--- language: - en license: llama3 tags: - Llama-3.1 - instruct - finetune - reasoning - hybrid-mode - chatml - function calling - tool use - json mode - structured outputs - atropos - dataforge - long context - roleplaying - chat - mlx - mlx - mlx-my-repo base_model: mlx-community/Hermes-4-70B-5bit library_name: mlx widget: - example_title: Hermes 4 messages: - role: system content: You are Hermes 4, a capable, neutrally-aligned assistant. Prefer concise, correct answers. - role: user content: Explain the difference between BFS and DFS to a new CS student. pipeline_tag: text-generation model-index: - name: Hermes-4-Llama-3.1-70B results: [] --- # introvoyz041/Hermes-4-70B-5bit-mlx-8Bit The Model [introvoyz041/Hermes-4-70B-5bit-mlx-8Bit](https://huggingface.co/introvoyz041/Hermes-4-70B-5bit-mlx-8Bit) was converted to MLX format from [mlx-community/Hermes-4-70B-5bit](https://huggingface.co/mlx-community/Hermes-4-70B-5bit) using mlx-lm version **0.28.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("introvoyz041/Hermes-4-70B-5bit-mlx-8Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```