Update README.md
Browse files
README.md
CHANGED
|
@@ -1,90 +1,166 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
library_name: lerobot
|
| 3 |
pipeline_tag: robotics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
license: gemma
|
| 5 |
-
language:
|
| 6 |
-
- en
|
| 7 |
---
|
| 8 |
-
# π0 fast
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
It was proposed in [FAST: Efficient Action Tokenization for Vision-Language-Action Models](https://huggingface.co/papers/2501.09747).
|
| 13 |
|
| 14 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
```bash
|
| 17 |
pip install "lerobot[pi]@git+https://github.com/huggingface/lerobot.git"
|
|
|
|
|
|
|
| 18 |
```
|
| 19 |
|
|
|
|
|
|
|
| 20 |
```python
|
| 21 |
import torch
|
|
|
|
| 22 |
from lerobot.policies.factory import make_pre_post_processors
|
| 23 |
-
|
|
|
|
| 24 |
from lerobot.policies.pi0_fast.modeling_pi0_fast import PI0FastPolicy
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
# select your device here
|
| 30 |
-
device = torch.device("cuda")
|
| 31 |
preprocess, postprocess = make_pre_post_processors(
|
| 32 |
-
|
| 33 |
model_id,
|
| 34 |
preprocessor_overrides={"device_processor": {"device": str(device)}},
|
| 35 |
)
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
batch_size = 1
|
| 40 |
-
prompt = "Pick up the red block and place it in the bin"
|
| 41 |
-
|
| 42 |
-
# Create random RGB images in [0, 255] uint8 range (as PIL images would be)
|
| 43 |
-
# Then convert to [0, 1] float32 range for LeRobot
|
| 44 |
-
def fake_rgb(h, w):
|
| 45 |
-
arr = np.random.randint(0, 255, (h, w, 3), dtype=np.uint8)
|
| 46 |
-
t = torch.from_numpy(arr).permute(2, 0, 1) # CHW
|
| 47 |
-
return t
|
| 48 |
-
|
| 49 |
-
DUMMY_STATE_DIM = 7
|
| 50 |
-
batch = {
|
| 51 |
-
f"observation.images.base_0_rgb": torch.stack(
|
| 52 |
-
[fake_rgb(IMAGE_HEIGHT, IMAGE_WIDTH) for _ in range(batch_size)]
|
| 53 |
-
).to(device),
|
| 54 |
-
f"observation.images.left_wrist_0_rgb": torch.stack(
|
| 55 |
-
[fake_rgb(IMAGE_HEIGHT, IMAGE_WIDTH) for _ in range(batch_size)]
|
| 56 |
-
).to(device),
|
| 57 |
-
f"observation.images.right_wrist_0_rgb": torch.stack(
|
| 58 |
-
[fake_rgb(IMAGE_HEIGHT, IMAGE_WIDTH) for _ in range(batch_size)]
|
| 59 |
-
).to(device),
|
| 60 |
-
"observation.state": torch.randn(batch_size, DUMMY_STATE_DIM, dtype=torch.float32, device=device),
|
| 61 |
-
"task": [prompt for _ in range(batch_size)],
|
| 62 |
-
}
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
batch = preprocess(batch)
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
action = postprocess(action)
|
| 70 |
-
print(action)
|
| 71 |
```
|
| 72 |
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
```bash
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
```
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
library_name: lerobot
|
| 5 |
pipeline_tag: robotics
|
| 6 |
+
tags:
|
| 7 |
+
- vision-language-action
|
| 8 |
+
- imitation-learning
|
| 9 |
+
- lerobot
|
| 10 |
+
inference: false
|
| 11 |
license: gemma
|
|
|
|
|
|
|
| 12 |
---
|
|
|
|
| 13 |
|
| 14 |
+
# π0 fast (PI0Fast) (LeRobot)
|
| 15 |
+
|
| 16 |
+
**PI0Fast** is a Vision-Language-Action (VLA) policy that predicts continuous robot actions via **autoregressive next-token prediction** over **FAST action tokens**.
