File size: 4,731 Bytes
e6c866f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
language:
- en
- zh
license: mit
tags:
- time-series
- forecasting
- bitcoin
- btc
- cryptocurrency
- fine-tuned
datasets:
- lc2004/BTCUSDT-4-hour-candles
model-index:
- name: BTCUSDT 4h Fine-tuned Model
  results:
  - task:
      name: Time Series Forecasting
      type: time-series-forecasting
    dataset:
      name: BTCUSDT 4-hour
      type: cryptocurrency-price-data
    metrics:
    - name: Prediction Accuracy
      type: accuracy
      value: model-specific
---

# BTCUSDT 4-Hour Fine-tuned Model

## Model Description

This is a fine-tuned language model adapted for **Bitcoin (BTCUSDT) price and volume forecasting** on 4-hour candlestick data. The model has been specialized to predict medium-term price movements and trading volume patterns.

### Base Model

- **Base Model**: [Kronos](https://huggingface.co/antonop/Kronos-1B-MSN) (or specify your actual base model)
- **Fine-tuning Task**: Time Series Forecasting for Cryptocurrency
- **Application**: BTC/USDT 4-hour price prediction

### Model Details

- **Model Type**: Fine-tuned Transformer-based Time Series Model
- **Input**: Historical BTCUSDT 4-hour candlestick data (open, high, low, close, volume)
- **Output**: Predicted price and volume for the next period(s)
- **Fine-tuning Data**: Historical BTCUSDT 4-hour trading data
- **Framework**: PyTorch / Hugging Face Transformers

## Intended Use

This model is designed for:
- **Medium-term Bitcoin price forecasting** (4-hour to multi-day predictions)
- **Trading volume estimation**
- **Technical analysis automation**
- **Research and backtesting**
- **Swing trading strategy development**

### Intended Users

- Cryptocurrency traders and analysts
- Quantitative research teams
- Academic researchers studying time series forecasting
- Trading strategy developers
- Swing traders and position traders

## How to Use

### Installation

```bash
pip install transformers torch
```

### Loading the Model

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "lc2004/kronos_base_model_BTCUSDT_4h_finetune"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
```

### Prediction Example

```python
# Prepare your BTCUSDT data
# Use the prediction script from the original repository

from prediction_script import predict_btc
predictions = predict_btc(model, historical_data)
print(predictions)
```

For detailed usage, see the [original repository](https://github.com/Liucong-sdu/Kronos-Btc-finetune)

## Model Performance

- **Training Data**: BTCUSDT 4-hour historical candles
- **Evaluation Metric**: Model-specific forecasting accuracy
- **Use Case Specific**: Optimized for cryptocurrency medium-term time series
- **Prediction Horizon**: Up to 192 hours (8 days)

See example predictions in the repository.

## Limitations

- Trained specifically on **BTCUSDT 4-hour data** - may not generalize to other cryptocurrencies or timeframes
- Time series models are inherently uncertain; predictions should not be used as sole basis for trading decisions
- Market conditions and volatility can significantly impact forecast accuracy
- Historical performance does not guarantee future results
- Best suited for medium-term forecasting (3-7 days)

## Ethical Considerations

⚠️ **Risk Warning**: This model is for research and educational purposes. Do not use for actual trading without proper risk management and professional financial advice.

- Cryptocurrency markets are highly volatile
- Use appropriate position sizing and stop-loss strategies
- Consult with financial professionals before trading decisions
- Past predictions do not guarantee future accuracy

## License

This fine-tuned model is released under the **MIT License**.

The base model's original license and usage terms should be respected. For details on the base model, refer to the [Kronos repository](https://huggingface.co/antonop/Kronos-1B-MSN).

## Citation

If you use this model, please cite:

```bibtex
@misc{btcusdt_4h_finetuned_2025,
  title={BTCUSDT 4-Hour Fine-tuned Model},
  author={Liucong},
  year={2025},
  publisher={Hugging Face},
  howpublished={\url{https://huggingface.co/lc2004/kronos_base_model_BTCUSDT_4h_finetune}}
}
```

## Acknowledgments

- Base model: [Kronos](https://huggingface.co/antonop/Kronos-1B-MSN)
- Built with: [Hugging Face Transformers](https://huggingface.co/transformers/)
- Original Kronos Framework: [shiyu-coder/Kronos](https://github.com/shiyu-coder/Kronos)

## Contact & Support

For questions or issues:
- GitHub: [Kronos-Btc-finetune](https://github.com/Liucong-sdu/Kronos-Btc-finetune)
- Hugging Face: [lc2004](https://huggingface.co/lc2004)

---

**Last Updated**: October 23, 2025