoFeatureExtractor.from_pretrained("kyutai/mimi")
151
+ stopping_criteria = StopOnAudioEnd(tokenizer)
152
+
153
+ audio_file = "assets/great_day_gt.wav"
154
+ waveform, sample_rate = torchaudio.load(audio_file)
155
+ if sample_rate != feature_extractor.sampling_rate:
156
+ waveform = torchaudio.transforms.Resample(sample_rate, feature_extractor.sampling_rate)(waveform)
157
+ sample_rate = feature_extractor.sampling_rate
158
+ prompt_array = waveform.squeeze().cpu().numpy()
159
+
160
+ text = audio_array_to_text(
161
+ prompt_array, audio_tokenizer, feature_extractor, num_quantizers
162
+ )
163
+
164
+ text = text.replace("</audio>", "")
165
+ inputs = tokenizer(text, return_tensors="pt").to(device)
166
+
167
+ with torch.no_grad():
168
+ generated = model.generate(
169
+ **inputs,
170
+ max_length=max_length,
171
+ do_sample=do_sample,
172
+ temperature=temperature,
173
+ top_k=top_k,
174
+ stopping_criteria=[stopping_criteria],
175
+ )
176
+
177
+ generated_text = tokenizer.decode(generated[0])
178
+
179
+ text_to_audio_values(
180
+ generated_text,
181
+ num_quantizers=num_quantizers,
182
+ output_file="output.wav",
183
+ audio_tokenizer=audio_tokenizer,
184
+ feature_extractor=feature_extractor,
185
+ )
186
+ ```
187
+
188
+
189
+ ## Citation
190
+
191
+ ```
192
+ @misc{sugiura2025llamamimispeechlanguagemodels,
193
+ title={Llama-Mimi: Speech Language Models with Interleaved Semantic and Acoustic Tokens},
194
+ author={Issa Sugiura and Shuhei Kurita and Yusuke Oda and Ryuichiro Higashinaka},
195
+ year={2025},
196
+ eprint={2509.14882},
197
+ archivePrefix={arXiv},
198
+ primaryClass={cs.CL},
199
+ url={https://arxiv.org/abs/2509.14882},
200
+ }
201
+ ```