|
| 17 |
+
|
| 18 |
+
**Original authors / paper:** [FAST: Efficient Action Tokenization for Vision-Language-Action Models](https://arxiv.org/abs/2501.09747)
|
| 19 |
+
**Implementation:** This LeRobot implementation follows the original reference code for compatibility.
|
| 20 |
+
**Reference implementation:** [https://github.com/Physical-Intelligence/openpi]
|
| 21 |
|
|
|
|
| 22 |
|
| 23 |
+
## Model description
|
| 24 |
+
|
| 25 |
+
- **Inputs:** images (multi-view), proprio/state, optional language instruction
|
| 26 |
+
- **Outputs:** continuous actions (decoded from model outputs)
|
| 27 |
+
- **Training objective:** next-token cross-entropy
|
| 28 |
+
- **Action representation:** FAST tokens
|
| 29 |
+
- **Intended use:** Fine tune on your task.
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
## Quick start (inference on a real batch)
|
| 33 |
+
|
| 34 |
+
### Installation
|
| 35 |
|
| 36 |
```bash
|
| 37 |
pip install "lerobot[pi]@git+https://github.com/huggingface/lerobot.git"
|
| 38 |
+
|
| 39 |
+
For full installation details (including optional video dependencies such as ffmpeg for torchcodec), see the official documentation: https://huggingface.co/docs/lerobot/installation
|
| 40 |
```
|
| 41 |
|
| 42 |
+
### Load model + dataset, run `select_action`
|
| 43 |
+
|
| 44 |
```python
|
| 45 |
import torch
|
| 46 |
+
from lerobot.datasets.lerobot_dataset import LeRobotDataset
|
| 47 |
from lerobot.policies.factory import make_pre_post_processors
|
| 48 |
+
|
| 49 |
+
# Swap this import per-policy
|
| 50 |
from lerobot.policies.pi0_fast.modeling_pi0_fast import PI0FastPolicy
|
| 51 |
|
| 52 |
+
# load a policy
|
| 53 |
+
model_id = "lerobot/pi0fast-libero" # <- swap checkpoint
|
| 54 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 55 |
+
|
| 56 |
+
policy = PI0FastPolicy.from_pretrained(model_id).to(device).eval()
|
| 57 |
|
|
|
|
|
|
|
| 58 |
preprocess, postprocess = make_pre_post_processors(
|
| 59 |
+
policy.config,
|
| 60 |
model_id,
|
| 61 |
preprocessor_overrides={"device_processor": {"device": str(device)}},
|
| 62 |
)
|
| 63 |
+
# load a lerobotdataset
|
| 64 |
+
dataset = LeRobotDataset("lerobot/libero")
|
| 65 |
|
| 66 |
+
# pick an episode
|
| 67 |
+
episode_index = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
# each episode corresponds to a contiguous range of frame indices
|
| 70 |
+
from_idx = dataset.meta.episodes["dataset_from_index"][episode_index]
|
| 71 |
+
to_idx = dataset.meta.episodes["dataset_to_index"][episode_index]
|
| 72 |
+
|
| 73 |
+
# get a single frame from that episode (e.g. the first frame)
|
| 74 |
+
frame_index = from_idx
|
| 75 |
+
frame = dict(dataset[frame_index])
|
| 76 |
+
|
| 77 |
+
batch = preprocess(frame)
|
| 78 |
+
with torch.inference_mode():
|
| 79 |
+
pred_action = policy.select_action(batch)
|
| 80 |
+
# use your policy postprocess, this post process the action
|
| 81 |
+
# for instance unnormalize the actions, detokenize it etc..
|
| 82 |
+
pred_action = postprocess(pred_action)
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
## Training step (loss + backward)
|
| 86 |
+
|
| 87 |
+
If you’re training / fine-tuning, you typically call `forward(...)` to get a loss and then:
|
| 88 |
+
|
| 89 |
+
```python
|
| 90 |
+
policy.train()
|
| 91 |
+
batch = dict(dataset[0])
|
| 92 |
batch = preprocess(batch)
|
| 93 |
+
|
| 94 |
+
loss, outputs = policy.forward(batch)
|
| 95 |
+
loss.backward()
|
| 96 |
+
|
|
|
|
|
|
|
| 97 |
```
|
| 98 |
|
| 99 |
+
> Notes:
|
| 100 |
+
>
|
| 101 |
+
> - Some policies expose `policy(**batch)` or return a dict; keep this snippet aligned with the policy API.
|
| 102 |
+
> - Use your trainer script (`lerobot-train`) for full training loops.
