Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: multilingual
|
| 3 |
+
tags:
|
| 4 |
+
- document-classification
|
| 5 |
+
- text-classification
|
| 6 |
+
- multilingual
|
| 7 |
+
- doclaynet
|
| 8 |
+
- e5
|
| 9 |
+
pipeline_tag: text-classification
|
| 10 |
+
license: mit
|
| 11 |
+
base_model: intfloat/multilingual-e5-large
|
| 12 |
+
datasets:
|
| 13 |
+
- pierreguillou/DocLayNet-base
|
| 14 |
+
metrics:
|
| 15 |
+
- accuracy
|
| 16 |
+
model-index:
|
| 17 |
+
- name: multilingual-e5-doclaynet
|
| 18 |
+
results:
|
| 19 |
+
- task:
|
| 20 |
+
type: text-classification
|
| 21 |
+
name: Document Classification
|
| 22 |
+
dataset:
|
| 23 |
+
name: DocLayNet
|
| 24 |
+
type: pierreguillou/DocLayNet-base
|
| 25 |
+
metrics:
|
| 26 |
+
- type: accuracy
|
| 27 |
+
value: 0.9719
|
| 28 |
+
name: Test Accuracy
|
| 29 |
+
- type: f1
|
| 30 |
+
value: 0.9720
|
| 31 |
+
name: Weighted F1 Score
|
| 32 |
+
- type: precision
|
| 33 |
+
value: 0.9732
|
| 34 |
+
name: Weighted Precision
|
| 35 |
+
- type: recall
|
| 36 |
+
value: 0.9719
|
| 37 |
+
name: Weighted Recall
|
| 38 |
+
- type: loss
|
| 39 |
+
value: 0.5192
|
| 40 |
+
name: Test Loss
|
| 41 |
+
inference: false
|
| 42 |
+
---
|
| 43 |
+
# Multilingual E5 for Document Classification (DocLayNet)
|
| 44 |
+
This model is a fine-tuned version of intfloat/multilingual-e5-large for document text classification based on the DocLayNet dataset.
|
| 45 |
+
|
| 46 |
+
## Model description
|
| 47 |
+
- Base model: intfloat/multilingual-e5-large
|
| 48 |
+
- Task: Document text classification
|
| 49 |
+
- Languages: Multilingual
|
| 50 |
+
- License: MIT
|
| 51 |
+
|
| 52 |
+
## Training data
|
| 53 |
+
- Dataset: DocLayNet-base
|
| 54 |
+
- Source: https://huggingface.co/datasets/pierreguillou/DocLayNet-base
|
| 55 |
+
- Categories:
|
| 56 |
+
```python
|
| 57 |
+
{
|
| 58 |
+
'financial_reports': 0,
|
| 59 |
+
'government_tenders': 1,
|
| 60 |
+
'laws_and_regulations': 2,
|
| 61 |
+
'manuals': 3,
|
| 62 |
+
'patents': 4,
|
| 63 |
+
'scientific_articles': 5
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
## Training procedure
|
| 67 |
+
|
| 68 |
+
Trained on single gpu for 2 epochs for apx. 20 minutes.
|
| 69 |
+
|
| 70 |
+
hyperparameters:
|
| 71 |
+
{
|
| 72 |
+
'batch_size': 8,
|
| 73 |
+
'num_epochs': 10,
|
| 74 |
+
'learning_rate': 2e-5,
|
| 75 |
+
'weight_decay': 0.01,
|
| 76 |
+
'warmup_ratio': 0.1,
|
| 77 |
+
'gradient_clip': 1.0,
|
| 78 |
+
'label_smoothing': 0.1,
|
| 79 |
+
'optimizer': 'AdamW',
|
| 80 |
+
'scheduler': 'cosine_with_warmup'
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
## Evaluation results
|
| 84 |
+
Test Loss: 0.5192, Test Acc: 0.9719
|