File size: 4,731 Bytes
e6c866f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
language:
- en
- zh
license: mit
tags:
- time-series
- forecasting
- bitcoin
- btc
- cryptocurrency
- fine-tuned
datasets:
- lc2004/BTCUSDT-4-hour-candles
model-index:
- name: BTCUSDT 4h Fine-tuned Model
results:
- task:
name: Time Series Forecasting
type: time-series-forecasting
dataset:
name: BTCUSDT 4-hour
type: cryptocurrency-price-data
metrics:
- name: Prediction Accuracy
type: accuracy
value: model-specific
---
# BTCUSDT 4-Hour Fine-tuned Model
## Model Description
This is a fine-tuned language model adapted for **Bitcoin (BTCUSDT) price and volume forecasting** on 4-hour candlestick data. The model has been specialized to predict medium-term price movements and trading volume patterns.
### Base Model
- **Base Model**: [Kronos](https://huggingface.co/antonop/Kronos-1B-MSN) (or specify your actual base model)
- **Fine-tuning Task**: Time Series Forecasting for Cryptocurrency
- **Application**: BTC/USDT 4-hour price prediction
### Model Details
- **Model Type**: Fine-tuned Transformer-based Time Series Model
- **Input**: Historical BTCUSDT 4-hour candlestick data (open, high, low, close, volume)
- **Output**: Predicted price and volume for the next period(s)
- **Fine-tuning Data**: Historical BTCUSDT 4-hour trading data
- **Framework**: PyTorch / Hugging Face Transformers
## Intended Use
This model is designed for:
- **Medium-term Bitcoin price forecasting** (4-hour to multi-day predictions)
- **Trading volume estimation**
- **Technical analysis automation**
- **Research and backtesting**
- **Swing trading strategy development**
### Intended Users
- Cryptocurrency traders and analysts
- Quantitative research teams
- Academic researchers studying time series forecasting
- Trading strategy developers
- Swing traders and position traders
## How to Use
### Installation
```bash
pip install transformers torch
```
### Loading the Model
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "lc2004/kronos_base_model_BTCUSDT_4h_finetune"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
```
### Prediction Example
```python
# Prepare your BTCUSDT data
# Use the prediction script from the original repository
from prediction_script import predict_btc
predictions = predict_btc(model, historical_data)
print(predictions)
```
For detailed usage, see the [original repository](https://github.com/Liucong-sdu/Kronos-Btc-finetune)
## Model Performance
- **Training Data**: BTCUSDT 4-hour historical candles
- **Evaluation Metric**: Model-specific forecasting accuracy
- **Use Case Specific**: Optimized for cryptocurrency medium-term time series
- **Prediction Horizon**: Up to 192 hours (8 days)
See example predictions in the repository.
## Limitations
- Trained specifically on **BTCUSDT 4-hour data** - may not generalize to other cryptocurrencies or timeframes
- Time series models are inherently uncertain; predictions should not be used as sole basis for trading decisions
- Market conditions and volatility can significantly impact forecast accuracy
- Historical performance does not guarantee future results
- Best suited for medium-term forecasting (3-7 days)
## Ethical Considerations
⚠️ **Risk Warning**: This model is for research and educational purposes. Do not use for actual trading without proper risk management and professional financial advice.
- Cryptocurrency markets are highly volatile
- Use appropriate position sizing and stop-loss strategies
- Consult with financial professionals before trading decisions
- Past predictions do not guarantee future accuracy
## License
This fine-tuned model is released under the **MIT License**.
The base model's original license and usage terms should be respected. For details on the base model, refer to the [Kronos repository](https://huggingface.co/antonop/Kronos-1B-MSN).
## Citation
If you use this model, please cite:
```bibtex
@misc{btcusdt_4h_finetuned_2025,
title={BTCUSDT 4-Hour Fine-tuned Model},
author={Liucong},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/lc2004/kronos_base_model_BTCUSDT_4h_finetune}}
}
```
## Acknowledgments
- Base model: [Kronos](https://huggingface.co/antonop/Kronos-1B-MSN)
- Built with: [Hugging Face Transformers](https://huggingface.co/transformers/)
- Original Kronos Framework: [shiyu-coder/Kronos](https://github.com/shiyu-coder/Kronos)
## Contact & Support
For questions or issues:
- GitHub: [Kronos-Btc-finetune](https://github.com/Liucong-sdu/Kronos-Btc-finetune)
- Hugging Face: [lc2004](https://huggingface.co/lc2004)
---
**Last Updated**: October 23, 2025 |