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
## How to train / fine-tune
|
| 106 |
|
| 107 |
```bash
|
| 108 |
+
lerobot-train \
|
| 109 |
+
--dataset.repo_id=HuggingFaceVLA/libero \
|
| 110 |
+
--output_dir=./outputs/[RUN_NAME] \
|
| 111 |
+
--job_name=[RUN_NAME] \
|
| 112 |
+
--policy.repo_id=[THIS_REPO_OR_CHECKPOINT] \
|
| 113 |
+
--policy.path=lerobot/[BASE_CHECKPOINT] \
|
| 114 |
+
--policy.dtype=bfloat16 \
|
| 115 |
+
--policy.device=cuda \
|
| 116 |
+
--steps=100000 \
|
| 117 |
+
--batch_size=4
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
Add policy-specific flags below:
|
| 121 |
+
|
| 122 |
+
- `-policy.chunk_size=...`
|
| 123 |
+
- `-policy.n_action_steps=...`
|
| 124 |
+
- `-policy.max_action_tokens=...`
|
| 125 |
+
- `-policy.gradient_checkpointing=true`
|
| 126 |
+
|
| 127 |
+
---
|
| 128 |
+
|
| 129 |
+
## Evaluate in Simulation (LIBERO)
|
| 130 |
+
|
| 131 |
+
You can evaluate the model in Libero environment.
|
| 132 |
+
|
| 133 |
+
```bash
|
| 134 |
+
lerobot-eval \
|
| 135 |
+
--policy.path=lerobot/[CHECKPOINT_ID] \
|
| 136 |
+
--env.type=libero \
|
| 137 |
+
--env.task=libero_object \
|
| 138 |
+
--eval.batch_size=1 \
|
| 139 |
+
--eval.n_episodes=20
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
---
|
| 143 |
+
|
| 144 |
+
## Real-World Inference & Evaluation
|
| 145 |
+
|
| 146 |
+
You can use the `record` script from [**`lerobot-record`**](https://github.com/huggingface/lerobot/blob/main/src/lerobot/scripts/lerobot_record.py) with a policy checkpoint as input, to run inference and evaluate your policy.
|
| 147 |
+
|
| 148 |
+
For instance, run this command or API example to run inference and record 10 evaluation episodes:
|
| 149 |
+
|
| 150 |
+
Copied
|
| 151 |
+
|
| 152 |
+
```
|
| 153 |
+
lerobot-record \
|
| 154 |
+
--robot.type=so100_follower \
|
| 155 |
+
--robot.port=/dev/ttyACM1 \
|
| 156 |
+
--robot.cameras="{ up: {type: opencv, index_or_path: /dev/video10, width: 640, height: 480, fps: 30}, side: {type: intelrealsense, serial_number_or_name: 233522074606, width: 640, height: 480, fps: 30}}" \
|
| 157 |
+
--robot.id=my_awesome_follower_arm \
|
| 158 |
+
--display_data=false \
|
| 159 |
+
--dataset.repo_id=${HF_USER}/eval_so100 \
|
| 160 |
+
--dataset.single_task="Put lego brick into the transparent box" \
|
| 161 |
+
# <- Teleop optional if you want to teleoperate in between episodes \
|
| 162 |
+
# --teleop.type=so100_leader \
|
| 163 |
+
# --teleop.port=/dev/ttyACM0 \
|
| 164 |
+
# --teleop.id=my_awesome_leader_arm \
|
| 165 |
+
--policy.path=${HF_USER}/my_policy
|
| 166 |
```
|